TÓPICO 3: DIFUSÃO MOLECULAR EM ESTADO ESTACIONÁRIO

Tamanho: px
Começar a partir da página:

Download "TÓPICO 3: DIFUSÃO MOLECULAR EM ESTADO ESTACIONÁRIO"

Transcrição

1 TÓPICO 3: DIFUÃO MOLECULR EM ETDO ETCIOÁRIO I. DIFUÃO EM REGIME PERMETE EM REÇÃO QUÍMIC; II. DIFUÃO EM REGIME PERMETE COM REÇÃO QUÍMIC HETEROGÊE; III. DIFUÃO EM REGIME PERMETE COM REÇÃO QUÍMIC HOMOGÊE. BIBLIOGRFI: CREMCO, M.. Fundamentos de Transferência de Massa. Ed. Unicamp.

2 II. DIFUÃO EM REGIME PERMETE COM REÇÃO QUÍMIC HETEROGÊE: RELEMBRDO... REÇÃO QUÍMIC HETEROGÊE: Ocorre na superfície externa de uma partícula não-porosa, a qual é considerada como uma fronteira à região onde há o transporte do soluto; neste caso, o termo reacional aparecerá como condição de contorno e não na equação diferencial que rege o processo de transferência de massa.

3 C t t C R r,,,,,, (MOLR) (MÁIC) REGIME PERMETE:,,, C R,,, r REÇÃO QUÍMIC HETEROGÊE: PELO FTO DE EXITIR DU FE PR CRCTERIZÁ-L, EL E FRÁ PREETE FROTEIR DO ITEM EDO, DE MEIR, UM CODIÇÃO DE COTORO D EQUÇÃO D COTIUIDDE. PORTTO: C (MOLR) (MÁIC)

4 HÁ ITUÇÕE EM QUE REÇÃO HETEROGÊE TMBÉM PODE PRECER EQUÇÃO D COTIUIDDE DE. ETE CO É COHECIDO COMO ITEM PEUDO-HOMOGÊEO E É ECOTRDO, POR EXEMPLO, QUDO O OLUTO DIFUDE DETRO DE UM PRTÍCUL IDO REGIR O EU ÍTIO TIVO. QUI, É UPOT REÇÃO EM TODO O POTO O VOLUME DE COTROLE MEDITE UM CORREÇÃO QUE COIDER ÁRE EFETIV DO PORO. I) UPERFÍCIE EXTER DE UM PRTÍCUL ÃO PORO; REÇÃO QUÍMIC HETEROGÊE: i) REÇÃO HETEROGÊE UPERFÍCIE DE UM PRTÍCUL CTLÍTIC ÃO-PORO (CTLIDORE ÃO-POROO). ii) REÇÃO HETEROGÊE UPERFÍCIE DE UM PRTÍCUL ÃO- CTLÍTIC E ÃO-PORO (PRTÍCUL QUE PRTICIPM D REÇÃO QUÍMIC, QUI ÃO OUMID O LOGO DO PREOCEO). II) OLUTO DIFUDIDO DETRO DE UM PRTÍCUL, IDO REGIR O EU ÍTIO TIVO.

5 II. DIFUÃO COM REÇÃO QUÍMIC HETEROGÊE UPERFÍCIE DE UM PRTÍCUL CTLÍTIC ÃO-PORO: s velocidades de algumas reações são afetadas por materiais que não são reagentes nem produtos (catalisadores) POITIVO: CELERM REÇÕE CTLIDORE: EGTIVO: RETRDM REÇÕE

6 º ETÁGIO: DIFUÃO DE TRVÉ D CMD GO TÉ UPERFÍCIE CTLÍTIC; 2º ETÁGIO: COTTO DO OLUTO () COM UPERFÍCIE CTLÍTIC, COMPHDO DE REÇÃO; 3º ETÁGIO: DIFUÃO DO PRODUTO D REÇÃO D UPERFÍCIE DE COTTO TRVÉ D CMD GO.

