Lista de Exercícios de Recuperação de MATEMÁTICA 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios de Recuperação de MATEMÁTICA 2"

Transcrição

1 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM ) Uma prova tem 4 testes com 5 alternativas cada um. Respondendo aleatoriamente às questões, qual é a probabilidade de gabaritar a prova? ) Escolhendo-se ao acaso duas arestas de um cubo, qual a probabilidade de elas serem reversas? ) Um grupo de 00 universitários é formado por 5 estudantes de Engenharia, 7 de Medicina, 0 de Filosofia e os demais de Direito. Escolhido ao acaso um elemento do grupo, qual é a probabilidade de ele ser estudante de Engenharia ou Medicina? 4) Um dado é jogado três vezes, uma após a outra. Pergunta-se: Quantos são as possibilidades onde os três resultados são diferentes? 5) Considere todas as permutações de cinco letras da sigla PUCRS. Umas dessas permutações foi escolhida ao acaso. Calcule a probabilidade de a escolhida terminar com a letra C e começar com a letra P.

2 6) (UNICAMP) Um dado é jogado vezes, uma após a outra. Qual é a probabilidade de a soma dos resultados ser maior ou igual a 6? 7) Uma urna tem 00 cartões numerados de 0 a 00. Calcule a probabilidade de se sortear um cartão dessa urna e o número nele marcado ter os três algarismos distintos entre si. 8) (VUNESP) Um baralho tem cartas das quais 4 são ases. Retiram-se cartas ao acaso. Qual é a probabilidade de haver pelo menos um ás entre as cartas retiradas? 9) Em um jogo de pôquer têm-se cartas, 8 de cada um dos naipes. Um jogador recebe 5 cartas. Qual é a probabilidade de que todas sejam do mesmo naipe? 0) (UEL) No diagrama a seguir, o espaço amostral S representa um grupo de amigos que farão uma viagem. O conjunto A indica a quantidade de pessoas que já foram a Maceió e o conjunto B, a quantidade de pessoas que já foram a Fortaleza. A empresa de turismo que está organizando a viagem fará o sorteio de uma passagem gratuita. Considerando que a pessoa sorteada já tenha ido para Fortaleza, calcule a probabilidade de que ela também já tenha ido para Maceió. S B A ) Em três lançamentos consecutivos de um dado perfeito, a probabilidade de que a face 6 apareça voltada para cima em pelo menos um dos lançamentos é:

3 ) A altura de um prisma reto mede cm e a base é um triângulo cujos lados medem 0 cm, 8 cm e 6 cm. Calcular a área lateral do prisma. ) Determine o volume de um cubo cuja área da base é igual a 6 cm. 4) Um prisma heptagonal regular tem arestas da base que medem cm e altura de 5 cm. Determine a sua área lateral. 5) Um paralelepípedo reto tem como base um retângulo de lados 5 cm e cm e o seu volume é 40 cm. Determine a diagonal da base, a altura e a área total desse prisma. h cm 5 cm 6) Um prisma tem como base um quadrado de lado 5 cm e a sua área total é 450 altura e volume desse prisma. cm. Determine a h 5 5 7) Um prisma hexagonal regular tem 5 cm de altura e a maior diagonal da base mede 6 cm. Determinar a área total desse prisma. 8) Um prisma octogonal regular tem 4 cm de altura e a aresta da base 7 cm. Calcular a área lateral desse prisma.

4 9) Um prisma triangular regular tem cm de aresta da base. Sabendo que a medida da aresta lateral é o triplo da medida da aresta da base, calcule: a.) a área da base; b.) a área lateral. 0) Um arquiteto tem dois projetos para a construção de uma piscina retangular com m de profundidade: Projeto : dimensões do retângulo: 6 m x 5 m. Projeto : dimensões do retângulo: 0 m x 40 m. Sabendo que as paredes e o fundo da piscina são revestidos com azulejos cujo preço é R$ 0,50 o metro quadrado, calcule qual a despesa com azulejos: a.) no projeto B) no projeto. ) A diagonal de um cubo mede 0 cm, determine: a) a sua área total; b) o seu volume. ) A base de um prisma reto é um triângulo isósceles com lados medindo 0 cm, 0 cm e cm e o seu volume é igual a 960 cm. Determine a altura do prisma h

5 ) A aresta de um cubo mede 8 dm. Determine a diagonal, a área total e o volume do cubo. 4) O cubo de vértices ABCDEFGH, indicado na figura, tem arestas de comprimento cm. Sabendo que M é o ponto médio da aresta AE e N é o centro do quadrado ABCD, Determine: a) O volume do cubo; b) A medida da diagonal do cubo; c) A distância entre os pontos M e N. 5) O perímetro da base de um prisma de base quadrada é igual a 4 cm e a sua altura á cm. a) Determine a medida da aresta da base; b) O volume do prisma. 6) Uma piscina vai ser revestida com azulejos que custam R$ 9,50 o m. As dimensões da piscina são 0 m de comprimento por 6,5 m de largura e m de profundidade. Determine quanto será gasto em azulejos para revestir a piscina.

