onde a notação "x 3" indica x tende a 3 e "lim" significa o limite de. Generalizando, se f é uma função e a é um número, entende-se a notação

Tamanho: px
Começar a partir da página:

Download "onde a notação "x 3" indica x tende a 3 e "lim" significa o limite de. Generalizando, se f é uma função e a é um número, entende-se a notação"

Transcrição

1 CAPÍTULO - LIMITE E CONTINUIDADE.- Noção Iiiv A idéi de ie é ácil de ser cpd iiivmee. Por eemplo, imgie m plc meálic qdrd qe se epde iormemee porqe esá sedo qecid. Se é o comprimeo do ldo, áre d plc é dd por A. Evideemee, qo mis se vizih de, áre A ede 9. Epressmos iso dizedo qe qdo se proim de, se proim de 9 como m ie. Simbolicmee escrevemos: 9 ode oção "" idic ede e "" sigiic o ie de. Geerlizdo, se é m ção e é m úmero, eede-se oção ( ) L como " o ie de () qdo ede é L", iso é, () se proim do úmero L qdo ede. 4 Eemplo : Sej ( ), D { R / }. 4 ( )( ) Se ( ) ( ) Se () () () 4 5,5,5,5 4,5,9,9, 4, (,99,99, 4, ) Noe qe pr odo V (, δ) () V (4, ε) podemos dizer qe o ie de () qdo ede pr é 4 igl 4 e podemos escrever: 4 De modo gerl se () deiid em m domíio D do ql é poo de cmlção. Lε L-ε Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi ( ) L N deermição do ie de (), qdo ede pr, ão ieress como esá deiido em ( em mesmo se esá relmee deiido). A úic cois qe ieress é como esá deiido pr vlores de vizihç de. De o podemos disigir rês csos possíveis como sege: Spoh qe ( ) L. Eão emee m dos rês csos é válido: Cso - esá deiido em e ()L. Cso - ão esá deiido em. Cso - esá deiido em e () -δ δ 6

2 .- Deiição Forml de Limie Sedo () deiid em m domíio D do ql é poo de cmlção dizemos qe () em ie L qdo ede pr, e se idic por: ( ) L se e somee se pr odo ε >, δ > / () L < ε sempre qe < < δ A ção é deiid em m iervlo bero qlqer qe coeh, eclido o vlor de Eemplos: Usdo deiição de ie, mosre qe: ) ( 5 4 ) 9 ( 5 4 ) 9 < ε 5 5 < ε 5.( 5.( 5. ε < 5 < δ ε δ 5 ) < ε ) < ε < ε ) ( ) 5 ( 5 ) < ε 5 < ε.(.( ) < ε ) < ε ε < ( ) < δ < δ ε δ Se () (Fção Ideidde) P - < ε - < δ ε δ Se () k k k k P..- Proprieddes dos Limies de Fções Aé gor, emos esimdo os ies ds ções por iição, com ílio do gráico d ção, com o so de álgebr elemer, o pelo so direo d deiição de ies em ermos de ε e δ. N práic, ereo, os ies são slmee chdos pelo so de cers proprieddes, qe vmos esbelecer gor: Proprieddes Básics de Limies Spoh qe ( ) L e ) g( ) M e k é m cose Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 7

3 ) k k ) [ ( ) ± g( )] ( ) ± g( ) L ± M 4) ( ).g( ) ( ). g( ) L. M 5) c. ( ) c. ( ) ode c é m cose qlqer ( ) ( ) L 6) g( ) g( ) g( ) M 7) [ ( )] ( ) L ( é m ieiro posiivo qlqer) 8) ( ) ( ) L se L> e é m ieiro posiivo, o se L< e é m ieiro posiivo ímpr g( ) g( ) M 9) ( ) ( ) ( ) L ) logb ( ) log ( ) b logb L ) se( ( )) se ( ) se L ) ( ) ( ) L ) Se h é m ção l qe h()() é válido pr odos os vlores de perece6es lgm iervlo o redor de, eclido o vlore de, eão h( ) ( ) L Observção: Demosrção ds proprieddes em sl de l. Eercícios: ) ) Sej ( ) 4 e g( ) - [ ( ) g( )] b- [ ( ) g( )], che cd ie c- ( ).g( ) ) Avlie cd ie e idiqe qis ds proprieddes de 5 - [ ] Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 8

4 b- c- / 8 d- 5 / ( ) e Limies Leris Limie à direi: Sej m ção deiid em m iervlo (, c) c e L m úmero rel, irmção ( ) L, sigiic qe pr odo ε >, δ ( > / () L ) < ε sempre qe < < δ < < δ Limie à esqerd: ( δ ) Sej m ção deiid o iervlo (c, ) e L m úmero rel, irmção pr odo ε >, δ > / () L < ε sempre qe -δ < < -δ < < ( ) L, sigiic qe -δ..- Teorem ( ) O ie ( ) eise e é igl L se e somee se mbos os ies leris ( ) e ( ) eisem e em o mesmo vlor comm L. ( ) L ( ) Eemplos: se ) () se < ()? ( ) L () (.) são igis () () () ) se > () 4 se () 7 ()? () são dierees () ão eise Eercícios: - Nos problems de é c rce o gráico ds ções dds, che os ies leris ds ções dds qdo ede pr pel direi e pel esqerd e deermie o ie d ção qdo ede pr ( se o ie eise) Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 9

5 5 se 9 se > ) ( ) ; se > se b) ( ) ; c) ( ) S 5 6, - Epliqe porqe reqüeemee chmos ( ) pr mosrr qe ( ) ( ) pode ão ocorrer pes pelo cálclo do vlor de o poo. Dê m eemplo.4- Coiidde ds Fções Meciomos eriormee qe qdo o ( ) ( ) cosiderremos iso m deiição oicil., ção é coí em. De gor em die Deiição : Dizemos qe ção é coí em m úmero se e somee se s segies codições orem válids. Codições: () ( ) ( ) ( ) () c b () Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 4

6 () OK! () () b () c () OK! () OK! () () Eercícios: ) Veriicr se () i) () OK! ii) ()? () () São igis () iii) () () OK! Respos: É coí se é coí pr : se > OK! ) Veriicr se ( ) é coí pr : ( ) ( ) OK! OK! ( ) ( ) Respos: Como s codições e d deiição orm siseis, coclímos qe é coí em ) Veriiqe se ção deiid por ( ) se se é coí pr o úmero - Observções Impores: Se os dois ies leris ( ) e ( ) ( ) ( ) eisem e êm o mesmo vlor, é clro qe eise e qe odos os rês ies êm o mesmo vlor. Se ( ) eise, os dois ies leris ( ) eisem e odos os rês ies são igis. Coseqeemee, se os dois ies ( ) e ( ) eisem, ms êm vlores dierees, eão ( ) Eercícios ão pode eisir. - Em cd eemplo, () rce o gráico d ção, (b) che os ies leris d ção qdo e qdo, (c) deermie o ie d ção qdo (se ele eise) e (d) dig se ção é coí o vlor se < se - ( ) ; e se se - ( ) ; Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 4

7 se - ( ) ; se >.4.- Proprieddes ds Fções Coís Spoh qe e g sejm ds ções coís o úmero. Eão o () como g() são deiids, e coseqeemee (g)()()g() é deiid. - Se e g são coís em, eão g, -g e.g mbém o são. - Se e g são coís em e g(), eão /g é coí em. - Se g é coí em e é coí em g(), eão g é coí em. 4- Um ção poliomil é coí em odos os úmeros. 5- Um ção rciol é coí em odo úmero o ql esá deiid. Eercícios - Use s proprieddes básics de ção coí pr deermir em qis úmeros s ções dds são coís. Trce o gráico ds ções. - ( ) - ( ) - ( ).4.- Coiidde em m iervlo Dizer qe m ção é coí em m iervlo bero I sigiic, por deiição, qe é coí em odos 9 é coí o iervlo bero (-,) os úmeros o iervlo I. Por eemplo, ção ( ) D mesm orm, dizer qe m ção é coí em m iervlo echdo [,b] sigiic, por deiição qe é coí o iervlo bero (,b) e qe sisz s segies codições de coiidde os poos iis e b: ( ) ( ) e ( ) ( b) b Por eemplo, ção ( ) 9 é coí o iervlo echdo [-,].5- Limie de Fção Compos Sejm e g ds ções is qe Im C D g. Nosso objeivo é esdr o ie g( ( ) ) p Spodo qe ( ) é rzoável esperr qe g p p ( ) g( ) sedo () Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 4

8 Os csos qe ieressrão o crso são qeles em qe g o é coí em o ão esá deiid em. O qdro qe presemos segir mosr como iremos rblhr com o ie de ção compos o cálclo de ies. F p ( )? Spohmos qe eism ções g() e (), ode g o é coí em o ão esá deiid em, is qe F()g() ode (), D, ( ) g eis. Eão Eercícios - Clcle os ies ) p ( pr p) e qe ( ) F p ( ) g( ) ( ) b) 6 4 c) d) 5 ) Sej deiid em R. Spoh qe ) ( ) ( ) b) ( ) c) ( ). Clcle ) Sej deiid em R e sej p m rel ddo. Spoh qe ) b) c) h h h ( p h) ( p) h ( p h) ( p) h ( p h) ( p) h p ( ) ( p) p L clcle.6- Limie ds Fções Algébrics Rciois Ieirs (Poliomiis) F( ). F( ) F( ).... Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 4

9 .7- Limie ds Fções Rciois Frcioáris Q( ) F( ) g( ) Q( ) g( ) b.. m b. Q( ) Q( ) g( ) g( ). m b m Se Q( ) e g( ) º Se Q( ) e g( ) º º º ão eise Clcle : Q( ) g( ) Q( ) g( ) Q( ) g( ) Q( ) g( ) ± Q( ) são igis ± g( ) ± ( ) ção ão esá deiid pr ± Q( ) são dierees ão eise g( ) m ) Eercícios: ) 5 5 )? 5 5 ão eise 5 4)? ( ) 5 ( ) 5 ( ) 5 ( ) Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 44

10 Se Q( ) g( ) Q( ) ideermição,ec. g( ) Eercícios: 4 ) ( )( ) ( ) 4 ) ) ( 4 ) ( ) ( ) ( ) 4 ( ( )( ) )( ) ( ( 4 ) ) z z 4z z 4z 4 z (z ).(z ).z (z ) z ( ).( ) 6 (z) - -4 (z-) - z z z z z (z ) 4) ( )( ) ( ) (( ) () - ( ). ( - ) ( ) ) Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 45

11 Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi Limie ds Fções Irrciois ( ) ( ) ( ) ( ) ( ) 4.. Or meir: Sbsiição de Vriável ( )( ) 4.9- Limies Evolvedo Iiio Deiições: ) Dizemos qe m elemeo c é iio qdo c R e dizemos qe c é iiio qdo c é m dos símbolos o -. Obs.: qdo vler rse do ie pr b iio o iiio, diremos qe eise o ie e idicremos por c ) ( b. Em cso corário diremos qe ão eise o ie e escreveremos ) ( ) ( ) ( b b b. ) Sej deiid em m iervlo (c, ). A irmção L ) (, sigiic qe odo ε > correspode m úmero posiivo N, l qe () L < ε > N. ) Sej deiid em m vizihç perrd de, irmção () se or iii qdo ede pr qe se escreve: ) (, sigiic qe pr odo úmero posiivo N, correspode m δ > / () > N sempre qe < < δ.

12 (-δ) (δ).- Limie ds Fções Algébrics Rciois Ieirs (Poliomiis)... gr mis lo o Eercícios ) ( 5 4 ) 5 ) ( 5 ) 5.- Limie ds Fções Rciois Frcioáris..... m m b. b.... b. b. m Se : > m o < m m b Eemplos: ) m ) 4 5 Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 47

13 ) Ideermições: ( ), ( ),.,,,,,.- Seqüêci e Limie de Seqüêci Um seqüêci o scessão de úmeros reis é m ção, vlores reis, cjo domíio é m sbcojo de N. As seqüêcis qe vão ieressr o crso são qels cjo domíio coém m sbcojo do ipo { N / q} ode q é m rl io; só cosiderremos is seqüêcis. Eemplos: - Sej seqüêci de ermo gerl,,,k. Temos - Sej seqüêci de ermo gerl s K emos,s,s ec. s Sejm k k m m dois ris. O símbolo lei: somório de k, pr k vrido de m é e é sdo pr idicr som dos ermos Deiição: Cosideremos m seqüêci de ermo gerl e sej m úmero rel. Deiimos (i) Pr odo ε >, eise m rl l qe > ε < < ε (ii) Pr odo ε >, eise m rl l qe (iii) Se Pr odo ε >, eise m rl l qe > > > ε < ε m, m, m, K, diremos qe seqüêci de ermo gerl coverge pr o, simplesmee, qe coverge pr e escrevemos. Se, diremos qe pr e escrevemos. Observmos qe s deiições dds qi são emee s mesms qe demos qdo rmos com ie de m ção (), pr plic-se qi. ; dese modo, do qilo qe dissemos sobre os ies d orm ( ) Eercícios - Clcle os ies - b- c- k k Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 48

14 - Spodo qe <b<, clcle b - Spoh >. Mosre qe 4- Cosidere seqüêci de ermo gerl s k k, e. Veriiqe qe s.- Limie ds Fções Trscedeis Eemplos: l( 4 ) l( ) ) ( ) 4 l l l 4 se ) ideermição se. oável se () ( ) ideermição.4- Limies Noáveis se ) Demosrção: se se ( ) π, S OQP se S OQP se > > cos se > > se cos > > cos se se > > cos ( o Limie Fdmel) se S OQQ ( ) (se ) se.cos ( ivere se e roc se os siis ) - O P M T A Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 49

15 se se > > cos se > > se Eemplo: 5.se 5 ) 5 se ) ( ) e Eemplos: ) ( ) e ) ( ) e ) ( ) ( ) e k ( ) e ( o Limie Fdmel) 4) ( ) e 5) ( ) ( ) e k ( k) e ) se cos se cos Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 5

16 4) e * Sbsiir: k ( ) e Eemplos: k k e k k e 5 5 e e 5 5 e 5) l * Sbsiir: ( ) log log ( ) * log ( ) log ( ) log ( ) 44 e log e log e e log log log e l e 6) e e log ( ) [ log e] 7) ( ) log log e * log ( ) log ( ) log e 8) l ( ) Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 5

17 Limies Noáveis se ) ) ( ) e ) 4) e 5) l e 6) log( ) 7) log l( ) 8) e.5- Assíos Horizois e Vericis Assíos são res qe gecim o gráico de m ção, o iiio, e ormlmee são prlels os eios e. Eses próprios eios podem ser ssíos. Assío Vericl Dizemos qe re é m ssío vericl do gráico de se or veriicd m ds segies codições: ) () ) () ) () 4) () Assío Vericl () (A.V.) Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 5

18 Assío Horizol Dizemos qe re b é m ssío horizol do gráico de se m ds codições bio or veriicd: ) () b ) () b Assío b Horizol () D { R / } () () (A.V.) - () b b (A.H.) () b c (A.H.) Assíos vericis evolvem ies iiios, eqo qe ssíos horizois evolvem ies o iiio Eercícios ) Deermir s ssíos e zer m gráico de (). D R / -/ { } Assío Vericl Assío Horizol Pr -/ A.V. A.H. Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 5

19 ) () 4 4 D { R / D { R / o > Pr A.H ) Dd ção () 6, chr s ssíos. 5 4) Sej () 4. Achr s ssíos. Discipli de Cálclo Dierecil e Iegrl I Pro. Slee Soz de Oliveir Boi 54

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES NOTS DE U - ÁGER INER TRIZES, DETERINNTES E SISTES DE EQUÇOES INERES ISE C C EITE SVDOR Profª Isel Crisi C eie Álger ier TRIZES Um mri é um grupmeo regulr de úmeros ri de ordem m por é um reâgulo de m

Leia mais

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan No epliciv grdeço os professores João lves José Lís Fchd mrino Lere Roger Picken e Pedro Snos qe me fclrm mvelmene eercícios d s ori e recolhs de emes d cdeir. revemene (ind ese no) serão crescends solções

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

MAT302 - Cálculo 2. INTEGRAIS Integral Indefinida pág. 403. Bibliografia: Cálculo volume I, 5 edição. James Stewart Prof.

MAT302 - Cálculo 2. INTEGRAIS Integral Indefinida pág. 403. Bibliografia: Cálculo volume I, 5 edição. James Stewart Prof. MAT - Cálculo Biliografia: Cálculo volume I, 5 edição. James Sewar Prof. Valdecir Boega INTEGRAIS Iegral Idefiida pág. 4 Aé aqui, osso prolema ásico era: ecorar a derivada de uma fução dada. A parir de

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável ELECRÓNCA DE POÊNCA CA Aplicções: versores Coversores CC-CA de frequêci vriável corolo de velocidde de moores de idução foes de limeção iierrupíveis (UPS) vridores de frequêci foes de limeção móveis quecimeo

Leia mais

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos Isio d Ciêcis Es - Dprmo d Mmáic Cálclo I Proª Mri Jli Vr Crlo d Arjo Cpílo : Drid - A R T Sj b disios d cr Sj s r sc q pss plos poos P Q Cosidrdo o riâlo râlo PMQ, ir o ldo, mos q iclição d r s, o coici

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

Técnicas de Linearização de Sistemas

Técnicas de Linearização de Sistemas EA66 Pro. Vo Ze DCA/FEEC/Uc éccs e Lerzção e Sses Iroção ese óco vos recorrer reqüeeee éccs e lerzção e sse ão-ler e oro e oo e oerção. Iso ere qe o sse ler resle se lso co se s oeross erres e álse váls

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

10: Equações Diferenciais Parciais(EDP's)

10: Equações Diferenciais Parciais(EDP's) : Eqações Difereiais PariaisEDP's Uma EDP é ma eqação evolvedo das o mais variáveis idepedees yz... e derivadas pariais de ma fção variável depedee yz... Eemplos:............ 3 k k F se se + e d b y y

Leia mais

Um modelo de mínimos quadrados para a audição humana

Um modelo de mínimos quadrados para a audição humana Uiversidde Federl de Mis Geris - UFMG Isiuo de Ciêcis Es - ICE Deprmeo de Memáic Um modelo de míimos qudrdos pr udição hum Deise Nues de Arrud Oriedor: Crisi Mrques Belo Horizoe Dezemro 5 AGRADECIMENOS

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1. 4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

CAPÍTULO 4 - DERIVADAS

CAPÍTULO 4 - DERIVADAS CAPÍTULO 4 - DERIVADAS 4.- Icremetos e Rão Icremetl Sej m ção rel de vriável rel, cotí em m ddo itervlo do ql em prte os úmeros reis e e esses úmeros são mito próimos etre si, isto é, < δ o tede ero. Nests

Leia mais

Utilize apenas caneta ou esferográfica, de tinta azul ou preta.

Utilize apenas caneta ou esferográfica, de tinta azul ou preta. Teste Itermédio Mtemátic A Versão Drção do Teste: 90 mitos 30.04.04.º Ao de Escolridde Idiqe de form legível versão do teste. Utilize pes cet o esferográfic, de tit zl o pret. É permitido o so de mteril

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

VELOCIDADE DE PROPAGAÇÃO DOS DISTÚRBIOS NA ATMOSFERA HIDROSTÁTICA. Vladimir Kadychnikov Darci Pegoraro Casarin Universidade Federal de Pelotas

VELOCIDADE DE PROPAGAÇÃO DOS DISTÚRBIOS NA ATMOSFERA HIDROSTÁTICA. Vladimir Kadychnikov Darci Pegoraro Casarin Universidade Federal de Pelotas VELOCIDADE DE PROPAGAÇÃO DOS DISTÚRBIOS NA ATMOSFERA HIDROSTÁTICA Vldiir Kdychikov Drci Pegorro Csri Uiversidde Federl de Pelos Absrc For cosrucig of he sble lgorihs of uericl iegrio of he hydroherodiyic

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

L triangular inferior U triangular superior

L triangular inferior U triangular superior 69 Forção Ax A rgr feror rgr speror Vmos oserr o exempo roóro m Po () m po 8 Osere qe mrz () poe ser o e pré-mpco- por m mrz coeee o cso: mesm form mrz é o pré-mpco- por: 7 eror é m mrz râgr Assm sp A

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE 1. Itrodução CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE Ddo um qulquer cojuto A R, se por um certo processo se fz correspoder cd A um e um só y = f() R, diz-se que se defiiu um

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS Notas de aula --- arte II FUNÇÕES DE VÁRIAS VARIÁVEIS Escritas pelo roessor Wilso Caesi Utilizada a disciplia Matemática C para o curso de Ciêcias Aeroáuticas da Uiversidade Braz Cubas Matemática C pro.

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

ntexto finição presentação áfica ilização TempMed(input,output); Var Var Begin Begin readln(t1); readln(t1); readln(t2); readln(t2);

ntexto finição presentação áfica ilização TempMed(input,output); Var Var Begin Begin readln(t1); readln(t1); readln(t2); readln(t2); Arrys (tbels) Co (1) Imgine-se que é necessário efectur o cálculo d médi do primeiro trimestre do no. Com os conhecimentos presentdos té qui o progrm senvolver seri proximdmente Progrm Progrm TempMed(input,output);

Leia mais

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO FLAMBAGEM POR FLEXÃO FLAMBAGEM POR TORÇÃO FLAMBAGEM POR FLEXO-TORÇÃO FLAMBAGEM LATERAL FLAMBAGEM

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino Revisão pr o Vestibulr do Istituto Militr de Egehri wwwrumooitcom Sistem Elite de Esio CÔNICAS (IME-8/8) Determie equção de um círculo que tgeci hipérbole potos em que est hipérbole é ecotrd pel ret os

Leia mais

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente; 2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias Eercícios de Cálclo Nmérico Eqações Diereciais Ordiárias. Deermie a solção mérica aproimada da segie Eqação Dierecial Ordiária com o passo.: { ( ( [ ] ( (a Méodo de Eler ( Méodo das Tagees (b Méodo de

Leia mais

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c},

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c}, 8/6/7 Orgnizção Aul elções clássics e relções Fuzz Prof. Dr. Alendre d ilv imões Produto Crtesino elções Crisp Produto crtesino Forç d relção Crdinlidde Operções em relções Crisp Proprieddes de relções

Leia mais

CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO

CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO 1. APRESENTAÇÃO Nese capíulo serão abordados vários méodos que levam em coa o uso das probabilidades a aálise de ivesimeos. Eses méodos visam subsidiar

Leia mais

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 Progrmção Liner Fernndo Nogeir Progrmção Liner Eemplo Típico Um indstri prodz prodtos I e II sendo qe cd prodto consome m certo número de hors em máqins A B e C pr ser prodzido conforme tel: Prodto Tempo

Leia mais

1. Na figura seguinte está representada parte do gráfico de uma função g, de domínio R e contínua em

1. Na figura seguinte está representada parte do gráfico de uma função g, de domínio R e contínua em PROVA ESCRITA DE MATEMÁTICA A.º E 00 Fevereiro 8 Duração da prova: 90 miuos VERSÃO Grupo I Para cada uma das cico quesões dese grupo, seleccioe a resposa correca de ere as aleraivas que lhe são apreseadas

Leia mais

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 03 Métodos Cinéticos

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 03 Métodos Cinéticos Escola de Egeharia de Lorea - USP iéica Química aíulo 03 Méodos iéicos Irodução O esudo ciéico, usualmee, é feio a arir de dados exerimeais coleados durae a evolução de uma reação química. Eses dados coleados

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

d) xy 2 h) x c a b c) d) e) 20

d) xy 2 h) x c a b c) d) e) 20 AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Rdicis ) Escrev em form de potênci com epoente frcionário ) Escrev em form de rdicl ) Dividindo o índice do rdicl e os epoentes de todos os ftores do rdicndo

Leia mais

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE TEORIA DOS LIMITES Professor: Alendre LIMITES. NOÇÃO INTUITIVA DE LIMITE Vmos nlisr o comportmento gráfico d função f ( ) qundo tende pr. ) Primeirmente vmos tender vriável por vlores inferiores, ou sej,

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

y vetores do R 2. Então:

y vetores do R 2. Então: ESPAÇOS VETORIAIS Espços Vetoriis Estdremos o coceito de espço etoril, qe é m cojto mido de certs operções, gozm de proprieddes ligds áris plicções mtemátics, s ciêcis bem como egehri Sej V m cojto ão

Leia mais

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear SISTEMAS DE EQUAÇÕES INEARES. Eqção ier U eqção do tipo = qe epress vriável e fção d vriável e d costte, é chd eqção lier. A plvr lier é tilid tedo e vist qe o gráfico dess eqção é lih ret. D es for, eqção

Leia mais

Limites Trigonométricos Resolvidos. Sete páginas e 34 limites resolvidos. sen x. = 1 logo = 1. lim = 4. lim. = n. lim. lim lim =? m m m.

Limites Trigonométricos Resolvidos. Sete páginas e 34 limites resolvidos. sen x. = 1 logo = 1. lim = 4. lim. = n. lim. lim lim =? m m m. Limies Trigonoméricos Resolvidos See págins e ies resolvidos Usr o ie undmenl e lguns riícios :?? 5 5 m n?? m n m n 7 5 5 logo? logo? n m 5 m n, é um indeerminção 5 y 5 y y m m n m y y y y logo logo 5

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. .5.- Derivd d função compost, derivd d função invers, derivd d função implícit e derivd de funções definids prmetricmente. Teorem.3 Derivd d Função Compost Suponh-se que g: A R é diferenciável no ponto

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

CAPÍTULO 9 OPERADORES DIAGONALIZÁVEIS

CAPÍTULO 9 OPERADORES DIAGONALIZÁVEIS INRODUÇÃO AO ESUDO DA ÁGERA INERAR i Frcisco d Cr Deprtmeto de Mtemátic Uesp/r CAÍUO 9 OERADORES DIAGONAIZÁVEIS No cpítlo 8 vi-se qe é possível determir mtri de m trsformção o de m operdor lier em relção

Leia mais

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores Máquins Elécrics Trnsformdores 4-- Trnsformdores Os rnsformdores são máquins elécrics esáics que elevm ou bixm um deermind ensão lernd.. rincípio de funcionmeno O funcionmeno do rnsformdor bsei-se nos

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo?

Uma figura plana bem conhecida e que não possui lados é o círculo. Como determinar o perímetro de um círculo? erímetro A defiição de erímetro de um figur l muits vezes ode ser ecotrd do seguite modo: é som ds medids dos ldos d figur. Ms será que ess defiição é bo? or exemlo, um figur como que segue bixo ossui

Leia mais