7 FLUXO GLOBL UIDIRECIOL MOLR DE : d dz, Z CDB, Z B, Z (I) RELÇÃO ETRE O FLUXO MOLRE: a bb b a B, Z, Z (II), Z CD B d dz D EQUÇÃO D COTIUIDDE: (III) d dz CD B d dz (V) C d dz, z (IV) OB: a b a

8 ITEGRDO EQUÇÃO (V): ln Cz C2 PLICDO CODIÇÕE DE COTORO: EM z= = EM z= = z z (VI) EDO: C C Ln 2 Ln

9 DMITIDO REÇÃO QUÍMIC HETEROGÊE DE PEUDO-PRIMEIR ORDEM UPERFÍCIE DO CTLIDOR: R k C Ck,,,,, Ck, (VII) (VII) EM (VI): Ck z z, z OLUÇÃO FIL (VIII) ª HIPÓTEE: REÇÃO QUÍMIC UPERFÍCIE É MUITO RÁPID: z k,, PRTICULRIDDE D EQUÇÃO (VIII) QUE, POR U VEZ, DEPEDE DO FLUXO DE ITERFCE.

10 FLUXO GLOBL DE UPERFÍCIE D PRTÍCUL EM z=: dz d CD B Z, (III) PRTIDO D EQUÇÃO (III): ITEGRDO (III) COM U REPECTIV CODIÇÕE DE COTORO: B z d CD dz,, ln B CD (IX) 2ª HIPÓTEE: REÇÃO QUÍMIC UPERFÍCIE É LET:,,, k,, B D k

11 EM REGIME PERMETE, TODO O OLUTO TRPORTDO TRVÉ DO FILME DE EPEUR É COVERTIDO UPERFÍCIE CTLÍTIC, POR ITERMÉDIO DE UM REÇÃO QUÍMIC, COMO QUEL EXPOT EQUÇÃO (VII):,,,, Ck C k R (VII) B Ck CD ln B Ck CD ln ln ln B k D

12 a bb PR REÇÃO: a b a PLICDO D REGR L`HOPITL EQUÇÃO TERIOR: ln ln B k D IDETERMIÇÃO ln ln lim lim B k D B B k D k D (X)

13 ODE: D k B k D B REITÊCI REÇÃO QUÍMIC REITÊCI DIFUÃO k E D B REITÊCI À DIFUÃO É QUEM COTROL O FLUXO GLOBL DE UPERFÍCIE D PRTÍCUL, LEVDO. UMIDO QUE, EQUÇÃO (IX) EM z= E PR QULQUER, FIC:, CD B ln CDB, ln EE FLUXO É OBTIDO QUDO E TEM REÇÃO ITTÂE UPERFÍCIE D PRTÍCUL, QUL É CRCTERÍTIC DE REÇÕE RÁPID QUE PREETM Ks.

14 k E D B REITÊCI À REÇÃO QUÍMIC COTROL O FLUXO DO OLUTO UPERFÍCIE CTLÍTIC E FRÇÃO MOLR DE UPERFÍCIE DO CTLIDOR, DE CORDO COM EQUÇÃO (X), É. ETE CO, k, OU EJ, REÇÃO QUÍMIC UPERFÍCIE DO CTLIDOR É LET. D D B k B k k D B PORTTO, O EFEITO DO FEÔMEO DIFUIVO É DEPREZÍVEL O FLUXO GLOBL, O QUL, EM VIRTUDE D COTIUIDDE D MTÉRI, COTIU EDO DDO PEL EQUÇÃO: R,,, Ck OUTR IFORMÇÃO IMPORTTE É QUE, MEDID EM QUE UMET, ELEV-E IFLUÊCI D REITÊCI À DIFUÃO O FLUXO GLOBL DO OLUTO. PR k s ZO DE REÇÃO É DEPREZÍVEL, O QUE LEV.

