X e Y independentes. n + 1 m

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "X e Y independentes. n + 1 m"

Transcrição

1 DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES Duas Populações Normais independentes : X, X 2,, X n uma a.a. de X N(µ, σ 2 ) Y, Y 2,, Y m uma a.a. de Y N(µ 2, σ 2 2) X e Y independentes Teste para Comparação das médias : H 0 : µ = µ 2 CASO : Mesma variância, conhecida. (σ 2 = σ 2 2 = σ 2 ) Estatística para o teste: Z = X Y (µ µ 2 ) σ N(0, ) Exemplo : Duas técnicas de venda são aplicadas por dois grupos de vendedores: a técnica A, por 2 vendedores, e a técnica B, por 5 vendedores. Espera-se que a técnica B produza melhores resultados. Suponha que as vendas para as duas técnicas seguem uma distribuição Normal, com média desconhecida e variância comum igual a 50. Com base nos dados apresentados na Tabela, teste ao nível de 5% se há diferenças significativas entre as vendas resultantes das duas técnicas. Tabela Dados para duas técnicas de vendas Dados Vendas Técnica A Técnica B Média Variância Vendedores

2 Passo : H 0 : µ A = µ B contra H : µ A < µ B Passo 2: Z = X A X B (µ A µ B ) σ N(0, ) Passo 3: Sob H 0, temos Z = X A X B 50 N(0, ) RC = {Z R : Z < z c }, com 0, 05 = P (Z < z c Z N(0, )) Assim, temos z c =, 64. E a regra de decisão é dada por Rejeitar H 0 se Z <, 64. Passo 4: O valor observado da estatística é z 0 = = 2, 92 Passo 5: Como o valor observado de Z pertence à RC, rejeitamos H 0, e concluímos que há evidências de que a técnica B é melhor que a técnica A. CASO 2 : Mesma variância, desconhecida. Estatística para o teste: (podíamos construir um I.C. para a diferença µ A µ B!!!) S p t n+m 2, onde S 2 p = (n )S2 A + (m )S2 B n + m 2 Este teste é conhecido como o teste t para duas amostras!!! Exemplo 2: Suponha que no exemplo anterior as variâncias populacionais fossem iguais, mas seu valor comum σ 2 desconhecido. Repita o teste anterior. Passo : H 0 : µ A = µ B contra H : µ A < µ B Passo 2: S p t 25 Passo 3: Sob H 0, temos T = X A X B S p t 25 78

3 RC = {T R : T < t c }, com 0, 05 = P (T < t c T t 25 ) Assim, temos t c =, 708. E a regra de decisão é dada por Rejeitar H 0 se T <, 708. Passo 4: S 2 p = O valor observado da estatística é = 64 t 0 = = 2, 56 Passo 5: Como o valor observado de Z pertence à RC, rejeitamos H 0, e concluímos que há evidências de que a técnica B é melhor que a técnica A. CASO 3 : Variâncias desiguais e desconhecidas. Pode-se provar que a estatística S 2 An + S2 Bm, sob H 0, tem uma distribuição aproximadamente t-student com graus de liberdade, dados aproximadamente por com x = s 2 A /n e y = s2 B /m. v = (x + y) 2 x 2 /(n ) + y 2 /(m ), Este teste é conhecido como o Problema de Behrens-Fisher!!! Exemplo 3: Queremos testar as resistências de dois tipos de vigas de aço, A e B. Tomando-se n = 5 vigas do tipo A e m = 20 vigas do tipo B, obtemos os valores na Tabela 2. Admita que as variâncias da resistência para os dois tipos de viga não podem ser consideradas iguais. Compare as resistências médias dos dois tipos de viga ao nível de 5%. Tabela 2 Dados para os dois tipos de vigas de aço Tipo Média Variância A 70,5 8,6 B 84,3 6,5 Passo : H 0 : µ A = µ B contra H : µ A µ B 79

