Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática"

Transcrição

1 UNIVERSIDADE FEDERAL DE VIÇOSA III Semana Acadêmica de Matemática Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática Profª Lahis Braga Souza Profª Thais Sena de Lanna Profª Cristiane Neves Mello Profª Bárbara Cunha Fontes Viçosa

2 UNIVERSIDADE FEDERAL DE VIÇOSA III Semana Acadêmica de Matemática Sumário Atividade 1 - Teorema de Pitágoras...3 Atividade 2 - Construção de prismas e pirâmides no GeoGebra 3D...4 Atividade 3 - Estudo das funções quadráticas...6 Atividade 4 - Funções trigonométricas...7 Atividade 5 - Trabalhando com triângulos de mesma área...8 Atividade 6 Noção intuitiva de limite e continuidade de uma função...9 Parte Parte Atividade 7- Construindo o gráfico da derivada...10

3 Atividade 1 - Teorema de Pitágoras Objetivo: Formalizar e compreender o conceito do Teorema de Pitágoras. Roteiro de Construção: Esconda o Eixo e a Malha para melhor visualização. Clique na ferramenta Controle Deslizante e clique sobre a janela de visualização. Na janela que abrirá, digite Cateto1 no campo destinado ao Nome e deixe o intervalo entre 0 e 15 com incremento de 1. Com a ferramenta Segmento com Comprimento Fixo, construa um segmento de comprimento Cateto1 (nome dado ao controle deslizante). Clique com o botão direito do mouse sobre o segmento formado e clique em renomear. No campo Nome, digite Cateto1. Selecione a ferramenta Reta Perpendicular e clique sobre o segmento criado no passo anterior e posteriormente sobre o ponto A. Faça agora o passo 2, nomeando o controle deslizante para cateto 2 Construa uma circunferência de centro A e raio Cateto2 (nome dado ao controle deslizante), com a ferramenta Círculo dados Centro e Raio. Com a ferramenta Intersecção de Dois Objetos, clique na circunferência formada no passo anterior e na reta perpendicular que passa pelo ponto A. Com a ferramenta Exibir/Esconder Objeto, esconda: a reta perpendicular, um dos pontos de intersecção entre a reta perpendicular e a circunferência e a circunferência. Construa os segmentos AD e DB (Cateto e Hipotenusa respectivamente). Clique com o botão direito do mouse sobre os segmentos AD e clique em renomear. No campo nome digite Cateto2. Faça o mesmo para o segmento DB renomeando para Hipotenusa. Selecione a ferramenta Polígono Regular e clique sobre os pontos D e B (No sentido horário), na janela que aparecerá digite 4 e clique em OK na janela que aparecerá. Com a mesma ferramenta, clique sobre os pontos A, D (no sentido horário) e por fim nos pontos B, A nessa ordem, digite 4 e clique em Ok na janela que aparecerá. Selecione a ferramenta Área, e clique sobre os três quadrados feitos anteriormente. Questões: 1) Clique em Exibir -> Planilha. Na planilha que aparecerá digite: (lembre-se há diferença com letras minúsculas e maiúscula no GeoGebra) 3

4 Nas células A1, A2, A3 digite db=, ba=, ad= Nas células B1,B2,B3 digite DB, BA, AD Nas células A5, A6, A7 digite (db)²=, (ba)²=, (ad)²= Nas células B5, B6, B7 digite (DB)², (BA)², (AD)² Movendo os controles deslizantes, o que pode observar em relação a área dos quadrados com os dados apresentados na planilha? 2) Digite nas células A9 e A10 digite (db)²=, (ba)² + (ad)²=. nas células abaixo digite (DB)² e (BA)²+(AD)² a) Movimentos os controles deslizantes, o que pode observar? b) Qual a relação as áreas dos quadrados? Atividade 2 - Construção de prismas e pirâmides no GeoGebra 3D Objetivo Compreender as características de um prisma e uma pirâmide no GeoGebra 3D. Roteiro de Construção Clicar em exibir, depois em janela de visualização 3D. Na janela de visualização 2 D, crie dois controles deslizantes com intervalo de 0 a 10, e incremento 0.1, renomeie os dois, o primeiro passando a ser h e o outro passando a ser l. Em seguida, clique em segmento com comprimento fixo, e selecione o comprimento l. Depois, clique em polígono regular, e clique nesses dois pontos do segmento, selecione 4 vértices. Um quadrado de lado l deverá ser formado tanto na janela de visualização 2D, quanto na janela de visualização 3D. Em seguida, clique em segmento com comprimento fixo, e selecione o comprimento l. Depois, clique em polígono regular, e clique nesses dois pontos do segmento, selecione 3 vértices. Um triângulo de lado l deverá ser formado tanto na janela de visualização 2D, quanto na janela de visualização 3D. Em seguida, na janela 3D, clique na sexta janela da direita para a esquerda e selecione a opção fazer extrusão para prisma ou cilindro, aí clique no quadrado, aí dará a opção de altura, coloque h nesse campo. 4

5 Em seguida, na janela 3D, clique na sexta janela da direita para a esquerda e selecione a opção fazer extrusão para pirâmide ou cone, aí clique no triângulo, aí dará a opção de altura, coloque h nesse campo. A figura deverá ficar parecida com esta, utilizando a primeira janela da direita para a esquerda, gire a janela de visualização 3D e explore a figura formada, mude também as cores se assim desejar: Atividade 3 - Estudo das funções quadráticas Objetivo Compreender os significados de cada parâmetro das funções quadráticas. Roteiro de Construção Criar os controles deslizantes a, b e c: Digitar no campo de entrada a função f(x) = ax^2 + bx + c. Mude a cor da parábola se desejar. Nesse momento, já poderia ser solicitado aos alunos que 5

6 manipulassem os parâmetros (com foco no a e c) para que conjecturassem sobre o que acontece. Depois, no campo de entrada, vamos localizar a coordenada do vértice, digitando no campo de entrada: V = ((-b) / (2a), (-(b² - 4a c)) / (4a)). Em seguida, habilite o rastro de V, movimente o controle b, e solicite aos alunos que conjecturem sobre o que estão visualizando. Os alunos devem concluir que a variação do parâmetro b faz com que a parábola se desloque tanto na parte positiva do eixo x quanto na parte negativa, bem como para cima e para baixo. Além disso, a trajetória do vértice traça uma parábola invertida. Atividade 4 - Funções trigonométricas Objetivo: Analisar o valor das funções seno, cosseno e tangente em triangulo retângulo. Roteiro de Construção Clicar na segunda janelinha superior (da direita para a esquerda) controle deslizante, e variar de -5 a 5. Digitar no campo de entrada y = ax, manter a positivo. 6

7 Clicar no segundo ícone da esquerda para a direita, e clicar em ponto sobre objeto, clicar na reta da função. Clicar no quarto ícone da esquerda para a direita, depois clicar em reta perpendicular, depois clicar no ponto A e no eixo x. Na interseção entre o eixo x e a reta perpendicular, colocar um outro ponto B, clicando novamente em ponto sobre objeto. Na interseção da reta com os eixos (na origem), coloque o ponto C, clicando mais uma vez em ponto sobre objeto. Clicando no quinto ícone da direita para a esquerda, clique em ângulo, depois clique (nessa ordem) em B, C, A, aparecerá a medida do ângulo interno correspondente ao vértice C. No campo de entrada, digite Distância[ A, B ], você terá a medida do cateto oposto ao ângulo criado. Será representado por d. No campo de entrada, digite Distância[ A, C ], você terá a medida da hipotenusa do triângulo. Será representado por e. No campo de entrada, digite Distância[ B, C ], você terá a medida do cateto adjacente ao ângulo criado. Será representado por f. No campo de entrada, digite d/e, e você terá a medida do seno do triângulo. Será representado por g. No campo de entrada, digite f/e, e você terá a medida do cosseno do triângulo. Será representado por h. No campo de entrada, digite d/f, e você terá a medida da tangente do triângulo. Será representado por i. Questões: 1) O que acontece com g, h e i quando variamos os pontos A? Justifique baseado na visualização e no que aprendeu em sala de aula. 2) Variando o controle deslizante a, altere as medidas do ângulo correspondente ao vértice C. O que acontece com as medidas de g, h e i, em cada ângulo que aparece, quando deslizamos o ponto A? Justifique. Atividade 5 - Trabalhando com triângulos de mesma área Objetivo: Trabalhar com os alunos os diferentes tipos de triângulo com mesma área. Formalizando a relação para o cálculo de área. 7

8 Roteiro de Construção: Construa uma reta a. Construa com a ferramenta Reta Paralela uma reta b paralela a reta a. Marque usando a ferramenta Ponto em Objeto os pontos D e E sobre a reta b Com a ferramenta Polígono construa os triângulos ABD e ABE. Com a ferramenta Área calcule a área do triângulo ABD e ABE. Questões: 1) O que você pode observar em relação as áreas desses triângulos? Você acha que isto acontece por que? 2) Movimente os pontos D e E, e descreva o que acontece com as medidas das áreas desses triângulos e se possível justifique o por que acontece. 3) Com a ferramenta Ângulo meça os ângulos do triângulo ABE. Quanto vale a soma de todos os ângulos internos? Use a ferramenta Entrada. 4) Com a ferramenta Mover, mova o ponto E. O que acontece com a soma dos ângulos internos do triângulo ABE? Atividade 6 Noção intuitiva de limite e continuidade de uma função Objetivo: Introduzir o assunto de limite de uma função visualizando graficamente, estudar a existência ou não do limite e verificar a continuidade de uma função em um ponto. Parte 1 Roteiro de Construção: Verifique que a janela de visualização esteja aparecendo os eixos coordenados e a malha. Caso contrário, clique com o botão direito do mouse e selecione as opções: Eixos e Malha. Insira na caixa de entrada a seguinte função f ( x)= { x ², x<1 2 x 3, x 1 com o seguinte comando: Se[<Condição>, <Então>, <Senão>] e aperte Enter. Crie um ponto A sobre o eixo x. Crie uma reta perpendicular ao eixo horizontal que passa por A. 8