6 TESTES: ASSINALE AS RESPOSTAS NO GABARITO E DEIXE TODOS OS CÁLCULOS 7) (ENEM) Uma das principais causas de degradação de peixes frescos é a contaminação por bactérias. O gráfico apresenta resultados de um estudo acerca da temperatura de peixes frescos vendidos em cinco peixarias. O ideal é que esses peixes sejam vendidos com temperaturas entre C e 4 C. Selecionando-se aleatoriamente uma das cinco peixarias pesquisadas, a probabilidade de ela vender peixes frescos na condição ideal é igual a: a) b) c) d) e) ) (ENEM) Em um concurso de televisão, apresentam-se ao participante fichas voltadas para baixo, estando representada em cada uma as letras T, V e E. As fichas encontram-se alinhadas em uma ordem qualquer. O participante deve ordenar as fichas ao seu gosto, mantendo as letras voltadas para baixo, tentando obter a sigla TVE. Ao desvirá-las, para cada letra que esteja na posição correta ganhará um prêmio de R$ 00,00. A probabilidade de o participante não ganhar qualquer prêmio é igua a: a) 0 b) c) 4 d) e) 6

7 9) A vida na rua como ela é O Ministério do Desenvolvimento Social e Combate à Fome (MDS) realizou, em parceria com a ONU, uma pesquisa nacional sobre a população que vive na rua, tendo sido ouvidas.9 pessoas em 7 cidades brasileiras. Nesse levantamento, constatou-se que a maioria dessa população sabe ler e escrever (74%), que apenas 5,% vivem de esmolas e que, entre os moradores de rua que ingressaram no ensino superior, 0,7% se diplomou. Outros dados da pesquisa são apresentados nos quadros abaixo. No universo pesquisado, considere que P seja o conjunto das pessoas que vivem na rua por motivos de alcoolismo/drogas e Q seja o conjunto daquelas cujo motivo para viverem na rua é a decepção amorosa. Escolhendo-se ao acaso uma pessoa no grupo pesquisado e supondo-se que seja igual a 40% a probabilidade de que essa pessoa faça parte do conjunto P ou do conjunto Q, então a probabilidade de que ela faça parte do conjunto interseção de P e Q é igual a a) 6% b) 5% c) % d) 0% e) 6% 0) A população brasileira sabe, pelo menos intuitivamente, que a probabilidade de acertar as seis dezenas da mega sena não é zero, mas é quase. Mesmo assim, milhões de pessoas são atraídas por essa loteria, especialmente quando o prêmio se acumula em valores altos. Até junho de 009, cada aposta de seis dezenas, pertencentes ao conjunto {0, 0, 0,..., 59, 60}, custava R$,50. (Disponível em: Acesso em: 7 jul. 009.) Considere que uma pessoa decida apostar exatamente R$ 6,00 e que esteja mais interessada em acertar apenas cinco das seis dezenas da mega sena, justamente pela dificuldade desta última. Nesse caso, é melhor que essa pessoa faça 84 apostas de seis dezenas diferentes, que não tenham cinco números em comum, do que uma única aposta com nove dezenas, porque a probabilidade de acertar a quina no segundo caso em relação ao primeiro é, aproximadamente a) vez maior b) vez maior c) 4 vezes menor d) 9 vezes menor e) 4 vezes menor

8 ) (UFRRJ/RJ) Observe o bloco retangular da figura, de vidro totalmente fechado com água dentro. Virando-o, como mostra a figura, podemos afirmar que o valor de x é: a) cm b) cm c) 0 cm d) 5 cm e) 6 cm ) (PUC-PR) O volume de um prisma hexagonal de altura 5 m é prisma, em m : 0 m. Calcule a aresta da base do a) 5 b) 4 c) d) e) ) Uma piscina tem a forma de um prisma reto cuja base é um retângulo de dimensões 5 m e 0 m. A quantidade necessária de litros de água para que o nível de água da piscina suba 0 cm é: a) 0,5 L b),5 L c) 50 L d) 500 L e) 5000 L ) (PUC/CAMP) Usando uma folha de latão, deseja-se construir um cubo com volume de 8 dm³. A área da folha utilizada para isso será, no mínimo: a) 0 cm² b) 40 cm² c) 40 cm² d) 000 cm² e) 400 cm² 4) Dois blocos de alumínio, em forma de cubo, com arestas medindo 0 cm e 6 cm são levados juntos à fusão e em seguida o alumínio líquido é moldado como um paralelepípedo reto de arestas 8 cm, 8 cm e x cm. O valor de x é: a) 6 b) 7 c) 8 d) 9 e) 0