4 Passo 2: S 2 A n + S2 B m Passo 3: Sob H 0, temos T = X A X B S A 2 n + S2 B m t v RC = {T R : T < t ou T > t 2 }, com Agora, Portanto, 0, 025 = P (T < t T t v ) e 0, 025 = P (T > t 2 T t v ) v = ((8, 6/5) + (6, 5/20)) 2 (8, 6/5) 2 /4 + (6, 5/20) 2 /9 t = 2, 0348 e t 2 = 2, 0348 = 32, 9 33 E a regra de decisão é dada por Rejeitar H 0 se T < 2, 0348 ou T > 2, Passo 4: O valor observado da estatística é t 0 = 70, 5 84, 3 8,6 + 6, = 3, 75 Passo 5: Como o valor observado de T pertence à RC, rejeitamos H 0, e concluímos que há evidências de que os dois tipos de vigas têm resistências médias diferentes. Teste para Comparação das Variâncias : H 0 : σ 2 = σ 2 2 A estatística do teste será F = S2 /σ 2 S 2 2/σ 2 2 F n,m Exemplo 4: Queremos verificar se duas máquinas produzem peças com a mesma homogeneidade quanto à resistência à tensão. Para isso, sorteamos duas amostras de seis peças de cada máquina, e obtivemos as seguintes resistências: Máquina A: 45, 27, 36, 42, 4, 37 Máquina B: 43, 28, 32, 38, 42, 32 80

5 Passo : H 0 : σ 2 A = σ2 B contra H : σ 2 A σ2 B Passo 2: F = S2 A /σ2 A S 2 B /σ2 B F 5,5 Passo 3: Sob H 0, temos que F = S2 A S 2 B Fixando α = 0, 05, a RC é dada por com F e F 2 tais que F 5,5 RC = {F < F ou F > F 2 }, 0, 025 = P (F < F F F 5,5 ) e 0, 025 = P (F > F 2 F F 5,5 ) Assim, F 2 = 7, 5 e F = /7, 5 = 0, 4. Assim, a regra de decisão é: Rejeitar H 0 se F < 0, 4 ou F > 7, 5. Passo 4: Com os dados apresentados, temos SA 2 = 40 e S2 B observado da estatística é F o = 40/37 =, 08. = 37. Portanto, o valor Passo 5: Como o valor observado da estatística não pertence à RC, aceitamos H 0 concluímos que as máquinas produzem com a mesma variabilidade. e Duas Populações Normais dependentes : Aqui temos duas amostras X, X 2,, X n e Y, Y 2,, Y n, só que agora as observações são pareadas, isto é, temos uma amostra de pares (X, Y ), (X 2, Y 2 ),, (X n, Y n ) Se definirmos a v.a. D = X Y, teremos uma amostra D, D 2,, D n, resultante da diferença dos valores entre cada par. Reduzimos o problema de duas populações a um problema de uma única população, já visto anteriormente. Assim, D = n D i = n i= (X i Y i ) = n i= X i n i= Y i = X Y i= 8

6 terá distribuição N(µ D, σd 2 /n). Considerando temos que S 2 D = n (D i D) 2, i= T = n(d µd ) S D t n Como µ D = E(D) = E(X Y ) = E(X) E(Y ) = µ µ 2, testar H 0 : µ D = 0 é equivalente a testar H 0 : µ = µ 2. Exemplo 5: Cinco operadores de certo tipo de máquina são treinados em máquinas de duas marcas diferentes, A e B. Mediu-se o tempo em que cada um deles gasta na realização de uma mesma tarefa, e os resultados estão na tabela a seguir. Operador Marca A Marca B A B C D E Ao nível de significância de 0%, poderíamos afirmar que a tarefa realizada na Máquina A demora mais que na Máquina B? Passo : H 0 : µ A = µ B H : µ A > µ B Essas hipóteses são equivalentes a H 0 : µ D = 0 H : µ D > 0 Passo 2 : T = n(d µd ) S D t 4 Passo 3 : Como é o mesmo operador que realiza a tarefa nas duas máquinas, dizemos que as variáveis são emparelhadas. Sob H 0, temos T = nd S D t 4. 82

7 RC = {T R : T > t c }, e tomando α = 0, 0, temos P (T > t c T t 4 ) = 0, 0. Portanto, t c =, 533. Assim, a regra de decisão é Rejeitar H 0 se T >, 533. Passo 4 : Da Tabela de dados acima, obtemos os valores de D: e, portanto, d i : 5, 2, 5, 6, 7 d = 5, e s 2 D = 3, 5 Logo, o valor observado da estatística é t o = ( 5 5)/ 3, 5 = 5, 98 Passo 5 : Como o valor observado pertence à RC, rejeitamos H 0, ou seja, demora-se mais para realizar a tarefa na máquina A. Podemos construir um I.C. para µ D, adotando γ = 0, 90 : IC(µ D ; 90%) = 5 ± 2, 32 3, 5/ 5 = 5 ±, 78 = [3, 22 ; 6, 78] 83

Inferência para duas populações

Inferência para duas populações Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.