9 Encontre o ponto B de interseção da reta a perpendicular com a função. Oculte a reta perpendicular. Crie uma reta perpendicular ao eixo y que passe pelo ponto B. Encontre o ponto C de interseção da reta b perpendicular com o eixo vertical. Oculte a reta b e o ponto B. Crie os segmentos AB e BC. Questões: 1) O que acontece com os valores de y quando os valores de x tendem a 1 pela direita? f (x )= x 1 + lim 2) O que acontece com os valores de y quando os valores de x tendem a 1 pela esquerda? f ( x)= x 1 lim 3) De acordo com os itens anteriores, o limite de f existe quando x=1? Justifique. 4) De acordo com o que já foi analisado até o momento, o que você diria sobre a Parte 2 continuidade dessa função? Justifique. Roteiro de Construção: Clique na ferramenta Controle Deslizante e clique sobre a janela de visualização. Na janela que abrirá, digite k no campo destinado ao Nome e deixe o intervalo entre -5 e 5. Clique duas vezes na função criada inicialmente e insira k, ao lado de x 2. Mova o número com a função. k no controle deslizante e observe o que acontece Questão: 9

10 1) Movendo o número k, no controle deslizante, é possível investigar para qual valor de k a função é contínua? 2) De acordo com o gráfico, para k= 1, o que acontece com a função nessa situação? 3) Existe o limite de f quando x tende a -1? Justifique sua resposta. Atividade 7- Construindo o gráfico da derivada Objetivo: Compreender a ideia de função derivada e construir o gráfico da função derivada a partir da função principal. Roteiro de Construção: Insira a função f ( x)=x ³ 4 x+2 na caixa de entrada. Clique na ferramenta Controle Deslizante e clique sobre a janela de visualização. Na janela que abrirá, digite a no campo destinado ao Nome e deixe o intervalo entre -5 e 5. Insira o ponto A=(a,f (a)) na caixa de entrada, em seguida tecle Enter. Utilizando a ferramenta reta tangente, tecle no gráfico da função e no ponto A. Dessa forma, obterá uma reta tangente ao gráfico no ponto A. Na opção inclinação, tecle na reta tangente, obtendo o valor da inclinação da reta tangente no ponto A. Renomeie a inclinação para m. Oculte a inclinação. Insira na caixa de entrada o ponto B=(a,m) Com o botão direito do mouse selecione a opção: habilitar rastro. Clique sobre o ponto B com o botão direito do mouse, selecione Propriedades e escolha uma cor para o ponto. Movimente o parâmetro a e observe a curva obtida pelo rastro deixado.. Questões: 10

11 1) Quais grandezas estão variando para gerar a curva? Elas estão em correspondência biunívoca? 2) A curva resultante da união dos pontos deixados pelo rastro corresponde ao gráfico de uma função? Se sim, qual? 11

Sumário. Educação Matemática: Oficinas Didáticas com GeoGebra 2012

Sumário. Educação Matemática: Oficinas Didáticas com GeoGebra 2012 Sumário A Interface do GeoGebra...2 O menu do GeoGebra...3 Ferramentas de construção...4 LIÇÃO 1: Polígonos e ângulos...7 LIÇÃO 2: Retas perpendiculares e paralelas...11 LIÇÃO 3: Construindo gráficos...18

Leia mais

POTENCIALIDADES DO SOFTWARE GEOGEBRA NO ENSINO E APRENDIZAGM DE TRIGONOMETRIA

POTENCIALIDADES DO SOFTWARE GEOGEBRA NO ENSINO E APRENDIZAGM DE TRIGONOMETRIA 1 UNIVERSIDADE FERDERAL DO RIO GRANDE DO NORTE UFRN CENTRO DE ENSINO SUPERIOR DO SERIDÓ CERES Departamento de Ciências Exatas e Aplicadas DCEA Programa Institucional de Iniciação à Docência PIBID/UERN

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA APROPRIAÇÃO DE TECNOLOGIAS DIGITAIS: Um Estudo de Caso sobre Formação Continuada com Professores de Matemática PRODUTO DA DISSERTAÇÃO SEQUÊNCIA DIDÁTICA EVELIZE MARTINS KRÜGER PERES Porto Alegre 2015 A

Leia mais

AULA 3 Atividade 06 Atividade 07 Atividade Complementar 8: Triângulos e seus ângulos internos

AULA 3 Atividade 06 Atividade 07 Atividade Complementar 8: Triângulos e seus ângulos internos AULA 3 Atividade 06 Segmento, ponto médio, mediatriz, paralelas e perpendiculares a) Construa um segmento com uma extremidade em (3, 4) e medida 3,5 (lembre-se: no lugar de vírgula devemos colocar o ponto).