9 5) Considere o sólido resultante de um paralelepípedo retângulo de arestas medindo x, x e x, do qual um prisma de base quadrada de lado e altura x foi retirado. O sólido que foi retirado está representado pela parte escura da figura. O volume desse sólido, em função de x, é dado pela expressão: a) x x b) 4x x c) x x d) x x e) x x x x x GABARITO A A A A A A A A A A B B B B B B B B B B C C C C C C C C C C D D D D D D D D D D E E E E E E E E E E

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 06 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 26/09/2015. A lista deverá apresentar

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: Data da entrega

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016)

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) singular Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) 1. (Ita) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua área lateral é o dobro da área de sua base.

Leia mais

Lista de exercícios 08 Aluno (a):

Lista de exercícios 08 Aluno (a): Lista de exercícios 08 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Prismas e pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

Exemplo 2: Considere um dado viciado em que as probabilidades P({1}) = P({3}) = P({5}) = k e P({2}) = P({4}) = P({6}) = 2k.

Exemplo 2: Considere um dado viciado em que as probabilidades P({1}) = P({3}) = P({5}) = k e P({2}) = P({4}) = P({6}) = 2k. Probabilidades Aulas 53 e 5 prof. Aguiar - 03 Aula 53 Probabilidades Exemplo : Considere um dado honesto: Os eventos elementares são {}, {}, {3}, {}, {5} e {6} A probabilidade de sair qualquer evento elementar

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

Lista de exercícios Prisma e cilindro

Lista de exercícios Prisma e cilindro Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio

Leia mais

Lista de exercícios sobre PRISMAS Prof. Ulisses Motta ESTUDE...

Lista de exercícios sobre PRISMAS Prof. Ulisses Motta ESTUDE... Lista de exercícios sobre PRISMAS Prof. Ulisses Motta ESTUDE... 1. (Unifesp 017) Um sólido é formado por 4 cubos idênticos, conforme a figura. O contato entre dois cubos contíguos sempre se dá por meio

Leia mais

Exercícios de Matemática Poliedros

Exercícios de Matemática Poliedros Exercícios de Matemática Poliedros 3. (Unitau) Se dobrarmos convenientemente as linhas tracejadas das figuras a seguir, obteremos três modelos de figuras espaciais cujos nomes são: 1. (Uerj) O poliedro

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA

3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados

Leia mais

Professor: LEONARDO, THIAGO E CARLOS JR. Turma: 31 Nota: Questão 3. a) 40 min. b) 240 min. a) 1 2. b) 1 64 c) 400 min. d) 480 min.

Professor: LEONARDO, THIAGO E CARLOS JR. Turma: 31 Nota: Questão 3. a) 40 min. b) 240 min. a) 1 2. b) 1 64 c) 400 min. d) 480 min. Obs.: Data: 18/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para

Leia mais

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta Lista de exercícios Geometria Espacial º ANO Prof. Ulisses Motta 1. (Uerj) Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros regulares. Se os dodecaedros estão justapostos por

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 43 PROBABILIDADE: CONDICIONAL E APLICAÇÕES GEOMÉTRICAS

MATEMÁTICA - 2 o ANO MÓDULO 43 PROBABILIDADE: CONDICIONAL E APLICAÇÕES GEOMÉTRICAS MATEMÁTICA - 2 o ANO MÓDULO 43 PROBABILIDADE: CONDICIONAL E APLICAÇÕES GEOMÉTRICAS Como pode cair no enem (ENEM) A vida na rua como ela é O Ministério do Desenvolvimento Social e Combate à Fome (MDS) realizou,

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: o - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: / 4 / 017 Referência Livro Didático: CAP 7 Item

Leia mais

2;5 é o ponto médio do segmento de extremos

2;5 é o ponto médio do segmento de extremos Professor: MARA BASTOS E CARLOS JR. Turma: 1 Nota: Obs.: Data: 4/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou

Leia mais

Questão 7 FGV O número de anagramas da palavra ECONOMIA que não começam nem terminam com a letra O é:

Questão 7 FGV O número de anagramas da palavra ECONOMIA que não começam nem terminam com a letra O é: COLÉGIO SHALOM Ensino Fundamental 2 Ano Prof.º: kaká Disciplina Matemática Aluno (a):. No. Trabalho de Recuperação Entrega Na data da prova Nota: Orientações: - Responder manuscrito; - Cópias de colegas,

Leia mais

Responder todas as questões em folha A4. Entregar na data da realização da prova.

