02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

Tamanho: px
Começar a partir da página:

Download "02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?"

Transcrição

1 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio (E) Seis e meio 0 A, B, C e D são vértices consecutivos de um qudrdo e PAB é um triângulo equilátero, sendo P interno o qudrdo ABCD. Qul é medid do ângulo PCB? (A) 0 º (B) º (C) 60 º (D) 7 º (E) 90º 0 Dois sinis luminosos fechm juntos num determindo instnte. Um deles permnece 0 segundosfechdo e 0 segundos erto, enqunto outro permnece 0 segundos fechdo e 0 segundos erto. O número mínimo de segundos necessários, prtir dquele instnte, pr que os dois sinis voltem fechr juntos outr vez é de: (A) 0 (B) 0 (C) 0 (D) 00 (E) 00 0 Considere s firmtivs ixo: (I) 0 (II) (III) Pode-se firmr que: (A) pens firmtiv I é verddeir (B) pens s firmtivs I e III são verddeirs (C) pens firmtiv II é verddeir (D) pens s firmtivs II e III são verddeirs (E) s firmtivs I, II e III são flss Um eedouro que us grrfão de águ tem, metros de serpentin por onde águ pss pr gelr. Se-se que tl serpentin gst segundos pr ficr totlmente geld. Colocndo-se um grrfão de 0 litros e ligndo-se o eedouro, lev-se minutos pr que tid águ si geld. Se ns mesms condições fosse colocdo um grrfão de 0 litros no lugr do de 0 litros, o tempo gsto pr que tod águ sísse geld seri de:

2 (A) 9 min 6 seg (B) 9 min 8 seg (C) 0min (D) 0 min seg (E) min 06 Pr se demrcr o estcionmento de todo o ldo direito de um ret, form pintdos 0 retângulos de, comprimento e, metros de metros de lrgur. Sendo-se que os crros estcionm no sentido do comprimento dos retângulos e d ru, e à frente e trás de cd um dos retângulos e d ru, e frente e trás de cd um dos retângulos tem 0 centímetros de folg, qul é o comprimento, em metros, d ru? (A) 90 (B) 90, (C) 9 (D) 00 (E) 00, 07 O vlor de é (A) (B) (C) (D) (E) 08 Um mss fermentd o ser colocd pr descnsr ocupou um áre circulr S de rio r. Após um certo tempo t, el pssou ocupr um áre % mior que S. Qul o vlor de r, em centímetros, pr descnsr durnte o tempo t, em um tuleiro circulr de rio centímetros? (A), 8 (B) 8 (C) 0 (D) 0, 8 (E) 09 Um luno clculou médi ritmétic entre os cem primeiros números inteiros positivos, encontrndo desses números encontrou como nov médi ritmétic 7 0. O número retirdo está entre: 99 Ddo: A médi ritmétic de n números é igul à som desses n números dividid por n. (A) 0 e 0 (B) 0 e 0 (C) 0 e 60 (D) 60 e 70 (E) 70 e Retirndo um 8

3 0 Os pontos X, O e Ysão vértices de um polígono regulr de n ldos. Se o ângulo XOYmede º 0', considere s firmtivs: (I) n pode ser igul 8 (II) n pode ser igul (III) n pode ser igul Podemos firmr que: (A) pens I e II são verddeirs (B) pens I e III são verddeirs (C) pens um dels é verddeir (D) I, II e III são verddeirs Um comercinte comprou kojetos idênticos por t reis, onde t é um número inteiro positivo. Ele contriuiu pr um zr de cridde, vendendo dois ojetos pel metde do preço de custo. Os ojetos restntes form vendidos com um lucro de seis reis por unidde. Se o seu lucro totl foi de setent e dois reis, o menor vlor possível pr ké: (A) (B) (C) (D) 6 (E) 8 Suponh que (um) nvl (símolo n) sej medid de um ângulo convexo, menor que um ângulo reto, inscrito em um círculo de rio r, cujos ldos determinm, nesse círculo, um rco de comprimento r. Assim sendo, som ds medids dos ângulos internos de um triângulo é igul (A) n (B) n (D) n (E) n (C) n Dividindo-se o cuo de um número pelos do seu qudrdo, ch-se 8pr quociente. A riz qudrd d terç prte desse número é: (A) (B) (C) (D) (E) 6 O vlor d expressão ,..., é (A) (B) (C) 0 9