Leia mais

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO

Leia mais

PLANO DE AULA Autora: Descritor: Série: Número de aulas previstas: Conteúdos: Objetivos:

PLANO DE AULA Autora: Descritor: Série: Número de aulas previstas: Conteúdos: Objetivos: PLANO DE AULA Autora: Professora Rosa Descritor: Identificar propriedades de triângulos pela comparação de medidas de lados e ângulos Série: 8º ano Número de aulas previstas: 15 aulas Conteúdos: Elementos

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP ROSANA PERLETO DOS SANTOS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP ROSANA PERLETO DOS SANTOS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP ROSANA PERLETO DOS SANTOS AS DIFICULDADES E POSSIBILIDADES DE PROFESSORES DE MATEMÁTICA AO UTILIZAREM O SOFTWARE GEOGEBRA EM ATIVIDADES QUE ENVOLVEM

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID Atividade nº 2 Oficina de Geometria Analítica com uso

Leia mais

Roteiro. Tela de entrada. Texto: Deive Barbosa Alves. Carlos Roberto Lopes Edinei Leandro dos Reis. Construindo Relações trigonométricas

Roteiro. Tela de entrada. Texto: Deive Barbosa Alves. Carlos Roberto Lopes Edinei Leandro dos Reis. Construindo Relações trigonométricas Roteiro Título da animação: Construindo Relações Tela de entrada Construindo Relações Botão entrar: o aluno irá para a próxima tela. No rodapé da página conterá o nome do objeto. 1 Tela de apresentação

Leia mais

ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA

ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA Juracélio Ferreira Lopes Instituto Federal de Minas Gerais Ouro Preto Juracelio.lopes@ifmg.edu.br Wladimir Seixas Universidade

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 08 ATIVIDADE 01 Seja ABCD um quadrilátero convexo inscrito em um círculo de

Leia mais

Introdução ao software GeoGebra Por Meio de Atividades de Geometria

Introdução ao software GeoGebra Por Meio de Atividades de Geometria Adriano Lima Teixeira Introdução ao software GeoGebra Por Meio de Atividades de Geometria O objetivo deste trabalho é de iniciar o uso do software GeoGebra por meio de atividades de Geometria, possibilitando

Leia mais

Assessores: Celço Luiz de Araújo Rubens Junior Schwalemberg. Trigonometria no GeoGebra

Assessores: Celço Luiz de Araújo Rubens Junior Schwalemberg. Trigonometria no GeoGebra NÚCLEO REGIONAL DE EDUCAÇÃO DE CASCAVEL CRTE COORDENAÇÃO REGIONAL DE TECNOLOGIA NA EDUCAÇÃO Av. Brasil, 2040. Bairro São Cristóvão. CEP:85816-290. Fone:(45) 3218-7895. Assessores: Celço Luiz de Araújo

Leia mais

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE FÍSICA, ESTATÍSTICA E MATEMÁTICA GEOGEBRA Tânia Michel Pereira Juliane Sbaraine Costa Ijuí, setembro de 2009. Para acessar

Leia mais

Conhecendo o GeoGebra

Conhecendo o GeoGebra Conhecendo o GeoGebra Capítulo 1: Conhecendo o GeoGebra Passos Iniciais A figura a seguir apresenta a tela do GeoGebra 3.2. Barra de Menu Barra de Ferramentas Janela de Visualização Janela de Álgebra Campo

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

ESTUDANDO MATEMÁTICA COM O AUXÍLIO DO GEOGEBRA UTILIZANDO AS JANELAS CAS E 3D

ESTUDANDO MATEMÁTICA COM O AUXÍLIO DO GEOGEBRA UTILIZANDO AS JANELAS CAS E 3D ESTUDANDO MATEMÁTICA COM O AUXÍLIO DO GEOGEBRA UTILIZANDO AS JANELAS CAS E 3D Ministrantes: Bruno Santos Pereira, Ellen Cristina Barbosa dos Santos, Marrythiely Rodrigues Oliveira, Lucas Diêgo de Lima,

Leia mais

Adilson Ortiz Bittencourt. O Ensino da Trigonometria no Ciclo Trigonométrico, por meio do Software Geogebra

Adilson Ortiz Bittencourt. O Ensino da Trigonometria no Ciclo Trigonométrico, por meio do Software Geogebra PRÓ-REITORIA DE PÓS-GRADUAÇÃO, PESQUISA E EXTENSÃO ÁREA DE CIÊNCIAS TECNOLÓGICAS CURSO DE MESTRADO PROFISSIONALIZANTE EM ENSINO DE FÍSICA E DE MATEMÁTICA Adilson Ortiz Bittencourt O Ensino da Trigonometria

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA

UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA CADERNO DE EXERCÍCIOS ELABORADOS PELOS PARTICIPANTES DOS MINICURSOS SOBRE OS SOFTWARES

Leia mais

GeoGebra Quickstart Um rápido guia de referência sobre o GeoGebra

GeoGebra Quickstart Um rápido guia de referência sobre o GeoGebra GeoGebra Quickstart Um rápido guia de referência sobre o GeoGebra Geometria dinâmica, álgebra e cálculo formam juntos o GeoGebra, um software educativo premiado freqüentemente, que combina geometria e

Leia mais

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA COMPUTADOR NA SALA DE AULA Estudo das cônicas com Geometria Dinâmica José Carlos de Souza Jr. Andréa Cardoso Unifal MG COMPUTADOR NA SALA DE AULA A exploração de softwares de Geometria Dinâmica nos permite

Leia mais

DESENHO GEOMÉTRICO 9º ANO Prof. Danilo A. L. Pereira. Atividades básicas no GEOGEBRA. Polígonos Regulares

DESENHO GEOMÉTRICO 9º ANO Prof. Danilo A. L. Pereira. Atividades básicas no GEOGEBRA. Polígonos Regulares Exercícios Polígonos Regulares 1 - Calcular a área de um triângulo. Para construção da figura você irá clicar no ícone que tem um triângulo, para fazer um polígono clique no ícone indicado por polígono,

Leia mais

Introdução à Astronomia Semestre:

Introdução à Astronomia Semestre: Introdução à Astronomia Semestre: 2015.1 Sergio Scarano Jr 22/10/2013 Horário de Atendimento do Professor Professor: Sergio Scarano Jr Sala: 119 Homepage: http://www.scaranojr.com.br/ * E-mail: scaranojr.ufs@gmail.com**

Leia mais

ÂNGULOS EM UM TRIÂNGULO: SOMA DOS ÂNGULOS INTERNOS E TEOREMA DO ÂNGULO EXTERNO.

ÂNGULOS EM UM TRIÂNGULO: SOMA DOS ÂNGULOS INTERNOS E TEOREMA DO ÂNGULO EXTERNO. UNIJUÍ - Universidade Regional do Noroeste do Estado do Rio Grande do Sul DCEEng - Departamento de Ciências Exatas e Engenharias PIBEX - PROGRAMA INSTITUCIONAL DE BOLSAS DE EXTENSÃO Projeto: Desenvolvimento

Leia mais

Atividade 1. Construindo um prisma

Atividade 1. Construindo um prisma Atividade 1. Construindo um prisma 1- Clique em Unidades = Poliedro = Prisma (ver Figura 3). Abre-se uma janela na qual você pode escolher o número de lados do polígono (regular), o comprimento de cada

Leia mais

Resolução de equações do 2º grau no Cabri-Géomètre II

Resolução de equações do 2º grau no Cabri-Géomètre II Resolução de equações do º grau no Cabri-Géomètre II Para resolver equações do º grau, provavelmente você já aprendeu várias estratégias que usavam sempre a álgebra (parte da matemática que estuda equações

Leia mais

AULA 4. Atividade Complementar 10: Sistemas lineares 2x2 e sua interpretação geométrica 31

AULA 4. Atividade Complementar 10: Sistemas lineares 2x2 e sua interpretação geométrica 31 AULA 4 Atividade Complementar 10: Sistemas lineares 2x2 e sua interpretação geométrica 31 Conteúdos Estruturantes: Números e Álgebra / Geometrias Conteúdo Básico: Sistemas lineares / Geometria espacial

Leia mais

Rosely Ouais Pestana Bervian José Benício dos Anjos França

Rosely Ouais Pestana Bervian José Benício dos Anjos França UNEB UNIVERSIDADE DO ESTADO DA BAHIA NEAD NÚCLEO DE EDUCAÇÃO A DISTÂNCIA DEPARTAMENTO DE EDUCAÇÃO CAMPUS I CURSO DE LICENCIATURA EM MATEMÁTICA A DISTÂNCIA DISCIPLINA: GEOMETRIA PLANA PROFESSORA FORMADORA:

Leia mais

CÍRCULO DADO O DIÂMETRO

CÍRCULO DADO O DIÂMETRO 52 O GeoGebra oferece em sua instalação padrão um conjunto de ferramentas acessíveis por meio da Barra de Ferramentas e um conjunto com comandos que permitem construir objetos, realizar transformações,

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA O Desenvolvimento de Hábitos de Pensamento: Um Estudo de Caso a partir de Construções

Leia mais

Roteiro. Título da animação: Ampliando as noções trigonométricas Autor: Equipe Rived Matemática/UFU Texto: Tela 1: Apresentação dos componentes

Roteiro. Título da animação: Ampliando as noções trigonométricas Autor: Equipe Rived Matemática/UFU Texto: Tela 1: Apresentação dos componentes Roteiro Título da animação: Ampliando as noções Texto: Tela 1: Apresentação dos componentes 1) Ampliando as noções 2) Equipe Rived Matemática/UFU 3) Componentes: Lóren Grace Kellen Maia Amorim Arlindo

Leia mais

Geometria Dinâmica utilizando o Software Geogebra

Geometria Dinâmica utilizando o Software Geogebra Geometria Dinâmica utilizando o Software Geogebra Gilmara Teixeira Barcelos Silvia Cristina Freitas Batista Campos dos Goytacazes 2008 Software GeoGebra 1ª Parte - Conhecendo o Software GeoGebra 1 Trata-se

Leia mais

Geometria Analítica Plana

Geometria Analítica Plana Softwares Para o Ensino da Matemática Geometria Analítica Plana Nome do programa: EUKLID Descrição: Software de geometria dinâmica e construções em régua e compasso para criação de figuras geométricas.

Leia mais

No desenvolvimento deste guião, procure sempre colocar as denominações referidas em cada ponto.

No desenvolvimento deste guião, procure sempre colocar as denominações referidas em cada ponto. 1 Este 3º guião contém atividades elementares com a finalidade de favorecer o reconhecimento e a consolidação das funções de algumas ferramentas do programa de geometria dinâmica Geogebra. Neste guião,

Leia mais

JANELA DE VISUALIZAÇÃO 3D

JANELA DE VISUALIZAÇÃO 3D 31 Neste texto abordamos como exibir e explorar a Janela de Visualização 3D do GeoGebra. Abordamos como construir objetos como prismas e pirâmides. Em seguida, exploramos alguns comandos de 3D disponível

Leia mais

Estudando Cônicas com Auxílio do Software Wingeom

Estudando Cônicas com Auxílio do Software Wingeom Estudando Cônicas com Auxílio do Software Wingeom Flávio de Freitas Afonso Bolsista PIBIC/CNPq Licenciando em Matemática CEFET-Campos Gilmara Teixeira Barcelos Professora do CEFET Campos - Mestre em Ciências

Leia mais

Figura 1 - Interface do GeoGebra

Figura 1 - Interface do GeoGebra O GeoGebra é um software de matemática dinâmica livre. Foi desenvolvido por Markus Hohenwarter e, posteriormente, modificado devido às contribuições de colaboradores do mundo todo. Já foi traduzido para

Leia mais

Material do Professor. Tema: Roteiro de construção para a atividade Porcentagem

Material do Professor. Tema: Roteiro de construção para a atividade Porcentagem 1 Material do Professor Tema: Roteiro de construção para a atividade Porcentagem Objetivo: Dar suporte ao professor para fazer as construções necessárias à atividade Porcentagem ATIVIDADE 1: Construção

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior jc

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior  jc Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 10 Reproduza as seguintes figuras no SuperLogo: ATIVIDADE 01 ATIVIDADE 02 Reproduza

Leia mais

Minicurso de GeoGebra

Minicurso de GeoGebra UNIVERSIDADE FEDERAL DE SANTA MARIA - RS GRUPO PET MATEMÁTICA DA UFSM Minicurso de GeoGebra Andréia luisa Friske Bernardo Abreu da Cruz Bruno Simões Gomes Dioggo Codein Dresch Dominiki Ribas dos Santos

Leia mais

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Minicurso GEOGEBRA Barra de Menu Barra de Ferramentas Janela Algébrica: Janela de entrada de dados

Minicurso GEOGEBRA Barra de Menu Barra de Ferramentas Janela Algébrica: Janela de entrada de dados UNIVERSIDADE FEDERAL DA PARAÍBA PRÓREITORIA DE GRADUAÇÃO PROJETO PIBID/LICENCIATURA MATEMÁTICA Prof. Antônio Joaquim Rodrigues Feitosa. Minicurso GEOGEBRA Introdução: Neste minicurso apresentaremos as

Leia mais

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório.

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. 59 Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. Seguem os passos dessa construção. Construa um controle deslizante

Leia mais

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório.

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. 72 Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. Seguem os passos dessa construção. Construa um controle deslizante

Leia mais

FRACTAIS. Iteração: é um conjunto de procedimentos repetidos em série para construir um fractal. (NUNES, 2006, f. 30).

FRACTAIS. Iteração: é um conjunto de procedimentos repetidos em série para construir um fractal. (NUNES, 2006, f. 30). Revisado por: A. Patrícia Grajales Spilimbergo e Cláudia Piva FRACTAIS Algumas definições... Fractal: Um fractal é um objeto que pode ser obtido geometricamente ou aleatoriamente através de processos recursivos,

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Mini Curso GeoGebra. Download do GeoGebra: Java: / Divisão.

Mini Curso GeoGebra. Download do GeoGebra:  Java:  / Divisão. Mini Curso GeoGebra Etapa I: Apresentação do Software; O GeoGebra é um software dinâmico, muito usado em conteúdos de Geometria, Álgebra, Estatística e Cálculo. É um programa livre e de código aberto;

Leia mais

MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS

MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina gravina@mat.ufrgs.br Instituto de Matemática da UFRGS Neste minicurso vamos trabalhar com os recursos do GeoGebra 3D e discutir possibilidades

Leia mais

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano

Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

Atividades com Geogebra para o ensino de Cálculo

Atividades com Geogebra para o ensino de Cálculo Frank Victor Amorim Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Norte Brasil frank.amorim@ifrn.edu.br Giselle Costa de Sousa Universidade Federal do Rio Grande do Norte Brasil giselle@ccet.ufrn.br

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

CANDIDATO: DATA: 20 / 01 / 2010

CANDIDATO: DATA: 20 / 01 / 2010 UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

POSSIBILIDADES DO USO DO GEOGEBRA NAS AULAS DE GEOMETRIA DO ENSINO FUNDAMENTAL II

POSSIBILIDADES DO USO DO GEOGEBRA NAS AULAS DE GEOMETRIA DO ENSINO FUNDAMENTAL II POSSIBILIDADES DO USO DO GEOGEBRA NAS AULAS DE GEOMETRIA DO ENSINO FUNDAMENTAL II Lahis Braga Souza¹ Marcela Souza Silva² ¹ Universidade Estadual Paulista Júlio Mesquita Filho Rio Claro/ Departamento de

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

Projeto: Desenvolvimento e Implementação de Software Educacional para a Área de Matemática Voltado para Escolas da Rede Pública - DISEAM

Projeto: Desenvolvimento e Implementação de Software Educacional para a Área de Matemática Voltado para Escolas da Rede Pública - DISEAM UNIJUÍ - Universidade Regional do Noroeste do Estado do Rio Grande do Sul DCEEng - Departamento de Ciências Exatas e Engenharias PIBEX - PROGRAMA INSTITUCIONAL DE BOLSAS DE EXTENSÃO Projeto: Desenvolvimento

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

POLÍGONOS REGULARES CAD

POLÍGONOS REGULARES CAD 1 1. INTRODUÇÃO. POLÍGONOS REGULARES CAD Nesta aula você aprenderá a construir polígonos regulares e a medir o valor de seu ângulo interno. Além disso, aprenderá a traçar polígonos estrelados utilizando

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

EXERCÍCIOS RESOLVIDOS TANGÊNCIA

EXERCÍCIOS RESOLVIDOS TANGÊNCIA 1 Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre TANGÊNCIA em Desenho Geométrico. Geométrica vol.1 n.6c. 2005. Desenhos construídos por: Enéias de A. Prado. EXERCÍCIOS RESOLVIDOS

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

Nesse texto vamos abordar como construir dois jogos utilizando os recursos gráficos, funções matemáticas e comandos internos do GeoGebra.

Nesse texto vamos abordar como construir dois jogos utilizando os recursos gráficos, funções matemáticas e comandos internos do GeoGebra. 66 Nesse texto vamos abordar como construir dois jogos utilizando os recursos gráficos, funções matemáticas e comandos internos do GeoGebra. COMANDO SE O comando Se, ou condicional, será muito útil no

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa PLANO DE ENSINO 2015 Disciplina: Matemática 8 a série Professor: Fábio Girão I Etapa Competências Habilidades Conteúdos Construir significados e ampliar os já existentes para os números naturais, inteiros,

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA A Visualização No Ensino De Geometria Espacial: Possibilidades Com O Software Calques

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Como obter o retângulo inscrito de maior área

Como obter o retângulo inscrito de maior área Como obter o retângulo inscrito de maior área Julio Omar Henrique da Silva 1 Dentro de todo triângulo retângulo se pode inserir um retângulo, a este se dá o nome de retângulo inscrito. O retângulo inscrito

Leia mais

Expressões Algébricas

Expressões Algébricas META: Resolver geometricamente problemas algébricos. AULA 11 OBJETIVOS: Introduzir a 4 a proporcional. Construir segmentos que resolvem uma equação algébrica. PRÉ-REQUISITOS O aluno deverá ter compreendido

Leia mais

PRODUTO DA DISSERTAÇÃO

PRODUTO DA DISSERTAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA MESTRADO PROFISSIONAL EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO GEOGEBRA

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

PLANILHA, CÉLULAS E CONTEÚDO

PLANILHA, CÉLULAS E CONTEÚDO 43 Nesse texto apresentamos a Janela Planilha do GeoGebra e alguns de seus recursos para trabalhar em conjunto com as janelas de Álgebra e de Visualização. PLANILHA, CÉLULAS E CONTEÚDO Para abrir a planilha

Leia mais

Noções Básicas de Cálculo e Geometria Plana com o GeoGebra

Noções Básicas de Cálculo e Geometria Plana com o GeoGebra UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS GRUPO PET MATEMÁTICA Noções Básicas de Cálculo e Geometria Plana com o GeoGebra Angela Mallmann Wendt Eduardo Buriol de Oliveira

Leia mais

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma:

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma: FUNÇÃO DE º GRAU O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de º grua tem sempre a forma: y = ax + bx + c O gráfico da função é sempre uma parábola.

Leia mais

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ).

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ). Geometria Analítica Módulo 1 Revisão de funções trigonométricas, Vetores: Definições e aplicações Módulo, direção e sentido. Igualdades entre vetores 1. Revisão de funções trigonométricas a) Triângulo

Leia mais

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009 Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 009 Proposta de resolução 1. 1.1. Como na gaveta 1 existem três maillots (1 preto, 1 cor-de-rosa e 1 lilás), são 3 os casos possíveis, dos quais são

Leia mais

Anterior Sumário Próximo COMPORTAMENTO GRÁFICO DAS FUNÇÕES ELEMENTARES

Anterior Sumário Próximo COMPORTAMENTO GRÁFICO DAS FUNÇÕES ELEMENTARES Anterior Sumário Próximo COMPORTAMENTO GRÁFICO DAS FUNÇÕES ELEMENTARES Clicando em, o usuário é conduzido para uma tela onde as funções elementares estão divididas pelo comportamento gráfico que apresentam.

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

DESENHAR COM PRECISÃO - O SISTEMA DE COORDENADAS

DESENHAR COM PRECISÃO - O SISTEMA DE COORDENADAS DESENHAR COM PRECISÃO - O SISTEMA DE COORDENADAS Para criar linhas, polígonos, sólidos ou outros objetos, sempre teremos que informar o Rhino o ponto de partida e o ponto final. Tais pontos podem ser criados

Leia mais

Planificação Anual GR Disciplina Matemática 9.ºAno

Planificação Anual GR Disciplina Matemática 9.ºAno Planificação Anual GR 500 - Disciplina Matemática 9.ºAno Período letivo Competências Conteúdos Estratégias / Processos de operacionalização Recursos didácticos Avaliação Blocos previstos Resolver problemas

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.

Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora. Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno

Leia mais

GEOGEBRA GUIA RÁPIDO. Na janela inicial temos a barra de ferramentas:

GEOGEBRA GUIA RÁPIDO. Na janela inicial temos a barra de ferramentas: GeoGebra: Guia Rápido GEOGEBRA GUIA RÁPIDO O GeoGebra é um programa educativo de Geometria Dinâmica que permite construir, de modo simples e rápido, pontos, segmentos de reta, retas, polígonos, circunferências,

Leia mais

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles. CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a 01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância

Leia mais

Figura 1 - Planilha Relatório de Notas 1

Figura 1 - Planilha Relatório de Notas 1 Microsoft Excel Aula 2 Objetivo Explorar e fixar: Seleção de células, linhas e colunas Inclusão de colunas Inclusão de linhas Uso das funções SE, MÁXIMO, MÉDIA, MÍNIMO, ContSe, SOMA Ordenação de dados

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

ALUNO Natália Blauth Vasques. TUTORIAL RHINOCEROS Embalagem Hidratante Alfazol, Granado

ALUNO Natália Blauth Vasques. TUTORIAL RHINOCEROS Embalagem Hidratante Alfazol, Granado UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE ARQUITETURA DESIGN DE PRODUTO E DESIGN VISUAL ARQ 03071 - COMPUTAÇÃO GRÁFICA 1 Prof. Sérgio L. dos Santos - Prof. José Luis Aymone ALUNO TUTORIAL

Leia mais

RESUMÃO DE MATEMÁTICA PARA EsPCEx

RESUMÃO DE MATEMÁTICA PARA EsPCEx Prof. Arthur Lima, RESUMÃO DE MATEMÁTICA PARA EsPCEx Olá! Veja abaixo um resumo com os principais assuntos para a prova da EsPCEx! Bons estudos! Prof. Arthur Lima Equação de 1º grau b é do tipo ax b 0.

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

computador sala de aula responsável victor giraldo instituto de matemática ufrj Sérgio Carrazedo Dantas

computador sala de aula responsável victor giraldo instituto de matemática ufrj Sérgio Carrazedo Dantas seção computador na sala de aula responsável victor giraldo instituto de matemática ufrj CRIANDO E INTEGRANDO NOVAS FERRAMENTAS NO GEOGEBRA Sérgio Carrazedo Dantas sergio@maismatematica.com.br Guilherme

Leia mais