15 EXEMPLO : O OLUTO-REGETE DECOMPÕE-E UPERFÍCIE DE UM LÂMI CTLÍTIC ÓLID ÃO-PORO EGUDO REÇÃO IRREVERÍVEL DE PRIMEIR ORDEM B. O COMPOTO FZ PRTE DE UM MITUR GO ETGD DE EPEUR EM VOLT D PLC. ETBELEÇ EQUÇÕE PR O FLUXO UPERFÍCIE D PRTÍCUL QUDO: ) DIFUÃO DO OLUTO COTROL O FLUXO DE MTÉRI; B) REÇÃO QUÍMIC UPERFÍCIE D PRTÍCUL COTROL O FLUXO DE MTÉRI. EXEMPLO 2: COIDER UM RETOR CTLÍTICO ODE E RELIZ UM REÇÃO IRREVERÍVEL DO TIPO: 2B IMGIE QUE PRTÍCUL CTLÍTIC ETEJ RODED POR UM PELÍCUL GO TRVÉ DO QUL DIFUDE O REGETE TÉ LCÇR UPERFÍCIE ÃO-PORO DO CTLIDOR. UPOHMO QUE REÇÃO OCORR ITTEMETE OBRE UPERFÍCIE DO CTLIDOR E QUE O PRODUTO B DIFUD O ETIDO COTRÁRIO DO REGETE. COIDERDO O PROCEO DE TRFERÊCI DE M EM REGIME PERMETE E T E P COTTE E QUE REÇÃO OCORR OBRE UM UPERFÍCIE PL DO CTLIDOR, DETERMIE O PERFIL D FRÇÃO MOLR E O FLUXO MOLR DO OLUTO EM FUÇÃO D EPEUR D PELÍCUL GO.

16 EXEMPLO 3: REOLVER O MEMO PROBLEM TERIOR QUDO REÇÃO 2B ÃO É ITTÂE UPERFÍCIE CTLÍTIC PR z=. UPOR QUE VELOCIDDE COM QUE DEPRECE O REGETE UPERFÍCIE CTLÍTIC É DDO POR: R,,, z z k C Ck EXEMPLO 4: UM RETOR CTLÍTICO É UDO PR TRFORMR ÁGU (H 2 O) EM ÁGU PED (H 3 O). UPODO QUE O PROCEO PO ER IMPLIFICDO PR O ETUDO D TRFORMÇÃO DE H 2 EM H 3 O RETOR CTLÍTICO, ODE UPERFÍCIE DO CTLIDOR z= OCORRE UM REÇÃO ITTÂE E IRREVERÍVEL DO TIPO: 3H H ECOTRE UM EXPREÃO PR O PERFIL D FRÇÃO MOLR EM FUÇÃO D EPEUR E DO FLUXO MOLR DO REGETE UPERFÍCIE DO CTLIDOR EM z=. UPOH QUE EM z= FRÇÃO MOLR DO REGETE (H2) EJ IGUL Y e em z= EJ UL. COIDERE QUE REÇÃO OCORR OBRE UM UPERFÍCIE PL DO CTLIDOR E QUE O PROCEO DE TRFERÊCI DE M OCORR EM REGIME PERMETE E QUE O RETOR ETEJ OPERDO T E P COTTE.

17 II.2 DIFUÃO COM REÇÃO QUÍMIC HETEROGÊE UPERFÍCIE DE UM PRTÍCUL ÃO-CTLÍTIC ÃO-PORO: dmite-se que a superfície do sólido seja uma etapa da reação, sendo consumida ao longo do processo difusivo em regime pseudo-estacionário EXEMPLO: REÇÃO DE COMBUTÃO: o soluto-reagente difunde por uma camada gasosa inerte I e reage quando em contato coma superfície de um sólido. O produto da reação contradifunde em relação ao fluxo do reagente. relação entre os fluxos do reagente e produto obedece a estequiometria da reação:

18

19 EXEMPLO 5: UM PRTÍCUL DE CRBOO EM FORM DE EFER QUEIM O R TRVÉ D EGUITE REÇÃO QUÍMIC: C O2 CO 2 g 2g 2g g REÇÃO UPERFÍCIE DO CRBOO É DECRIT COMO EDO IRREVERÍVEL E DE PRIMEIR ORDEM: R,, O O 2 2, r k C O 2

20 COIDERDO QUE O PROCEO DE TRFERÊCI DE M OCORR EM REGIME PERMETE, TEMPERTRUR E PREÃO COTTE, DETERMIE O PERFIL DE FRÇÃO MOLR DO OXIGÊIO EM FUÇÃO DO RIO D PRTÍCUL EFÉRIC (r) E O FLUXO MOLR DO OXIGÊIO UPERFÍCIE D PRTÍCUL DE CRBOO.