Responder todas as questões em folha A4. Entregar na data da realização da prova. INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Atividades de Função do 1 Grau e 2 Grau, Exponencial e Logaritmo, Matemática Básica, Problemas de contagem e Geometria Básica

Atividades de Função do 1 Grau e 2 Grau, Exponencial e Logaritmo, Matemática Básica, Problemas de contagem e Geometria Básica DISCIPLINA: Matemática DATA: 24/05/2017 Atividades de Função do 1 Grau e 2 Grau, Exponencial e Logaritmo, Matemática Básica, Problemas de contagem e Geometria Básica 01 - Um time de futebol amador ganhou

Leia mais

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura.

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura. (UEPB PB/005) Para se fabricar uma caixa de sabão em pó com 5 cm de altura, 16 cm de largura e 5 cm comprimento serão necessários quantos cm de papelão? a) 1 10 b) 1 100 c) 605 d) 550 e) 1 500 (Unifor

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância

Leia mais

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/08/2015. A lista deverá apresentar

Leia mais

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaio. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2012 1ª. SÉRIE 1.- A média das notas dos 21 alunos do 1º Ano do Ensino Médio, em Matemática é 5,80. Se a nota de Álvaro que é 1,80 for excluída, então qual

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Matemática Prof. Leandro Conteúdo: Área de figuras planas. Ponto médio. Distância entre 2 pontos; Equação fundamental da reta. Poliedros.

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Matemática. Arranjo e Combinação. Eduardo. Matemática Análise Combinatória

Matemática. Arranjo e Combinação. Eduardo. Matemática Análise Combinatória Matemática Arranjo e Combinação Eduardo Matemática Análise Combinatória Análise Combinatória Apostila 6B Aula 18 Pág 15 Matemática Análise Combinatória Análise Combinatória Apostila 6B Aula 18 Pág 15 Matemática

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO

MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO C` D A` A C a D B` c D B b 10 x 2x Como pode cair no enem (ENEM) Uma fábrica produz barras de chocolates no formato de paralelepípedos e

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Sólidos Inscritos e Circunscritos 3.º Ano

Sólidos Inscritos e Circunscritos 3.º Ano Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3

Leia mais

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3 Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Fuvest 99) Considere uma caixa sem tampa com a forma de um paralelepípedo reto de altura 8 m e base quadrada de lado 6 m. Apoiada na base, encontra-se uma pirâmide sólida reta de altura 8m e base quadrada

Leia mais

Matemática. Principio Fundamental da Contagem. Eduardo. Matemática Análise Combinatória

Matemática. Principio Fundamental da Contagem. Eduardo. Matemática Análise Combinatória Matemática Principio Fundamental da Contagem Eduardo Análise Combinatória Aulas 29 e 30 Análise Combinatória Aulas 29 e 30 Análise Combinatória Aulas 29 e 30 (UFSC) Numa lanchonete há cinco tipos de sucos:

Leia mais

MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou:

MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou: MATEMÁTICA Passando em uma sala de aula, um aluno verificou que, no quadro-negro, o professor havia escrito os números naturais ímpares da seguinte maneira: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 O aluno

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

Matemática. Geometria plana

Matemática. Geometria plana Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,

Leia mais

ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA ROTEIRO DE RECUPERAÇÃO 4 - MATEMÁTICA Nome: Nº 8º Ano Data: / / Professores: Diego, Marcello e Yuri Nota: (Valor 1,0) 4º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine

Leia mais

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela ª Etapa 1 Disciplina: Matemática Ano: 1 Professor (a): Ana Cristina Turma: o FG/TI Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV. Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)

Leia mais

Prof..: Rogério de Souza Lima. Questão 1 Uma chapa de alumínio com 1,3 m2 de área será totalmente recortada em pedaços, cada um deles com 25 cm2

Prof..: Rogério de Souza Lima. Questão 1 Uma chapa de alumínio com 1,3 m2 de área será totalmente recortada em pedaços, cada um deles com 25 cm2 CENTRO UNIVERSITÁRIO NOSSA SENHORA DO PATROCÍNIO CEUNSP LISTA DE EXERCÍCIO 1 Matemática e Geometria Aplicada à Arquitetura e Urbanismo. TURMA: 82211 Prof..: Rogério de Souza Lima Questão 1 Uma chapa de