4 (D) (E) Sejm os conjuntos A= (A) {x Z x é pr múltiplo de } (B) {x Z x é ímpr e múltiplo de } (C) {x Z é múltiplo de } (D) {x Z é múltiplo de 6} (E) {x Z é ímpr} x Z x 6n,n Z e B= x Z x n,n Z. Então A B é igul : Ddo: Z conjunto dos números inteiros 6 A ligção entre s ciddes A e B pode ser feits por dois cminhos C e C. O cminho C é mis curto, porém com mis tráfegos e o cminho C é % mis longo do que o C mis possui tráfego menor, o que permite um umento n velocidde de 0 %. De quntos porcento diminuirá o tempo de vigem pr ir de A té Busndo o cminho C? Ddos: considere s velociddes sempre constntes e s miores possíveis. (A) (B) 6 (C) 7 (D) 8 (E) 9 Sej ABCD um qudrilátero qulquer onde os ldos opostos NÃO são prlelos. Se s medids dos ldos opostos AB e DCsão, respectivmente, iguis e 6, um vlor possível pr o segmento de extremos M(ponto médio do ldo AD) e N (ponto médio do ldo BC) é (A), (B) (C), (D) 6 (E) 8 Num gii, um ser de outro plnet cpturou em um de sus vigens três tipos de nimis. O primeiro tinh pts e chifres, o segundo tinh pts e nenhum chifre e o terceiro pts e chifre. Quntos nimis do terceiro tipo ele cpturou, sendo que existim 7 ceçs, 78 pts e 0 chifres? (A) (B) (C) 6 (D) 7 (E) 0 9 Sej N xyzzyxum número nturl escrito n se dez, onde x, y e z são lgrismos distintos. Se N e N são os dois miores números divisíveis por e, otidos prtir de N pel sustituição de x, y e z, então N N é igul (A) (B) (C)

5 (D) 000 (E) Considere três qudrdos de ses AB, CD e EF, respectivmente. Unindo-se o vértice A com F, B com C e D com E, oserv-se que fic formdo um triângulo retângulo. Pode-se firmr que: I - O perímetro do qudrdo de mior ldo é igul à som dos perímetros dos outros dois qudrdos. II - A áre do qudrdo de mior ldo é igul à som ds áres dos outros dois qudrdos. III - A digonl do qudrdo mior é igul à som ds digonis dos outros dois qudrdos. Logo, pens: (A) A firmtiv I é verddeir. (B) A firmtiv II é verddeir. (C) A firmtiv III é verddeir. (D) As firmtivs I e II são verddeirs. (E) As firmtivs II e III são verddeirs.

11

11 01 O vlor de 8 6 0,15 é : (A) 8 (B) (C) (E) 6 0 Os números x, y e z são diretmente proporcionis, 9 e 15respectivmente. Sendo que o produto desses números é xyz 960, som será : (A) 5 (B) 8 (C) 6 7 (E) 0

Leia mais

Unidade 8 Geometria: circunferência

Unidade 8 Geometria: circunferência Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN-2005) Prova : Amarela MATEMÁTICA

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN-2005) Prova : Amarela MATEMÁTICA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN005) Prov : Amrel MATEMÁTICA 1) Num triângulo ABC, AB = AC, o ponto D interno o ldo AC é determindo

Leia mais

"Bem-vindos ao melhor ano de suas vidas #2018"

Bem-vindos ao melhor ano de suas vidas #2018 COLÉGIO SHALOM Ensino Fundmentl 8ª no ( ) 65 Profº: Wesle d Silv Mot Disciplin: Mtemátic Aluno ():. No. Trblho de recuperção Dt: 17 /12/ 2018 "Bem-vindos o melhor no de sus vids #2018" 1) Sobre s proprieddes

Leia mais

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 8 no E.F. Professores Cleer Assis e Tigo Mirnd Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 1 Exercícios Introdutórios

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

15 aulas. Qual o número m ximo de faltas que ele ainda pode ter? (A) 9 (B) 10 (C) 12 (D) 16 (E) 24

15 aulas. Qual o número m ximo de faltas que ele ainda pode ter? (A) 9 (B) 10 (C) 12 (D) 16 (E) 24 Pré-AFA 2017 Simuldo A 28 de junho de 2017 Questão 1 (CFN) Qul é o número nturl que elevdo o qudrdo é igul o seu triplo somdo com 0? (A) 5 (B) 6 (C) 8 (D) 9 Questão 2 (CFN) Sbendo-se que tn(0 ) =, o vlor

Leia mais

3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença

3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença Exponencição e Logrítmos - PRO HELO /06/ ) Pr que vlores reis se verific sentenç x x x x x4 < 4 : ) { x / x } [, ] ) { x / x } ], [ ) Se, e c são reis positivos, então simplificndo ) ) 4 log c log c..

Leia mais

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas:

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO Sej f : R R um

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles AULA - GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Rets prlels cortds por um trnsversl São queles que possuem dois ldos iguis. Ligndo o vértice A o ponto médio d bse BC, germos dois triângulos

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

( 3. a) b) c) d) 10 5 e) 10 5

( 3. a) b) c) d) 10 5 e) 10 5 Pré-F 207 Simuldo # 26 de bril de 207 2 Q. (EsS) Em um progressão ritmétic cujo primeiro termo é, 87 e rzão é 0, 004, temos que som dos seus dez primeiros é igul : () 8, 99 () 9, 5674 () 8, 88 (D) 9, 5644

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

facebook/ruilima

facebook/ruilima MATEMÁTICA UFPE ( FASE/008) 01. Sej áre totl d superfície de um cubo, e y, o volume do mesmo cubo. Anlise s firmções seguir, considerndo esss informções. 0-0) Se = 5 então y = 7. 1-1) 6y = 3 -) O gráfico

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA

AULA DE VÉSPERA VESTIBULAR 2019 MATEMÁTICA AULA DE VÉSPERA VESTIBULAR 09 MATEMÁTICA Prof. Luiz Henrique 0) A figur indic um circunferênci de diâmetro AB 8 cm, um triângulo equilátero ABC, e os pontos D e E pertencentes à circunferênci, com D em

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 07 GABARITO COMENTADO 1) Se o resto d divisão de 47 por x é 7, então x divide 47 7 = 40 D mesm mneir, x divide

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,

Leia mais

a) a amplitude de cada um dos ângulos externos do triângulo regular de que o segmento de reta BF é um dos lados;

a) a amplitude de cada um dos ângulos externos do triângulo regular de que o segmento de reta BF é um dos lados; EXTERNATO JOÃO ALBERTO FARIA Fich de Mtemátic 9º ANO 1- N figur estão representds três circunferêncis congruentes, tngentes dus dus. Sendo-se que CB 16 cm, determin áre d região colorid. Apresent o resultdo

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais

Geometria. Goiânia, de de Data de Devolução: 24/05/2016 Aluno (a): Série: 9º Ano Turma: 04 Lista Semanal Matemática

Geometria. Goiânia, de de Data de Devolução: 24/05/2016 Aluno (a): Série: 9º Ano Turma: 04 Lista Semanal Matemática Goiâni, de de 0. Dt de Devolução: /0/0 Aluno (: Série: 9º Ano Turm: 0 List Semnl Mtemátic Geometri. Um prédio de m de ltur projet um somr de 0 m de comprimento sore um piso horizontl plno, como mostr figur

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Colocm-se qutro cubos de

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E MTEMÁTI NO E QUESTÕES - GEOMETRI - 9º NO - ENSINO FUNMENTL ============================================================================ 0- figur o ldo indic três lotes de terreno com

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo GABARITO MATEMÁTICA 0 Considere equção

Leia mais

PROVA DE MATEMÁTICA DA FUVEST-2017 FASE 2 RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA.

PROVA DE MATEMÁTICA DA FUVEST-2017 FASE 2 RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA. PROVA DE MATEMÁTICA DA FUVEST-7 FASE RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA. Di 9 de jneiro de 7. Um cminhão deve trnsportr, em um únic vigem, dois mteriis dierentes, X e Y, cujos volumes em m

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?

Leia mais

INSTRUÇÕES PARA REALIZAÇÃO DA PROVA

INSTRUÇÕES PARA REALIZAÇÃO DA PROVA MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DEPA (Cs de Thomz Coelho/1889) CONCURSO DE ADMISSÃO AO 1º ANO DO ENSINO MÉDIO 2011/2012 16 DE OUTUBRO DE 2011 APROVO DIRETOR DE ENSINO COMISSÃO DE ORGANIZAÇÃO

Leia mais

Ano / Turma: N.º: Data: / / GRUPO I

Ano / Turma: N.º: Data: / / GRUPO I Novo Espço Mtemátic A.º no Nome: Ano / Turm: N.º: Dt: / / GRUPO I N respost cd um dos itens deste grupo, selecion únic opção corret. Escreve, n folh de resposts: o número do item; letr que identific únic

Leia mais

( x y GABARITO. 2 Matemática C ( + ) 09) (x, y U) + 1+ x y x y 2 2. y x xy xy. Dado x y. y x. Devemos simplificar. Assim, xy xy. x y x y x y.

( x y GABARITO. 2 Matemática C ( + ) 09) (x, y U) + 1+ x y x y 2 2. y x xy xy. Dado x y. y x. Devemos simplificar. Assim, xy xy. x y x y x y. Mtemátic C Etensivo V Eercícios 0) ) y ) ( ) ( ) ( ) y( ) ( ) ( ( ) ( y ( ) 0) 9 9 0 0 7 () 8 ( ) Rízes d equção () e Rízes d equção () e 7 8 ( ) ( ) ( ) ( ) 98 98 9 0 0) 0) A 0) A ( ) ( ) y ( ) 0) 8 07)

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16 MATEMÁTICA 77 Num bolão, sete migos gnhrm vinte e um milhões, sessent e três mil e qurent e dois reis. O prêmio foi dividido em sete prtes iguis. Logo, o que cd um recebeu, em reis, foi: ) 3.009.006,00

Leia mais

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale:

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO ) (UNISINOS) O ldo do qudrdo ABCD, d figur ixo, mede m e M é o ponto médio do ldo CD. 1) No triângulo ixo, o seno do ângulo B vle: 9 ) 0 9 ) 1 0 ) 9 0 1 1 9 ) (UFRGS)

Leia mais

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas.

8 é possível preencher o quadriculado inicial de exatamente duas maneiras distintas. OBMEP 011 Fse 1 Questão 1 Solução ) Primeiro notmos que é possível preencher o qudriculdo de cordo com o enuncido; um exemplo está o ldo. Oservmos gor que, qulquer que sej mneir de preencher o qudriculdo,

Leia mais

cpv especializado na espm

cpv especializado na espm 0 espm 05/07/009 cpv especilizdo n espm Mtemátic. O vlor d epressão. + pr = 0 é igul : ), b) c) d) 0 e). + = + = +. ( + ) = =. = ( + ). + Substituindo = 0 = 0,, temos: + 0, +, = = = 0, 0, = +. Sobre o

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1 A AVALIAÇÃO ESPECIAL UNIDADE I -0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Sejm n n b e bn b n. Se P = b, então P é um número: 0) inteiro

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Cnguru Mtemático sem Fronteirs 2010 Durção: 1h30min Destintários: lunos do 9 Ano de Escolridde Nome: Turm: Não podes usr clculdor. Há pens um respost correct em cd questão. As questões estão grupds em

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO AO 1 O ANO DO CPCAR de AGOSTO de 2005

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO AO 1 O ANO DO CPCAR de AGOSTO de 2005 www.concursosmilitres.com.br COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA ESCOLA PREPARATÓRIA DE CADETES-DO-AR CONCURSO DE ADMISSÃO AO O ANO DO CPCAR 006 PROVA DE MATEMÁTICA 0 de AGOSTO

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções ds tividdes Começo de convers A velocidde ds notícis Resposts pessois. É possível pontr indicdores numéricos comuns à relidde ds mídis sociis, tis como: quntidde de comprtilhmentos, número de

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

PROFESSOR: EQUIPE DE MATEMÁTICA

PROFESSOR: EQUIPE DE MATEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA ª SÉRIE ENSINO MÉDIO ============================================================================================= Questões de Vestibulr: Polinômios

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

EXERCÍCIOS RESOLVIDOS MATEMÁTICA II

EXERCÍCIOS RESOLVIDOS MATEMÁTICA II Vestibulr1 A melhor jud o vestibulndo n Internet Acesse Agor! www.vestibulr1.com.br EXERCÍCIOS RESOLVIDOS MATEMÁTICA II 01) Um certo tipo de vírus tem diâmetro de 0,010 - mm. Admit que um colôni desses