21 II.3 DIFUÃO ITRPRTICULR COM REÇÃO QUÍMIC HETEROGÊE: QUDO UM ÓLIDO POROO PREET U ÁRE ITER ( ORDEM DE 3 m 2 /g OU UPERIOR) MIOR OU D MEM MGITUDE DO QUE U UPERFÍCIE EXTER, COIDER-E QUE O OLUTO, PÓ TIGIR UPERFÍCIE D PRTÍCUL, DIFUD O ITERIOR DET PR DEPOI ER DORVIDO E OFRER REÇÃO QUÍMIC PREDE DO ÍTIO TIVO DO CTLIDOR, D EGUITE MEIR:

22 a s bb g g a RELÇÃO ETRE UPERFÍCIE DO PORO POR UIDDE DE VOLUME D MTRIZ PORO EQUÇÃO D COTIUIDDE DE, CRCTERIZDO UM ITEM PEUDO-HOMOGÊEO. ar ;,,,,, R B b a EXEMPLO 6: UM CORRETE GO COTEDO UM REGETE ETR EM COTTO COM UM CTLIDOR DE GEOMETRI EFÉRIC DE RIO R. ET PRTÍCUL ETÁ DETRO DE UM RETOR CTLÍTICO. IMEDIÇÕE D PRTÍCUL CTLÍTIC, COCETRÇÃO DO REGETE É C (MOLE/cm 3 ). EPÉCIE DIFUDE TRVÉ DO PORO EXITETE O CTLIDOR E COVERTE O PRODUTO B TRVÉ DE UM REÇÃO IRREVERÍVEL E DE PRIMEIR ORDEM O ÍTIO TIVO DO MEMO. O PRODUTO B DIFUDE O ETIDO COTRÁRIO DO REGETE. DETERMIE O PERFIL DE COCETRÇÃO DO REGETE EM FUÇÃO DO RIO D PRTÍCUL COIDERDO QUE O PROCEO DE TRFERÊCI DE M OCORR EM REGIME PERMETE E TEMPERTUR E PREÃO COTTE.

23

Fenômenos de Transporte III. Aula 07. Prof. Gerônimo

Fenômenos de Transporte III. Aula 07. Prof. Gerônimo Fenômeno de Tranporte III ula 7 Prof. Gerônimo 7- DIFUSÃO EM REGIME PERMETE COM REÇÃO QUÍMIC 7.- Conideraçõe a repeito Vimo até então a difuão ocorrendo em que houvee geração ou conumo do oluto no meio

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Fenômenos de Transporte III. Aula 13. Prof. Gerônimo

Fenômenos de Transporte III. Aula 13. Prof. Gerônimo Feômeo de Trporte III ul 3 Prof. erôimo .4.2 Operçõe em etágio Figur eguir ilutr um operção de etágio etre correte leve e ped o iterior de um colu de etágio. Como exemplo de equipmeto que operm por etágio,

Leia mais

Transferência de Massa ENG 524

Transferência de Massa ENG 524 Prof. r. Édler L. de lbuquerque, Eng. Química IFB Prof. r. Édler L. de lbuquerque, Eng. Química IFB 8/3/7 Tranferência de Maa EG 54 Capítulo 6 ifuão com reação química Prof. Édler Lin de lbuquerque ifuão

Leia mais

Unidade VI - Estabilidade de Sistemas de Controle com Retroação

Unidade VI - Estabilidade de Sistemas de Controle com Retroação Uidde VI - Etilidde de Sitem de Cotrole com Retroção Coceito de Etilidde; Critério de Etilidde de Routh-Hurwitz; A Etilidde Reltiv de Sitem de Cotrole com Retroção; A Etilidde de Sitem com Vriávei de Etdo;

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.

Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais. Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração.

7 Solução aproximada Exemplo de solução aproximada. k critérios que o avaliador leva em consideração. 7 olução proximd Neste cpítulo é feit elborção de um ov formulção simplificd prtir de um estudo de Lel (008), demostrd por dus forms á cohecids de proximção do cálculo do vetor w de prioriddes retirds

Leia mais

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente

Função potencial de velocidade. - Equipotenciais são rectas verticais Função de corrente Aerodiâmic Potecil Complexo Exemplos de plicção W z com R W x + i y Fução potecil de velocidde φ ( x, y) x, φ costte x costte - Equipoteciis são rects verticis Fução de correte ψ ( x, y) y, ψ costte y

Leia mais

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955):

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955): VI.. IFUSÃO EM FSE LÍQUI: - SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIS ILUÍS: EQUÇÃO E Wilke e Chang (955): 0 B B 8 M 7,4 0 T V B IFUSIVIE. O SOLUTO( ) NO SOLVENTE B 0,6 b 0,5 cm 2 s ; T TEMPERTUR O MEIO

Leia mais

C + 2H 2 CH 4. 3 o LISTA DE EXERCÍCIOS DE TRANSFERÊNCIA DE MASSA. Prof. Dr. Gilberto Garcia Cortez

C + 2H 2 CH 4. 3 o LISTA DE EXERCÍCIOS DE TRANSFERÊNCIA DE MASSA. Prof. Dr. Gilberto Garcia Cortez 3 o LIST DE EXEÍIOS DE TNSFEÊNI DE MSS 1- Em um reator catalítico, partículas de carbono em forma de cilindro são consumidas pela passagem de um fluxo de hidrogênio para formar metano através da seguinte

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química Cpítulo VIII Equilíbrio de istribuição Alyticl Chemistry - Robert V. ilts. V Nostrd, ISBN 0-44-158-4 eprtmeto de Químic 1 As váris técics de extrção e cromtogrfi de prtição, evolvem prtição dos solutos

Leia mais

PROVA DE CONHECIMENTO EM QUÍMICA ANALÍTICA INSTRUÇÕES

PROVA DE CONHECIMENTO EM QUÍMICA ANALÍTICA INSTRUÇÕES Código do Aluo: PROVA DE CONHECIMENTO EM QUÍMICA ANALÍTICA 2 o SEMESTRE DE 2017 Lei tetmete prov. INSTRUÇÕES DESLIGUE os seus prelhos eletrôicos durte prov (celulr, tblet etc.). CANDIDATOS AO MESTRADO

Leia mais

TÓPICO 2: EQUAÇÕES DA CONTINUIDADE EM TRANSFERÊNCIA DE MASSA

TÓPICO 2: EQUAÇÕES DA CONTINUIDADE EM TRANSFERÊNCIA DE MASSA TÓPIO 2: EQUÇÕE D ONTINUIDDE EM TRNFERÊNI DE M I. EQUÇÃO D ONTINUIDDE MÁI DE UM OLUTO ; II. EQUÇÕE D ONTINUIDDE DE UM OLUTO EM TERMO D LEI ORDINÁRI D DIFUÃO; III. EQUÇÃO D ONTINUIDDE MOLR DE UM OLUTO ;

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierecil e Itegrl Limites Proessor: Luiz Ferdo Nues, Dr. 8/Sem_ Cálculo ii Ídice Limites.... Noção ituitiv de ite.... Deiição orml de ite.... Proprieddes dos ites.... Limites lteris...

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3.

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3. Aritmétics Geométrics A rzão é... somd multiplicd Codição pr termos Termo gerl om dos termos p r p p p q q q q 0) (UNIFEP) e os primeiros qutro termos de um progressão ritmétic são, b, 5, d, o quociete

Leia mais

TRANSFORMAÇÕES DE FREQUÊNCIA E DE IMPEDÂNCIA

TRANSFORMAÇÕES DE FREQUÊNCIA E DE IMPEDÂNCIA APÍTULO 3 TANSFOMAÇÕES DE FEQUÊNIA E DE IMPEDÂNIA INTODUÇÃO A rtir do filtro -ixo ode oter-e qulquer tio de filtro (-lto, -d, etc) rtir de trformçõe de frequêci efectud fução de trferêci do filtro -ixo

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO

PROGRAD / COSEAC ENGENHARIAS MECÂNICA E PRODUÇÃO VOLTA REDONDA - GABARITO Prov de Cohecietos Especíicos QUESTÃO:, poto Deterie os vlores de e pr os quis ução dd sej cotíu e R. =,,, é cotíu e :.. li li li li. li li é cotíu e :.. li li li li Obteos Resolvedo equções θ e β: Respost:.

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

Capítulo 1 Introdução Teórica

Capítulo 1 Introdução Teórica Cpítulo Itrodução Teóric. - Digrm de Bloco A repreetção do item fíico por meio de equçõe em empre deix clr relção etre fuçõe de etrd e de íd dee item. É portto coveiete e deejável itemtir decrição mtemátic

Leia mais

Turno Disciplina Carga Horária Licenciatura Plena em

Turno Disciplina Carga Horária Licenciatura Plena em Curso Turo Discipli Crg Horári Licecitur Ple em Noturo Mtemátic Elemetr III 60h Mtemátic Aul Período Dt Coordedor.. 0 6/0/006 ª. feir Tempo Estrtégi Recurso Descrição (Produção) Descrição (Arte) :0 / :

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 4 Grupo I ESOLA SEUNDÁRIA OM º ILO D. DINIS º ANO DE ESOLARIDADE DE MATEMÁTIA A TESTE Nº Grupo I As seis questões deste grupo são de escolh múltipl. Pr cd um dels são idicds qutro ltertivs, ds quis só um está correct.

Leia mais

Escola Politécnica Universidade de São Paulo

Escola Politécnica Universidade de São Paulo Ecol Poliécic Uiveridde de São Pulo PSI323 Circuio Elérico II Bloco 3 Fuçõe de rede e Regime Permee Seoidl Prof Deie Cooi PSI323- Prof Deie Bloco 3 DESCRIÇÃO ENTRADA-SAÍDA DE UM CIRCUITO R, LINEAR E INVARIANTE

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

Fases Condensadas Exercícios

Fases Condensadas Exercícios Fses odesds Eercícios 1. Etr-ul: A 600º pressão de vpor do zico puro é 10 Hg e de cádio puro é 100 Hg. () Aditido que lig Z-d preset coporteto idel, clculr coposição e pressão totl do vpor e equilíbrio

Leia mais

AVALIAÇÃO DE DESEMPENHO

AVALIAÇÃO DE DESEMPENHO AVALIAÇÃO DE DESEMPENHO Itrodução Aálie o domíio do tempo Repota ao degrau Repota à rampa Repota à parábola Aálie o domíio da freqüêcia Diagrama de Bode Diagrama de Nyquit Diagrama de Nichol Eta aula EM

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

PL - Casos Especiais

PL - Casos Especiais PL - Csos Especiis MINIMIAÇÃO Eiste fors de solução: ) Método Siple: i Vriável pr etrr bse: quel que reduz (o ivés de uetr) fução iiteste de otilidde: verificr se pode diiuir o se uetr o vlor de lgu vriável

Leia mais

Introdução ao Controle por Realimentação

Introdução ao Controle por Realimentação EA66 Prof. Ferdo J. Vo Zube Itrodução o Cotrole por Relimetção Itrodução... lh Abert lh Fechd... 6 3 Cuto-beefício do cotrole por relimetção... 9 4 Cotrole ul Cotrole Automático... 3 5 Servomecimo Regulção...

Leia mais

n Obtido através desvio padrão da população (σ)

n Obtido através desvio padrão da população (σ) 3/5/ Etatítica Geral Tete t de STUDENT Cap. 7, 8 e 9 Callegari-Jacque, S. M. Bioetatítica: Pricípio e Aplicaçõe, 3. Apotila: Regazzi, A. J., Curo de iiciação à etatítica. Curo: Saúde/CUA/UFMT Profº: Glauco

Leia mais

Resposta de Modelos Dinâmicos Variáveis de estado

Resposta de Modelos Dinâmicos Variáveis de estado epot de Modelo Dinâmio Vriávei de etdo Outro Proeo de Seprção Prof Ninok Bojorge Deprtmento de Engenri uími e de Petróleo UFF ontrole Feedbk... ontinução ontroldor G tudor G V POESSO G P G Senor Introdução

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Aula Teste de Controle de Sistemas e Servomecanismos

Aula Teste de Controle de Sistemas e Servomecanismos Aul Tete de Controle de Sitem e Servomecnimo Crlo Edurdo de Brito Nove crlonov@gmil.com 3 de mio de 202 Expnão em frçõe prcii A expnão em frçõe prcii é um procedimento pr otenção de um frção lgéric de

Leia mais

ERG FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula 2

ERG FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula 2 ERG-009 - FUNDAMENTOS DE TERMODINÂMICA E CICLOS DE POTÊNCIA Aula Profeor Joé R. Simõe-Moreira, Ph.D. e-mail: jrimoe@up.br ESPECIALIZAÇÃO EM ENERGIAS RENOVÁVEIS, GERAÇÃO DISTRIBUÍDA E EFICIÊNCIA ENERGÉTICA

Leia mais

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Método Simplex. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIONAL Método Simple Professor Volmir Wilhelm Professor Mri Klei Limitções d progrmção lier m (mi) s. Z c c... m, m,...,... c... c 0... c m b b m. Coeficietes costtes. Divisibilidde 3. Proporciolidde

Leia mais

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais.

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 5- Método de Elemetos Fiitos Aplicdo às Equções Difereciis Prciis. 5.1- Breve Itrodução Históric. 5.2- Solução de Equções Difereciis Ordiáris: Prolem

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Exemplo : Utilize

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

LEILA ELEANOR MONTEIRO VEIGA LICENCIATURA EM ENSINO DE MATEMÁTICA

LEILA ELEANOR MONTEIRO VEIGA LICENCIATURA EM ENSINO DE MATEMÁTICA LEILA ELEANOR MONTEIRO VEIGA LICENCIATURA EM ENSINO DE MATEMÁTICA PRAIA, SETEMBRO DE 006 TRABALHO CIENTÍFICO APRESENTADO AO ISE PARA A OBTENÇÃO DO GRAU DE LICENCIATURA EM ENSINO DE MATEMÁTICA Memóri preetdo

Leia mais

LISTA DE EXERCÍCIOS 2º ANO

LISTA DE EXERCÍCIOS 2º ANO Cálculo d entlpi-pdrão, em kj mol, de vporizção do HC : 0 HC (g) : H = 9,5kJ mol 0 HC ( ) : H = 108,7kJ mol vporizção 1 HC ( ) 1HC (g) 08,7 kj 9,5 kj ÄHvporizção = 9,5 ( 08,7) ÄHvporizção =+ 16, kj / mol

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

10. Análise da estabilidade no plano complexo (s)

10. Análise da estabilidade no plano complexo (s) . Análie d etilidde no plno omplexo ( A nálie d etilidde de um item liner em mlh fehd pode er feit prtir d lolizção do pólo em mlh fehd no plno. Se qulquer do pólo e lolizr no emiplno direito, então qundo

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

Cinemática Exercícios

Cinemática Exercícios Cinemática Exercício Aceleração e MUV. 1- Um anúncio de um certo tipo de automóvel proclama que o veículo, partindo do repouo, atinge a velocidade de 180 km/h em 8. Qual a aceleração média dee automóvel?

Leia mais

Denomina F a variável aleatória definida pelo quociente: F = n

Denomina F a variável aleatória definida pelo quociente: F = n 9/0/0 Etatítica Eperimetal Tete F Tete t de STUDENT Cap. 7, 8 e 9 Callegari-Jacque, S. M. Bioetatítica: Pricípio e Aplicaçõe, 003. Apotila: Regazzi, A. J., Curo de iiciação à etatítica. Profº: Glauco Vieira

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Artur Miguel Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 Itegrção Numéric Aálise Numéric Artur Miguel Cruz Escol Superior de Tecologi Istituto Politécico de Setúbl 015/016 1 1 versão 13 de Juho de 017 1 Itrodução Clculr itegris é muito mis difícil do que clculr

Leia mais

DEMONSTRE EM TRANSMISSÃO DE CALOR AULA EM REGIME VARIÁVEL

DEMONSTRE EM TRANSMISSÃO DE CALOR AULA EM REGIME VARIÁVEL DEMONSTRE EM TRANSMISSÃO DE CALOR AULA EM REGIME VARIÁVEL Wilton Jorge Depto. de Ciêncis Físics UFU Uberlândi MG I. Fundmentos teóricos I.1 Introdução O clor é um modlidde de energi em trânsito que se

Leia mais

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito joi.fusito@ifsc.edu.br jfusito@gmil.com Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7 Progressões Itrodução Ao lçrmos um moed, teremos dois resultdos possíveis: cr ou coro. e lçrmos dus moeds diferetes, pssmos ter qutro resultdos diferetes: (cr, cr), (cr, coro), (coro, cr) e (coro, coro).

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

LOGARÍTMOS 1- DEFINIÇÃO. log2 5

LOGARÍTMOS 1- DEFINIÇÃO. log2 5 -(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O

Leia mais

CAPÍTULO 7 - Intervalos de confiança

CAPÍTULO 7 - Intervalos de confiança INF 16 CAPÍTULO 7 - Itervalo de cofiaça É uma maeira de calcularmo uma etimativa de um parâmetro decohecido. Muita veze também fucioa como um tete de hipótee. A idéia é cotruir um itervalo de cofiaça para

Leia mais

CORRELAÇÃO DE SINAIS DE TEMPO DISCRETO

CORRELAÇÃO DE SINAIS DE TEMPO DISCRETO CORRELAÇÃO DE SINAIS DE TEPO DISCRETO CORRELAÇÃO DE SINAIS DE TEPO DISCRETO Assemeh-se covoução. O objetivo de computr correção etre dois siis é pr medir o gru de simiridde etre ees. Correção de siis é

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

Combinando essas duas proporcionalidades temos: onde o coeficiente de proporcionalidade k é chamada de coeficiente de atenuação. A

Combinando essas duas proporcionalidades temos: onde o coeficiente de proporcionalidade k é chamada de coeficiente de atenuação. A CAÍUO : OURAS EIS DA RADIAÇÃO AENUAÇÃO DE RADIAÇÃO: A EI DE BEER Como foi vito, rdição pode er borvid, trnmitid ou refletid por um corpo or outro ldo bemo, pel no experiênci, ue unto mior epeur de um corpo,

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric

Leia mais

Capítulo 7. Misturas de Gás e Vapor e Condicionamento de Ar

Capítulo 7. Misturas de Gás e Vapor e Condicionamento de Ar Cpítulo 7 Mitur de Gá e Vpor e Condicionmento de Ar Objetivo Etudr o fundmento d Picrometri, que é Termodinâmic d mitur de r e vpor d águ. Avlir lgum plicçõe d Picrometri em proceo de Condicionmento de

Leia mais

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A, 12.º ano Proposta de teste de avaliação [março 2019] Propost de teste de vlição [mrço 09] Nome: Ao / Turm: N.º: Dt: - - Não é permitido o uso de corretor. Deves riscr quilo que pretedes que ão sej clssificdo. A prov iclui um formulário. As cotções dos ites

Leia mais

EXAME NACIONAL DE SELEÇÃO 2010

EXAME NACIONAL DE SELEÇÃO 2010 EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA o Di: 0/0/009 - QUINTA FEIRA HORÁRIO: 8h às 0h 5m (horário de Brsíli) EXAME NACIONAL DE SELEÇÃO 00 PROVA DE MATEMÁTICA º Di: 0/0 - QUINTA-FEIRA (Mhã) HORÁRIO:

Leia mais

CAPÍTULO 4: OUTRAS LEIS DA RADIAÇÃO

CAPÍTULO 4: OUTRAS LEIS DA RADIAÇÃO CAÍTUO : OUTRAS EIS DA RADIAÇÃO. ATENUAÇÃO DE RADIAÇÃO: A EI DE BEER Como foi vito, rdição pode er borvid, trnmitid ou refletid por um corpo. or outro ldo bemo, pel no experiênci, ue unto mior epeur de

Leia mais

FÍSICA MODERNA I AULA 19

FÍSICA MODERNA I AULA 19 Uiversidde de São ulo Istituto de Físic FÍSIC MODRN I U 9 rof. Márci de lmeid Rizzutto elletro sl rizzutto@if.us.br o. Semestre de 0 Moitor: Gbriel M. de Souz Stos ági do curso: htt:discilis.sto.us.brcourseview.h?id=905

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

Sétima aula de mecânica dos fluidos para engenharia química (ME5330) 30/03/2010

Sétima aula de mecânica dos fluidos para engenharia química (ME5330) 30/03/2010 Sétia aula de ecâica do fluido para egeharia quíica (ME50) 0/0/010 Boba Objetivo: traforar eergia hidráulica e eergia ciética e potecial, ou eja, traforar ua eergia ecâica e ovieto e preão o fluido. Eergia

Leia mais

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES

CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES CAPÍTULO VIII APROXIMAÇÃO POLINOMIAL DE FUNÇÕES 1. Poliómios de Tylor Sej (x) um ução rel de vriável rel com domíio o cojuto A R e cosidere- -se um poto iterior do domíio. Supoh-se que ução dmite derivds

Leia mais