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Exercícios sobre Estudo dos Polígonos

Exercícios sobre Estudo dos Polígonos Exercícios sobre Estudo dos Polígonos Material de apoio do Extensivo 1. (Uerj) Ao observar, em seu computador, um desenho como o apresentado a seguir, um estudante pensou tratar-se de uma curva. Porém,

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto

PROFESSOR: Guilherme Franklin Lauxen Neto ALUNO TURMA: 2 Ano DATA / /2015 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /2015 1) Dado um cilindro de revolução de altura 12 cm e raio da base 4 cm, determine: a) a área da base do cilindro.

Leia mais

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.

Leia mais

Revisão EXAMES FINAIS Data: 2016.

Revisão EXAMES FINAIS Data: 2016. Revisão EXAMES FINAIS Data: 06. Componente Curricular: Matemática Série: 3ª Turmas : 3A, 3B e 3C Professor (a): Anelise Bruch DICA Estudar com o auxilio das apostilas, das provas anteriores, das listas

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS Tetraedro regular Hexaedro regular Octaedro regular Dodecaedro regular Icosaedro regular B C A F D G E H Como pode cair no enem O poliedro da figura (uma invenção

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU ATEÁTICA-PROF. CARLINHOS/KOBA-º ENSINO ÉDIO EXERCÍCIOS PARA ESTUDO DE RECUPERAÇÃO DO º SEESTRE ATEÁTICA I ) Um corretor de imóveis pretende vender o terreno

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

AULA 01. Assim sendo, a quantidade total dessa substância no lago é de: (A) g (B) g (C) g (D) 0, g (E) 0, g

AULA 01. Assim sendo, a quantidade total dessa substância no lago é de: (A) g (B) g (C) g (D) 0, g (E) 0, g AULA 01 (ITA-SP/1999) Um poliedro convexo de 10 vértices apresenta faces triangulares e quadrangulares. O número de faces quadrangulares, o número de faces triangulares e o número total de faces formam,

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

O módulo da força exercida pelo líquido no fundo do recipiente, em kn, é

O módulo da força exercida pelo líquido no fundo do recipiente, em kn, é Professor: Pedro Ítallo 01 - (IFGO) De um prisma quadrangular regular de lado x e altura 3, foi cortado um cubo de aresta x. Nessas condições, para que o volume remanescente seja 4, a aresta do cubo deve

Leia mais

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA

Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA Página 1 PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 3º ANO Turma: Prof. CAROL MARTINS Data: JULHO 2016 Nota: Análise Combinatória e Probabilidade 1) Uma pequena comunidade é composta por 10 mulheres,

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:

2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem: 1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

Matemática 2 LEIA COM ATENÇÃO

Matemática 2 LEIA COM ATENÇÃO LEI COM TENÇÃO Matemática 2 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha os dados pessoais. 03. utorizado o início da prova, verifique

Leia mais

Resolução UFTM. Questão 65

Resolução UFTM. Questão 65 UFTM Questão 65 Sabe-se que a diferença entre as medidas do comprimento a e da largura b de um tapete retangular é igual a x, e que o seu perímetro é igual a 1x. A área desse tapete pode ser corretamente

Leia mais

Professor: Marcelo de Moura

Professor: Marcelo de Moura Prova UFMG 2008 1. Considere um reservatório, em forma de paralelepípedo retângulo, cujas medidas são 8m de comprimento, 5 m de largura e 120 cm de profundidade. Bombeia-se água para dentro deste reservatório,

Leia mais

LISTA RESOLUÇÃO- RESOLUÇÃO DE MATEMÁTICA E SUAS TECNOLOGIAS_SIMULADO ENEM UII_ 3EM_JULHO DE 2014

LISTA RESOLUÇÃO- RESOLUÇÃO DE MATEMÁTICA E SUAS TECNOLOGIAS_SIMULADO ENEM UII_ 3EM_JULHO DE 2014 LISTA RESOLUÇÃO- RESOLUÇÃO DE MATEMÁTICA E SUAS TECNOLOGIAS_SIMULADO ENEM UII_ EM_JULHO DE 0 ORGANIZAÇÃO: PROF ADRIANO CARIBÉ E PROF WALTER PORTO RESOLUÇÃO: PROFA MARIA ANTÔNIA C GOUVEIA QUESTÃO Considerando

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número

Leia mais