Leia mais

Se o raio da circunferência é 2 cm, podemos afirmar que o perímetro do triângulo é

Se o raio da circunferência é 2 cm, podemos afirmar que o perímetro do triângulo é Tref 08 e 09 - Professor Diego 01. (UNIFOR CE) N sg de um fmoso ruxinho do cinem, hvi um conjunto de ojetos que juntos formvm s chmds relíquis d morte. Tis ojetos erm representdos pelo símolo ixo, no qul

Leia mais

Prof. Ranildo LOPES https://ueedgartito.wordpress.com 1

Prof. Ranildo LOPES https://ueedgartito.wordpress.com 1 Prof. Rnildo LOPES https://ueedgrtito.wordpress.com REVISÃO DE MATEMÁTICA ENEM / PROVA BRASIL ALUNO (A: Nº.PROF. RANILDO LOPES 9ª List de Eercícios Equção e Função do º e º gru Equção do º Gru Resolv s

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que Revisão Primeiro Semestre 01 prof. Less Auls 1 1. (ESPM) A metde de vlem, respectivmente: A) 0,6 1 e e 1. Se 1 e 9 e 9 8 e 1, e o triplo de x =, então o vlor de x é: A) 6. (FUVEST) Rcionlizr o denomindor

Leia mais

a, pois dois vértices desse triângulo são pontos

a, pois dois vértices desse triângulo são pontos UFJF MÓDULO DO PSM TRÊNO 0-0 REFERÊNC DE CORREÇÃO D PROV DE MTEMÁTC PR O DESENVOLVMENTO E RESPOST DS QUESTÕES, SÓ SERÁ DMTDO USR CNET ESFEROGRÁFC ZUL OU PRET Questão Um empres promoveu um concurso pr que

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

Solução da prova da 1 fase OBMEP 2013 Nível 1

Solução da prova da 1 fase OBMEP 2013 Nível 1 Solução d prov d fse OBMEP 0 Nível QUESTÃO Qundo brir fit métric, Don Céli verá o trecho d fit representdo n figur; mnch cinzent corresponde à porção d fit que estv em volt d cintur de Mrt. A medid d cintur

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR isciplin: Mtemátic Professor: Mrcello mdeo Série: 9º no / EF lun(o): Turm: LIST 3 SEMELHNÇ FIGURS SEMELHNTES Em Mtemátic, qundo usmos medids proporcionis pr desenhr

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

QUESTÃO 01. QUESTÃO 02.

QUESTÃO 01. QUESTÃO 02. PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

LISTA 100 EXERCÍCIOS COMPLEMENTARES

LISTA 100 EXERCÍCIOS COMPLEMENTARES LISTA 00 EXERCÍCIOS COMPLEMETARES LOGARITMOS: Definição e Proprieddes PROF.: GILSO DUARTE Questão 0 Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proim de log 46 é 0),0

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Nível 7ªe 8ªséries (8º e 9º anos) do Ensino Fundamental

Nível 7ªe 8ªséries (8º e 9º anos) do Ensino Fundamental Nível 7ªe 8ªséries (8º e 9º nos) do Ensino Fundmentl 2ªFASE 20 de outubro de 2007 2 Prbéns pelo seu desempenho n 1ª Fse d OBMEP. É com grnde stisfção que contmos gor com su prticipção n 2ª Fse. Desejmos

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 0 GABARITO COMENTADO ) Sej A 5p + 7. Como A 5p + 7 5p + 7, concluímos que o resto d divisão de A por é igul

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Disponível em: < Acesso em: 1 nov A seja igual ao oposto aditivo

Disponível em: <  Acesso em: 1 nov A seja igual ao oposto aditivo RESOLUÇÃO D VLIÇÃO DE MTEMÁTIC-TIPOCONSULTEC-UNIDDE I- -EM PROFESSOR MRI NTÔNI CONCEIÇÃO GOUVEI PESQUIS: PROFESSOR WLTER PORTO - (UNEB) Disponível em: cesso em: nov

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal

Curso de linguagem matemática Professor Renato Tião. b) Sua diagonal urso de lingugem mtemátic Professor Rento Tião 1. s dimensões de um prlelepípedo reto-retângulo são m, 4m e 1m. lcule: ) Su áre totl. b) Seu volume. c) Su digonl.. s dimensões x, y, z de um prlelepípedo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais