Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3)

Tamanho: px
Começar a partir da página:

Download "Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3)"

Transcrição

1 Miroons 3/4 Mstro m Ennhri Eltroténi Comutors Rsonsál: Prof. Afonso Brbos º Exm 4//4 urção: 3 hors Rsolr roblm m folh sr Problm Consir junção rrsnt n Fi.. Amit qu s linhs bifilrs são iis (sm rs). Tom =. (3) λ/ λ/ λ/4 n : () λ/ Fi. () ) Clul os lmntos mtriz isrsão junção, xrimino os rsultos m função n ; b) A mtriz isrsão junção é unitári. Comnt firmção; ) Vrifiqu s é ossíl ssurr um lição, sm rflxão, o sso () r o sso (3), trés um r olo no sso (). Em so firmtio, trmin o orrsonnt lor ; ) Amit qu os ssos () () são trminos or rs ts. Lino o sso (3) um ror to, om otêni onstnt P, trmin rrtição otêni los ssos junção. Comnt o rsulto. Problm Consir um i rssonnt mont m trminção num ui ons. A lição ui-i é ssur or um íris rtrizo or um sustâni normliz b = C / f, m qu C = 4. frquêni é xrss m GHz. Por mis on stionári, obtirm-s os suints lors: Frquêni rssonâni: f = 9.3 GHz Γ f = f Ftor rflxão tnsão: Γ =.865 x( j56 f = f = 9.9 GHz

2 Amit qu st frquêni rssonâni stá sufiintmnt fst s frquênis rssonâni os outros moos i, or form qu i oss sr rrsnt or um squm quilnt simlifio orrsonnt o moo osilção om frquêni f. Nsss oniçõs: ) trmin o tio lição ui-i; b) uono qu o ui sso à i é limnto or um ror otêni onstnt, lul otêni bsori n i às frquênis f f ; ) Clul o ftor lição ui-i à frquêni rssonâni; ) Clul os râmtros rtrístios o iruito quilnt om olmnto or trnsformor (suosto il) m torno frquêni f ; ) Amit, or, qu o ltrr sustâni o íris lição utilizno iris om ifrnts imnsõs. É ossíl obtr o ftor quli intrínso i or mis otêni bsori m torno frquêni rssonâni? Justifiqu rsost; f) Consir, or, qu msm i stá mont m trnsmissão, sno lição o ui sí fito trés um íris iêntio o o lo ntr. uono qu o ui sí tm um mitâni ntr = j., lul: i) A no frquêni rssonâni i; ii) O ftor quli m r. Problm 3 Consir um l ilétri ssnt num lno onutor rfito, omo s rrsnt n Fi.. Tom = 4 mm ε =. Amit qu o ilétrio não tm rs. r x z Fi. ) Vrifiqu quis os tios moos qu om sr uios nst strutur, justifino su rsost; b) Clul bn frquênis r qul xist ns um moo TM n strutur; ) Pr ss moo r frquêni f = GHz, lul: i) A onstnt roção lonituinl; ii) A onstnt tnução trnsrsl no r; iii) A loi fs. ) Amit qu rtn rlizr um strutur qu suort um moo om msm loi fs qu lulou n lín ntrior, utilizno um lno orruo. imnsion, form roxim, ss strutur; ) rá qu ori tmbém obtr um strutur, om msm loi fs um os moos TE l, utilizno um lno orruo? Justifiqu rsost.

3 Miroons 3/4 Rsolução o º Exm Problm ) 3 = Riroi: ij = imtri ométri: = 33, = 3 4 lmntos lulr:,, 3 ª Montm: = = 3, = 3 = ji λ/ λ/4 n : λ/ (3) () λ/ () =, = = = =,, = Γ = = = n n n n + + n 4n τ = + Γ =, = = ; =, j = j =, = n = = ; n om = ; = n + ;

4 j = = n n = τ = j ª Montm: =, = 3, = 3 = λ/ λ/4 n : λ/ (3) () λ/ () =, = n, = = + = + n = Γ = = n = om + + n n τ = + Γ =, = = ;, = = = 3 = 3 3 n = τ = ; = n + ; n jn jn jn n = jn n ()

5 b) Junção sm rs. ) j = Γ b, om Γ =. Nss so, b = , rsult: = Γ ubstituino m b = , m 3 b = Γ Γ Pr qu não hj rflxão no brço (), r-s-á tr ou + Γ =, Γ =. ubstituino os lmntos mtriz isrsão (), rsult (urto-iruito). Γ =, lo qu = ) = =, Pi = 3 3 = P. Pt = P r = b = 3 3 = 3 P Pt = P r = b = 3 3 = 3 P Pt = P 3 i P 3 r = 3 3 b3 = P 33 3 = ( 33 ) P no =, rsult rs no intrior junção. P + P + P = o qu ro não xistêni t t t3

6 Problm ) no Γ = Γ ( f ), m lo qu lição é froux. Γ = =.5 > + Γ b) no P i = mw (omisso no nunio), otêni bsori l i srá P ( ) = Γ P i lo qu s trá frquêni f. P = 9.6 mw à frquêni rssonâni P =.58 mw à ) no b = C / f = 43. à frquêni rssonâni, tr-s-á k = = b ) A rtir k obtém-s n k = = k 4 no mitâni ntr i or irá lo qu = ( + jδ Q ) Γ = + Q = Γ x( jθ ) Γ j Γ sin sin = + Γ + Γ Γ = + Γ + Γ sin ( Γ ) θ θ θ Γ sinθ = 3 δ Os lmntos o iruito quilnt om olmnto or trnsformor são os or

7 = n = Q = n = n =.8 s ω l l = = = n ω.65 s ) Esolhr-s-á o íris r o qul otêni rflti l i, à frquêni rssonâni, sj nul, isto é, tr-s-á Γ =. Nss so, lição srá ríti, ou sj, tr-s-á =. st form, oro om (43) irá Q = Q, ono Q L L sr mio trés rfltomtri, mntno o íris sliono. Outr form, srá fzr mir Q, um z qu Q tn ssintotimnt r Q. f) i) ω L n b ωl + = ou b ω + n ω = l L n b n b ω = + + = 9.35 GHz l ii) = Q = Q n + T =. Loo QT = QL = Q = 78 +, Q Q Problm 3 ) Coniçõs frontir m x = : E = E =. Ans obm às oniçõs frontir z no lno onutor rfito os moos TE i, om E sin( hx), os moos TM, om H os( hx) E H z. x π b) Moo TM : < < ou sj < f < 6.5 GHz ) Pr f = GHz tm-s =.55, lo qu rsult rsolução qução mol u =.497. Nss so: u k = ε rk = 547 r m

8 u α = = 55.6 N m f ω = = = k 8.49 m s.383 ) Plno rtio, om imâni inuti, onstruío om um lno mtálio orruo: f = =.383, X + Z X.4 Z = l = = k Z tn X.56 mm λ = =.5 mm ) Moos TE β H x = E ωµ E H z = j ωµ x E sin( hx) < x < E = x [ α ( x ) ] E x > sin( h)

9 E H z x= ωµ α X Z = jx = j, k = < α Estrutur iti, imossíl om um lno rtio.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

s t r r t r tr és r t t t

s t r r t r tr és r t t t s rã ê s r s t r r t r tr és r t t t ss rt çã r t çã r str r r t r ár r t Pr ss r 1 r rs s Pr s t r t úr Pr t r st rr Pr t r ã s Pr t r ár r t Novembro, 2015 s t r r t r tr és r t t t 2r t s rã ê s rs

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

Constantes e relações fundamentais. Ondas harmónicas. Linhas de transmissão 1 U. PORTO FEUP MIEEC. Ondas Electromagnéticas MIEEC Formulário

Constantes e relações fundamentais. Ondas harmónicas. Linhas de transmissão 1 U. PORTO FEUP MIEEC. Ondas Electromagnéticas MIEEC Formulário Constntes e relções funmentis ε 9 36π F/m Np/m = 8.69 B/m µ = 4π 7 H/m Ons hrmónics v f = ω β v g = ω β = v f +β v f β = v f(λ λ v f λ Linhs e trnsmissão V(z = (R+jωLI(z I(z = (G+jωCV(z z z V(z z γ I(z

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

P PÓ P P P Õ P P P. P PP s rs tár á é P rá r s

P PÓ P P P Õ P P P. P PP s rs tár á é P rá r s P P PÓ P P P Õ P P P P PP s rs tár á é P rá r s P P PÓ P P P Õ P P P P PP s rs tár á é P rá r s P P PÓ P P P Õ P P P ss rt çã s t à 1 r Pr r Pós r çã r étr P r t çã r str r étr ár çõ s P PP s rs tár á

Leia mais

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho LCTROTCNI TÓRIC Tspêis ds uls tóis Mi Iês os d Cvlo 4/5 LCTROTCNI TÓRIC Ods ltomgétis Lis d tsmissão Guis d od ilídios o Guis mtálios Pls plls Rtguls Ciuls o Guis dilétios Pls Fis Óptis GUIS D OND CILÍNDRICOS

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

RADIOPROPAGAÇÃO MEEC 2007/2008

RADIOPROPAGAÇÃO MEEC 2007/2008 RADIOPROPAGAÇÃO MEEC 7/8 º Tst, 3-Nov-7 Durção: H3 DEEC AC-Tl Prof. Crlos Frnns Prof. António Top Problm Suponh qu um nvio fst-s cost nqunto mntém um comunicção vi ráio m 5 MHz, polrizção vrticl, com um

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Cascas, Tensões e Deformações 8.1. Capítulo 8. tem a direcção normal à superfície média no ponto que estamos a considerar, os eixos dos x 2.

Cascas, Tensões e Deformações 8.1. Capítulo 8. tem a direcção normal à superfície média no ponto que estamos a considerar, os eixos dos x 2. Cascas, Tnsõs Dformaçõs 8. Capítulo 8 Cascas, Tnsõs Dformaçõs 8. Sistma Eios Uma strutura tipo casca fina é uma strutura para a qual uma as imnsõs é significativamnt mnor o qu as outras uas caractriza-s

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

gd]bxhidjbey] fi e]\`d e`bk[l]f] fi ixe`]zibg`x XYZ[\]^_` b[zcdye] f]

gd]bxhidjbey] fi e]\`d e`bk[l]f] fi ixe`]zibg`x XYZ[\]^_` b[zcdye] f] 123456 9T3>-UnT>USopTJTUWqNSKp93VW>pKrUSC3-3(U3>NsTUt>CS3-T C39UC>Mpu3-3-TTNC3KT>(N(pUOp9T>(NTKC3>3SN39T(3-N 869 6 436! "# $ ""$ %&'()) * +, &' - $. %&/0,'/$&1$%& 20"21 0'3$%*00./ 4""520%&4678 7851#*)

Leia mais

Propagação na Atmosfera Folha de exercícios nº 7

Propagação na Atmosfera Folha de exercícios nº 7 Propgção n Atmosfr Fol ríios nº 7 On solo. Num sistm omunição ponto ponto m qu propgção é sobr o mr ntn missor stá 5 m im o nívl méio s águs, nqunto ntn rptor stá 75 m im ss nívl. A istâni ntr s ntns é

Leia mais

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão)

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão) Disiplin: Progrmção 1 Profssor: Pulo Césr Frnns Olivir, BS, PhD List Exríios JvSript 8 (rvisão) 1. O qu ont o s xutr progrm ixo? jvsript: - funtion utorizr(snh){ if(snh == "luno"){ lrt("bm-vino!"); ls{

Leia mais

P Ú. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã st tís t tr r t çã tít st r t

P Ú. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã st tís t tr r t çã tít st r t P Ú ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã st tís t tr r t çã tít st r t Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa T B238i 2017

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Ó P P. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tí t st r t

Ó P P. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tí t st r t P Ó P P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tí t st r t Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa T M672s 2017 Miranda,

Leia mais

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina:  ~ am/328. Livro: MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:

Leia mais

Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV

Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV Ficha catalográfica elaborada pela Biblioteca Mario Henrique Simonsen/FGV Butelli, Pedro Henrique Avaliação de impacto de políticas de segurança: o caso das Unidades de Polícia Pacificadora do Rio de Janeiro

Leia mais

AULA 12. Otimização Combinatória p. 342

AULA 12. Otimização Combinatória p. 342 AULA 2 Otimizção Comintóri p. 342 Emprlhmntos pso máximo Otimizção Comintóri p. 343 Emprlhmntos Um mprlhmnto m um gro (não-orinto) é um onjunto rsts qu us--us não tm pont m omum. Exmplo: {, } {, } ormm

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Anális Sínts Aloritmos Aloritmos Elmntrs m Gros [CLRS, Cp. 22] 2014/2015 Contxto Rvisão [CLRS, Cp.1-13] Funmntos; notção; xmplos Aloritmos m Gros [CLRS, Cp.21-26] Aloritmos lmntrs Árvors rnnts Cminos mis

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

ESTUDO DE MODELOS PARA O COMPORTAMENTO A ALTAS QUEIMAS DE VARETAS COMBUSTÍVEIS DE REATORES A ÁGUA LEVE PRESSURIZADA

ESTUDO DE MODELOS PARA O COMPORTAMENTO A ALTAS QUEIMAS DE VARETAS COMBUSTÍVEIS DE REATORES A ÁGUA LEVE PRESSURIZADA AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO ESTUDO DE MODELOS PARA O COMPORTAMENTO A ALTAS QUEIMAS DE VARETAS COMBUSTÍVEIS DE REATORES A ÁGUA LEVE PRESSURIZADA RAPHAEL MEJIAS DIAS Dissertação apresentada

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

MONITORAÇÃO NO PROCESSO DE SOLDAGEM GMAW POR MEIO DE VISÃO COMPUTACIONAL E DESENVOLVIMENTO DE MÉTODOS PARA APLICAÇÃO EM FPGA

MONITORAÇÃO NO PROCESSO DE SOLDAGEM GMAW POR MEIO DE VISÃO COMPUTACIONAL E DESENVOLVIMENTO DE MÉTODOS PARA APLICAÇÃO EM FPGA TRABALHO DE GRADUAÇÃO MONITORAÇÃO NO PROCESSO DE SOLDAGEM GMAW POR MEIO DE VISÃO COMPUTACIONAL E DESENVOLVIMENTO DE MÉTODOS PARA APLICAÇÃO EM FPGA Por, Rodrigo Ferreira Fernandes Brasília, Dezembro de

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328 MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES 0 QUIPMTOS OTROLOS OMPRSSOR PRUSO IRM ITRLIÇÃO UTOMÇÃO 0.0.. SS P OM SSORS 0.0..0 SS P SM SSORS /0/ ILUSÃO O MOLO SM SSORS 0/0/ LTRÇÃO MR O TRSUTOR ORRT URO URO /0/ RVISÃO S IMSÕS O LYOUT /0/ LTRÇÃO O

Leia mais

Ô P Ó P P. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t

Ô P Ó P P. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t Ô P Ó P P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t 11/6/2015 FichaCatalografica :: Fichacatalografica Ficha catalográfica preparada pela Biblioteca Central da

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

ν ν α α π θ θ δ α α α + + α + α α + α + φ Γ φ θ θ θφ Γ δ = α ν α α ν + ν ν + ν + ν + δ + ν ν + δ + + + + + δ + + ν ν + + ν + + + ν ν ν + + ν + ν + = θ β β + Γ δ Γ δ β µ µ µµ µ µ µ µ α ν α µ

Leia mais

P PÓ P. P r r P P Ú P P. r ó s

P PÓ P. P r r P P Ú P P. r ó s P PÓ P P r r P P Ú P P r ó s P r r P P Ú P P ss rt çã s t à rs r t t r rt s r q s t s r t çã r str ê t çã r t r r P r r Pr r r ó s Ficha de identificação da obra elaborada pelo autor, através do Programa

Leia mais

Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico Bibliotecário: Valter dos Santos Andrade

Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico Bibliotecário: Valter dos Santos Andrade P P PÓ st r t s é s Pr çã t çã s ss ê s st t s r t rs s Pr r çã tr tór ó r t st r t s é s Pr çã t çã s ss ê s st t s r t rs s Pr r çã tr tór ss rt çã r s t r q s t r r t çã r str Pr r Pós r çã r át st

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL 3 4 7 8 9 0 QUIPMNTOS ONTROLOS XX SL (L44) - RJ4- /SNSORS - IM SOPOR 30.400.83.7 XX SL (L44) - RJ4- /SNSORS - IM MUTIR 30.400.84. IRM INTRLIÇÃO UTOMÇÃO XX -SL 3 0// INTIIÇÃO OS SNSORS UMI PRSSÃO /03/4

Leia mais

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t P P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa T B591e 2015

Leia mais

Método de Detecção de Massas em Mamas Densas usando Análise de Componentes Independentes

Método de Detecção de Massas em Mamas Densas usando Análise de Componentes Independentes Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Programa de Pós-graduação em Engenharia de Eletricidade Luis Claudio de Oliveira Silva Método de Detecção de Massas em Mamas Densas

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Resistência de Materiais 2

Resistência de Materiais 2 Resistênci de Mteriis Ano ectivo 0/04 º Exme 8 de Jneiro de 04 Durção: hors Oservções: Não podem ser consultdos quisquer elementos de estudo pr lém do formulário fornecido. Resolver os prolems em grupos

Leia mais

NESS-A TOUCH SCREEN 7" C/ MODEM

NESS-A TOUCH SCREEN 7 C/ MODEM 6 7 8 9 0 QUIPMNTOS ONTROLOS OMPRSSOR LTRNTIVO // LTRÇÃO LYOUT-IM MUTI PR SOPOST OTÃO MRÊNI LLN9 0 07/0/ LTRÇÃO O MOM O LYOUT LOUV 7 0 06// INLUSÃO O ORINTTIVO O LÇO OMUNIÇÃO IO V. 00 8/0/ INIIL TOS R.

Leia mais

4 Modelos para rochas consolidadas e não consolidadas

4 Modelos para rochas consolidadas e não consolidadas 4 Molos para rochas consoliaas não consoliaas No capítulo antrior, aprsntou-s um molo física rochas calibrávl para o rsrvatório m qustão, qu é o molo proposto para ralizar stimativas prssõs poros, qu srá

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS LRC MULTILINHAS C/ IHM

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS LRC MULTILINHAS C/ IHM 4 5 6 7 8 9 0 QUIPNOS ONROLOS 5 LINS RSRIOS OU LINS ONLOS LIN RSRIOS IR INRLIÇÃO UOÇÃO NSS LR ULILINS O I 8 0/0/5 URÇÃO LRÇÃO OS UNIUS, RPOSIIONNO O POLI LRÇÂO N LIS RIIS LOUV 7 7 0/0/5 LRO O LYOU, SUSIUIO

Leia mais

RADIOPROPAGAÇÃO LEEC 2006/2007

RADIOPROPAGAÇÃO LEEC 2006/2007 RADIOPROPAGAÇÃO LEEC 6/7 Rsolução o º Tst, 3-Nov-6 Vrsão A Duração: H3 DEEC Prof. Carlos Frnans Prof. António Topa NOTA: A rsolução st tst é aprsntaa como ilustração o tipo rspostas qu s spram m provas

Leia mais

rs r r P r rt t ís Pr r Pós r çã ís Pr r çã s tr s ós r s ítr s s Sm 3+ /Tb 3+ Sm 3+ /Er 3+ r çã r s r ú r r s r

rs r r P r rt t ís Pr r Pós r çã ís Pr r çã s tr s ós r s ítr s s Sm 3+ /Tb 3+ Sm 3+ /Er 3+ r çã r s r ú r r s r rs r r P r rt t ís Pr r Pós r çã ís Pr r çã s tr s ós r s ítr s s Sm 3+ /Tb 3+ Sm 3+ /Er 3+ r çã r s r ú r r s r rs r r P r Pr r Pós r çã ís rt t ís Pr r çã s tr s ós r s ítr s s Sm 3+ /Tb 3+ Sm 3+ /Er

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5.

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5. PCS 5 Funmntos Engnhri Computção II Aul Molos R Algoritmo o Fluxo Máximo Contúo 5. Molos r lgoritmo o fluxo máximo 5. Molos r 5. Algoritmo o fluxo máximo Líri Sto Profssor Rsponsávl vrsão:. (st 00) Gomi,

Leia mais

Aula 05. Força elétrica Magnetismo Instrumentos elétricos

Aula 05. Força elétrica Magnetismo Instrumentos elétricos ssuntos: Hirostátia Caloritria Onulatória M.R.U.V Força létria Magntiso Instruntos létrios. (UNES-00) U bloo aira volu V 60 3, totalnt subrso, stá atao ao funo u ripint hio água por io u fio assa sprzívl.

Leia mais

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS-UFGD FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS-FACET

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS-UFGD FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS-FACET UNIVERSIDADE FEDERAL DA GRANDE DOURADOS-UFGD FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS-FACET LIN MING FENG DISTÂNCIAS ASTRONÔMICAS E GEOMETRIA DISSERTAÇÃO DE MESTRADO PROFISSIONAL EM MATEMÁTICA DOURADOS-MS

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

P PÓ P P. ss rt çã str r s t r r Pós r çã st t t r s r r r q s t r à t çã tít str. r t r

P PÓ P P. ss rt çã str r s t r r Pós r çã st t t r s r r r q s t r à t çã tít str. r t r P PÓ P P P P P Ó r P PÓ P P P P P Ó ss rt çã str r s t r r Pós r çã st t t r s r r r q s t r à t çã tít str r t r r FICHA CATALOGRÁFICA S113 Saboia, Maria Cláudia Pinto Sales Uma análise do Impacto das

Leia mais

rs r r ã tr ê s 1 t s rt t t át Pr r Pós r çã t t s t át s t s s s 1 r ê s ã ís

rs r r ã tr ê s 1 t s rt t t át Pr r Pós r çã t t s t át s t s s s 1 r ê s ã ís rs r r ã tr ê s 1 t s rt t t át Pr r Pós r çã t t s t át s t s s s 1 r ê s ã ís s t át s t s s s 1 r ê s ss rt çã r s t Pr r Pós r çã t t r q s t r r t çã r str t t r t r ã s s t r t át ã ís t s r t 3

Leia mais

< ()& : 555>?

< ()& : 555>? P Ú s Pr s t Pr t Pr r str Pr ss t át P q çõ s r ç s çõ s s é s r r t r Pr r sé rt r P Ú s Pr s t Pr t Pr r str Pr ss t át P q çõ s r ç s çõ s s é s r ss rt çã r s t rt s r q s t s r t çã tít str t r r

Leia mais

1 Definição de integral (definida) de Riemann

1 Definição de integral (definida) de Riemann 1 Definição de integrl (definid) de Riemnn Sej seguir sempre f : [, b] R limitd (com [, b] limitdo); logo existem m, M tis que m f(x) M. Definição: chmmos Prtição de [, b] um conjunto finito de pontos

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior Fundação Escola écnica Librato Salzano Viira da Cunha Curso d Eltrônica Eltrônica d Potência Prof. Irinu Alfrdo onconi Junior Introdução: O rsnt txto dvrá tratar d uma art da Eltrônica conhcida como Eltrônica

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

3.2.1.1 Pinos transversais...13 3.2.1.2 Chavetas...13 3.2.1.3 Eixos ranhurados...14 3.2.1.4 Recartilha e Estrias...15 3.2.2.1 Ajuste prensado cônico...15 3.2.2.2 Anéis cônicos...17 3.2.2.3 Ajuste prensado

Leia mais

O sinal. Exemplos: impulso rectangular. Função exponencial. Aplica-se a sinais de energia finita. função sinc(λ) Transformada de Fourier 2/T 1/T T/2

O sinal. Exemplos: impulso rectangular. Função exponencial. Aplica-se a sinais de energia finita. função sinc(λ) Transformada de Fourier 2/T 1/T T/2 rsrmd d Furir. d [ ]. d pli-s siis d ri ii [ ]. d < lmuiçõs EC Fuçã si λ si λ 3 si λ λ λ sd [ si ] r [ r ] si lmuiçõs EC 3 Exmpls: impuls rulr. r / / s / Fuçã six/x é mui mum. Csum usr-s pr iss uçã siλ

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO Tnsor d Tnsõs ij Tnsõs Principais ij Tnsõs Principais Estado d tnsão D Estado plano d tnsão I I I P p P ( ), x x x ± I, I, I Invariants das tnsõs z x I x z zx

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 18 Revisão Capt. 5 Casamento de impedância * Objetivo: Eliminar a reflexão do sinal

Leia mais

CURSO: MARKETING ECONOMIA I Época Normal 11 de Fevereiro de 2009 duração: 2h. Resolução NOME: Nº. GRUPO I (7 valores)

CURSO: MARKETING ECONOMIA I Época Normal 11 de Fevereiro de 2009 duração: 2h. Resolução NOME: Nº. GRUPO I (7 valores) URO: MARKTING ONOMIA I Éoca Normal 11 d Fvriro d 009 duração: h NOM: Nº. RPONA NO NUNIAO Rsolução GRUPO I (7 valors) dv assinalar com um círculo a rsosta corrcta cada qustão tm uma cotação d 1 val cada

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numérios Integrção Numéri Regr de Simpson Proessor Volmir Eugênio Wilelm Proessor Mrin Klein Revisão Integrção Numéri n d p d p I ()d p... m m n n- mn d As ténis mis omuns de integrção numéri são:

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISRAÇÃO E CONABILIDADE DEPARAMENO DE ECONOMIA EAE 26 Macroconomia I 1º Smstr d 217 Profssor Frnando Rugitsky Lista d Exrcícios 4 [1] Considr uma macroconomia

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E

Microondas I. Prof. Fernando Massa Fernandes. https://www.fermassa.com/microondas-i.php. Sala 5017 E Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 507 E fermassa@lee.uerj.br Exercícios selecionados do capítulo. /.3 /.8 /. /.0 /.9 Prova P.I Capts. e (exercícios selecionados

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Modelos Determinísticos

Modelos Determinísticos Molos Dtrminísticos osição Instantâna; Pnúria não rmitia. (Em toas as situaçõs assum-s qu a rocura é trminística constant valor, qu não xistm scontos quantia. Nst caso assum-s qu a quantia ncomna é rcbia

Leia mais

RESISTÊNCIA DE MATERIAIS II

RESISTÊNCIA DE MATERIAIS II INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Civil e Arquitectura Secção de Mecânica Estrutural, Estruturas e Construção Ano lectivo de 2003/2004 2 o teste e o exame Lisboa, 23 de Junho de 2004

Leia mais

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova.

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova. +1/1/60+ PROVA EXTRAMUROS - 018 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruçõs (i) O tmpo stino st prov é 5 hors. (ii) A Prt I (us qustõs issrttivs) orrspon 5% pontução totl prov. (iii) C qustão

Leia mais

No-Go Theorems in Noncommutative Quantum Mechanics

No-Go Theorems in Noncommutative Quantum Mechanics No-Go Theorems in Noncommutative Quantum Mechanics Bruno Alexandre Duarte Madureira Mestrado em Física Departamento de Física e Astronomia 2017 Orientador Orfeu Bertolami Neto, Professor Catedrático, Faculdade

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

Sobre a obra: Sobre nós:

Sobre a obra: Sobre nós: Sobre a obra: A presente obra é disponibilizada pela equipe do ebook espírita com o objetivo de oferecer conteúdo para uso parcial em pesquisas e estudos, bem como o simples teste da qualidade da obra,

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

Compressão Paralela às Fibras

Compressão Paralela às Fibras Comprssão Paralla às Fibras Critério imnsionamnto pn o íni sbltz (λ): λ x ou L 0 x ou i x ou i x ou é o raio giração m rlação aos ixos prinipais a sção transvrsal o lmnto strutural L 0 o omprimnto lambagm

Leia mais

a outro tanque de altura H (ambos os tanques abertos à pressão atmosférica p

a outro tanque de altura H (ambos os tanques abertos à pressão atmosférica p ABORATÓRIO E AIAÇÕES E MEÂNIA OS FUIOS (ME 33) NOÇÕES E MEÂNIA OS FUIOS (ME 333) Gbrito Terceir rov - 05. (3 ontos) No sistem d figur, bomb deve elevr águ de um tnque grnde com ltur H outro tnque de ltur

Leia mais

Aula 1. Apontamentos Teórico-Práticos de Algoritmia Avançada LEI/ISEP Métodos de Pesquisa Carlos Ramos

Aula 1. Apontamentos Teórico-Práticos de Algoritmia Avançada LEI/ISEP Métodos de Pesquisa Carlos Ramos Méts Psqus u 1 1 Prr Pru qu stá rt ét Prr Pru é ttr vçr st r st té qu s tr suçã É u ét qu s s çõs ts r rçã rrt, s sr qu s rçã t r squ O ét Prr Pru rst vt tr us rqusts trs ór O ét é té qu r rs qu t várs

Leia mais

CATÁLOGO DE PEÇAS COLHEDORA DE CAPIM. Rev /01

CATÁLOGO DE PEÇAS COLHEDORA DE CAPIM. Rev /01 TÁLOO PÇS Rev. 0.0/0 OLOR PIM N 00 Implementos Netz Ltda. one: () -7 / -00 ndereço: RS, KM, - ao lado da O do rasil Santa Rosa - RS ÍNI N00 (VISÃO RL OLOR PIM) 0 N00 (LIST PÇS OLOR PIM) 0 N0 (J MT I) 0

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 15 Cap. 2 Teoria de linhas de transmissão Cap. 2 Teoria de linhas de transmissão Solução

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin

Teoria dos Jogos. Prof. Maurício Bugarin Toria dos Jogos Prof. Maurício Bugari Ca. 5. Jogos Diâmicos com Iformação Icomlta Rotiro Caítulo 5. Jogos Diâmicos com Iformação Icomlta Dfiição d Equilíbrio Baysiao Prfito Alicação: Jogos d sialização:

Leia mais

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura:

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura: roblma I (6 val.) ágina I. Considr o problma da dtrminação da dformada d uma viga, ncastrada nas duas xtrmidads, sujita ao carrgamnto squmatizado na figura: q L/ L/ L/ As quaçõs difrnciais qu govrnam a

Leia mais