Leia mais

Carlos Antonio Filho

Carlos Antonio Filho Estatística II - Seção 04 Carlos Antonio Filho ESAGS 2 o semestre de 2017 Carlos Antonio Filho (ESAGS) Estatística II - Seção 04 2 o semestre de 2017 1 / 137 Comparação de médias de duas populações Vamos

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

TESTE t-student TESTE IGUALDADE DE VARIÂNCIAS

TESTE t-student TESTE IGUALDADE DE VARIÂNCIAS UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE ESTATÍSTICA TESTE t-student TESTE IGUALDADE DE VARIÂNCIAS BELÉM 2014 TAIS MEDEIROS SILVA 201107840019 TESTE t-student TESTE

Leia mais

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior TESTE DE HIPÓTESES 1 Introdução Considere a seguinte situação:

Leia mais

Testes t para comparação de médias de dois grupos independentes

Testes t para comparação de médias de dois grupos independentes Testes t para comparação de médias de dois grupos independentes Acadêmicas do curso de Zootecnia - Aline Cristina Berbet Lopes Amanda da Cruz Leinioski Larissa Ceccon Universidade Federal do Paraná UFPR/2015

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Testes de Hipóteses Paramétricos 1 / 41 Introdução. Hipóteses Estatísticas. Erro Tipo I

Leia mais

Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar Teste de hipótese para a média de populações normais Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar Teste de hipóteses para média de populações normais Objetivo: avaliar afirmações sobre

Leia mais

Teste de hipóteses para proporção populacional p

Teste de hipóteses para proporção populacional p Teste de hipóteses para proporção populacional p 1 Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses 2 TESTE DE HIPÓTESES Eu acredito

Leia mais

Inferência para várias populações normais análise de variância (ANOVA)

Inferência para várias populações normais análise de variância (ANOVA) Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes

Leia mais

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO GRR: Observação: em todos os problemas que envolvem teste de hipótese, é necessário

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Cap. 11 Testes de comparação entre duas amostras

Cap. 11 Testes de comparação entre duas amostras Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 006 Cap. 11 Testes de comparação entre duas amostras Planejamento da pesquisa e análise estatística

Leia mais

Parte 8 Testes de hipóteses Comparação de dois grupos

Parte 8 Testes de hipóteses Comparação de dois grupos Parte 8 Testes de hipóteses Comparação de dois grupos Um objetivo frequente em estudos de diferentes áreas é a comparação de dois ou mais grupos (ou populações). Alguns exemplos: o Comparação dos salários

Leia mais

Inferência a partir de duas amostras

Inferência a partir de duas amostras Inferência a partir de duas amostras Inferência a partir de duas amostras. Inferência sobre duas médias: amostras dependentes. Inferência sobre duas médias: amostras grandes e independêntes 3. Comparação

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

TESTE DE HIPÓTESE. Introdução

TESTE DE HIPÓTESE. Introdução TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.

Leia mais

TESTE DE MANN-WHITNEY

TESTE DE MANN-WHITNEY TESTE DE MANN-WHITNEY A importância deste teste é ser a alternativa não paramétrica ao teste t para a diferença de médias. Sejam (X,X,...,X n ) e (Y,Y,...,Y m ) duas amostras independentes, de tamanhos

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Dependentes Teste t para amostras emparelhadas Variâncias Teste z Conhecidas Independentes Variâncias Desconhecidas Supostas iguais

Leia mais

PRO 3200 Estatística. Prova P1 19/10/2015

PRO 3200 Estatística. Prova P1 19/10/2015 Prova P1 19/10/2015 Questão 01 (3,0 pontos) As Linhas Aéreas Botucatu (LAB) estão fazendo um estudo sobre a ocupação de suas aeronaves, cuja capacidade máxima é de 50 passageiros. Os últimos 100 voos da

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

3 2σ 2] = σ 2 C = 1 6

3 2σ 2] = σ 2 C = 1 6 GET008 - Estatística II Lista de Exercícios Inferência para uma população Profa. Ana Maria Farias. Seja X, X,, X 6 uma amostra aleatória simples de tamanho 6 de uma população Nµ; σ. Determine o valor da

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I)

Aula 6. Testes de Hipóteses Paramétricos (I) Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de Hipóteses Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de hipóteses O Teste de Hipótese é uma regra de decisão para aceitar ou rejeitar uma hipótese

Leia mais

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno ANOVA FACTORIAL Quando a variável dependente é influenciada por mais do que uma variável independente (Factor) estamos interessados em estudar o efeito não só de cada um dos factores mas e também a possível

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O curso foi dividido em três etapas:

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Inferência por Teste de Hipótese Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M.

Leia mais

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou Testes de Hipóteses Professor: Josimar Vasconcelos Contato: josimar@ufpi.edu.br ou josimar@uag.ufrpe.br http://prof-josimar.blogspot.com.br/ Universidade Federal do Piauí UFPI Campus Senador Helvídio Nunes

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

Estatística. Guia de Estudos P1

Estatística. Guia de Estudos P1 Estatística Guia de Estudos P1 1. Introdução O objetivo principal do curso de estatística é dar as ferramentas necessárias para o aluno saber analisar e manipular dados e, a partir deles, extrair conclusões

Leia mais

Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24

Teste de Hipóteses. Enrico A. Colosimo/UFMG  enricoc/ Depto. Estatística - ICEx - UFMG 1/24 1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas).

Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas). Em aplicações práticas é comum que o interesse seja comparar as médias de duas diferentes populações (ambas as médias são desconhecidas). Na comparação de duas populações, dispomos de duas amostras, em

Leia mais

Exercícios Resolvidos

Exercícios Resolvidos Exercícios Resolvidos R10.1) Velocidade média na estrada Sergio afirma que Raquel dirige seu carro na estrada a uma velocidade média superior a 100 km/h, enquanto Raquel discorda, afirmando dirigir na

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

MINICURSO DE TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA

MINICURSO DE TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA UNIVERSIDADE FEDERAL DO RIO GRANDE Instituto de Matemática, Estatística e Física Programa de Pós-Graduação em Modelagem Computacional MINICURSO DE TESTES DE HIPÓTESES E INTERVALOS DE CONFIANÇA Ministrantes:

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?

Leia mais

Testes de Hipóteses: Duas Amostras

Testes de Hipóteses: Duas Amostras Testes de Hipóteses: Duas Amostras Na aula de hoje veremos como comparar duas populações P 1 e P 2, baseados em dados fornecidos por amostras dessas populações. Grande parte das técnicas usadas em Estatística

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

PROBABILIDADE E ESTATÍSTICA INFERÊNCIA ESTATÍSTICA

PROBABILIDADE E ESTATÍSTICA INFERÊNCIA ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA INFERÊNCIA ESTATÍSTICA Prof.ª Sheila Regina Oro Projeto Recursos Educacionais Digitais Autores: Bruno Baierle e Maurício Furigo TESTE DE HIPÓTESES POPULAÇÃO Conjectura (hipótese),

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 8 Testes de hipóteses APOIO: Fundação de Ciência e Tecnologia

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml.

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. O nível médio de colesterol da subpopulação de homens que são fumantes hipertensos

Leia mais

Inferência Estatística para Duas Amostras

Inferência Estatística para Duas Amostras Roteiro Inferência Estatística para Duas Amostras 1. Introdução 2. Inferência para a Diferença de Médias i. População normal com variâncias conhecidas ii. População normal com variâncias desconhecidas

Leia mais

Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte

Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte Dr. Stenio Fernando Pimentel Duarte Exemplo Distribuição de 300 pessoas, classificadas segundo o sexo e o tabagismo Tabagismo Fumante (%) Não Fumante (%) Masculino 92 (46,0) 108 (54,0) Sexo Feminino 38

Leia mais

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados. INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

Lecture 3a Testes de Hipótese

Lecture 3a Testes de Hipótese Métodos Quantitativos em Contabilidade I Programa de Pós-Graduação em Controladoria e Contabilidade Lucas Barros lucasbarros@usp.br Henrique Castro hcastro@usp.br Universidade de São Paulo 1 of 19 Lecture

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Enrico A. Colosimo Depto. Estatística UFMG

Enrico A. Colosimo Depto. Estatística UFMG Bioestatística F Conceitos de Teste de Hipóteses Enrico A. Colosimo Depto. Estatística UFMG http://www.est.ufmg.br/~enricoc/ f(x).4.35.3.25.2.15.1.5 Tabela Normal Padronizada Distribuicao Gaussiana com

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012 PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.

Leia mais

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios Planejamento de Experimentos 13. Experimentos com fatores aleatórios Até aqui assumimos que os fatores nos experimentos eram fixos, isto é, os níveis dos fatores utilizados eram níveis específicos de interesse.

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Exercício 4 Calcule média e o desvio padrão distribuição de frequências dada abaixo:

Exercício 4 Calcule média e o desvio padrão distribuição de frequências dada abaixo: Exercício 2 Um paciente fez seis exames de sangue em 6 meses consecutivos para medir seu nível de fosfato por decilitro de sangue. Os resultados obtidos foram: 5,6 5,2 4,6 4,9 5,7 6,4. Calcule a média,

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental Revisão Virgílio A. F. Almeida Maio de 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais FOCO do curso Revisão

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística. Introdução à Bioestatística Turma Nutrição.

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística. Introdução à Bioestatística Turma Nutrição. Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Inferência Básica Introdução à Bioestatística Turma Nutrição decidindo na presença

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Estatística Inferencial

Estatística Inferencial statística Inferencial A ou inferencial compreende a stimação e o Teste de hipótese. Na verdade, a estatística inferencial forma a base das atividades de controle da qualidade e também pode auxiliar na

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA. Cursos: Licenciatura em Enfermagem

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA. Cursos: Licenciatura em Enfermagem INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA Cursos: Licenciatura em Enfermagem Teste Final o Ano/3 o Semestre 007/08 Data: a feira, 9 de Novembro de 007 Duração: 4h às h Instruções:.

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais

Universidade Federal da Paraíba Departamento de Estatística Lista Intervalo de Confiança e Teste de Hipótese

Universidade Federal da Paraíba Departamento de Estatística Lista Intervalo de Confiança e Teste de Hipótese 1. Considere a amostra aleatória simples X = X 1,X 2,X 3,X 4 de uma população com µ e desvio padrão σ. Dois estimadores da verdadeira média populacional µ são apresentados a seguir: µ 1 = X 1 + 3X 3 2

Leia mais

Universidade Federal da Paraíba Departamento de Estatística Lista Intervalo de Confiança e Teste de Hipótese - Abril de 2013

Universidade Federal da Paraíba Departamento de Estatística Lista Intervalo de Confiança e Teste de Hipótese - Abril de 2013 1. Considere a amostra aleatória simples X = X 1,X 2,X 3,X 4 de uma população com µ e desvio padrão σ. Dois estimadores da verdadeira média populacional µ são apresentados a seguir: µ 1 = X 1 + 3X 3 2

Leia mais

x P(X = x) 0,1 0,7 0,2

x P(X = x) 0,1 0,7 0,2 GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade

Leia mais

Análise de regressão linear simples. Diagrama de dispersão

Análise de regressão linear simples. Diagrama de dispersão Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE.

Testes de hipóteses com duas amostras CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA. Módulo: ESTIMATIVA E TESTE DE HIPÓTESE. CURSO DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA Módulo: ESTIMATIVA E TESTE DE HIPÓTESE slide Testes de hipóteses com duas amostras slide Larson/Farber 4th ed Descrição - Testar a diferença entre médias

Leia mais

ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM ANÁLISE DE VARIÂNCIA - ANOVA Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM UM EXEMPLO DE APLICAÇÃO Digamos que temos 6 métodos de ensino aplicados a 30 crianças

Leia mais

Intervalos de conança

Intervalos de conança Intervalos de conança Prof. Hemílio Fernandes Campos Coêlho Departamento de Estatística - Universidade Federal da Paraíba - UFPB Exemplo Suponha que se deseja estimar o diâmetro da pupila de coelhos adultos.

Leia mais

TESTES NÃO PARAMÉTRICOS (para mediana/média)

TESTES NÃO PARAMÉTRICOS (para mediana/média) MAE212: Introdução à Probabilidade e à Estatística II - Profas. Beti e Chang (2012) 1 TESTES NÃO PARAMÉTRICOS (para mediana/média) Os métodos de estimação e testes de hipóteses estudados até agora nessa

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

Inferência Estatística para Duas Amostras

Inferência Estatística para Duas Amostras Roteiro Inferência Estatística para Duas Amostras 1. Introdução 2. Inferência para a Diferença de Médias i. População normal com variâncias conhecidas ii. População normal com variâncias desconhecidas

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 3 Estatística inferencial parte I Prof. Me. Diego Fernandes 1 Sumário Seção Slides 3.1 Noções de probabilidade 03 21 3.2 Distribuição dos estimadores 22 41 3.3 e 3.4 - Testes

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Lista de Exercícios 2 - Estatística II

Lista de Exercícios 2 - Estatística II Lista de Exercícios 2 - Estatística II Parte 1 - Teoria Básica de Testes de Hipóteses: Exercício 1. (2007/1 - P2 - ex.15) Um equipamento médico não está funcionando adequadamente; entretanto, no procedimento

Leia mais

Teste de Cochran (Homogeneidade de Variância)

Teste de Cochran (Homogeneidade de Variância) ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais