ELETROMAGNETISMO. Ímãs e magnetos. Atração e repulsão. Propriedades dos ímãs

Tamanho: px
Começar a partir da página:

Download "ELETROMAGNETISMO. Ímãs e magnetos. Atração e repulsão. Propriedades dos ímãs"

Transcrição

1 ELETROMAGNETISMO Ímãs e magnetos Um ímã é definido com um objeto capaz de provocar um campo magnético à sua volta e pode ser natural ou artificial. Um ímã natural é feito de minerais com substâncias magnéticas, como por exemplo, a magnetita, e um ímã artificial é feito de um material sem propriedades magnéticas, mas que pode adquirir permanente ou instantaneamente características de um ímã natural. Os ímãs artificiais também são subdivididos em: permanentes, temporais ou eletroímãs. Um ímã permanente é feito de material capaz de manter as propriedades magnéticas mesmo após cessar o processo de imantação, estes materiais são chamados ferromagnéticos. Um ímã temporal tem propriedades magnéticas apenas enquanto se encontra sob ação de outro campo magnético, os materiais que possibilitam este tipo de processo são chamados paramagnéticos. Um eletroímã é um dispositivo composto de um condutor por onde circula corrente elétrica e um núcleo, normalmente de ferro. Suas características dependem da passagem de corrente pelo condutor; ao cessar a passagem de corrente cessa também a existência do campo magnético. Para que sejam determinados estes polos, se deve suspender o ímã pelo centro de massa e ele se alinhará aproximadamente ao polo norte e sul geográfico recebendo nomenclatura equivalente. Desta forma, o polo norte magnético deve apontar para o polo norte geográfico e o polo sul magnético para o polo sul geográfico. Atração e repulsão Ao manusear dois ímãs percebemos claramente que existem duas formas de colocá-los para que estes sejam repelidos e duas formas para que sejam atraídos. Isto se deve ao fato de que polos com mesmo nome se repelem, mas polos com nomes diferentes se atraem, ou seja: Propriedades dos ímãs Polos magnéticos São as regiões onde se intensificam as ações magnéticas. Um ímã é composto por dois polos magnéticos, norte e sul, normalmente localizados em suas extremidades, exceto quando estas não existirem, como em um ímã em forma de disco, por exemplo. Por esta razão são chamados dipolos magnéticos. Esta propriedade nos leva a concluir que os polos norte e sul geográficos não coincidem com os polos norte e sul magnéticos. Na verdade eles se encontram em pontos praticamente opostos, como mostra a figura abaixo:

2 ação do campo o vetor terá direção da reta em que a agulha se alinha e sentido para onde aponta o polo norte magnético da agulha. Se pudermos traçar todos os pontos onde há um vetor indução magnética associado veremos linhas que são chamadas linhas de indução do campo magnético. estas são orientados do polo norte em direção ao sul, e em cada ponto o vetor tangencia estas linhas. A inclinação dos eixos magnéticos em relação aos eixos geográficos é de aproximadamente 9,, fazendo com os seus polos sejam praticamente invertidos em relação aos polos geográficos. Interação entre polos Dois polos se atraem ou se repelem, dependendo de suas características, à razão inversa do quadrado da distância entre eles. Ou seja, se uma força de interação F é estabelecida a uma distância d, ao dobrarmos esta distância a força observada será igual a uma quarta parte da anterior F/4. E assim sucessivamente. Inseparabilidade dos polos de um ímã Esta propriedade diz que é impossível separar os polos magnéticos de um ímã, já que toda vez que este for dividido serão obtidos novos polos, então se diz que qualquer novo pedaço continuará sendo um dipolo magnético. Campo Magnético É a região próxima a um ímã que influencia outros ímãs ou materiais ferromagnéticos e paramagnéticos, como cobalto e ferro. Compare campo magnético com campo gravitacional ou campo elétrico e verá que todos estes têm as características equivalentes. Também é possível definir um vetor que descreva este campo, chamado vetor indução magnética e simbolizado por. Se pudermos colocar uma pequena bússola em um ponto sob As linhas de indução existem também no interior do ímã, portanto são linhas fechadas e sua orientação interna é do polo sul ao polo norte. Assim como as linhas de força, as linhas de indução não podem se cruzar e são mais densas onde o campo é mais intenso. Campo Magnético Uniforme De maneira análoga ao campo elétrico uniforme, é definido como o campo ou parte dele onde o vetor indução magnética é igual em todos os pontos, ou seja, tem mesmo módulo, direção e sentido. Assim sua representação por meio de linha de indução é feita por linhas paralelas e igualmente espaçadas. 2

3 uma simples regra conhecida como regra da mão direita. Nesta regra usamos o polegar para indicar o sentido da corrente elétrica e os demais dedos indicam o sentido do campo magnético. A intensidade do campo magnético gerado ao redor do fio condutor retilíneo é dada pela seguinte equação: A parte interna dos imãs em forma de U aproxima um campo magnético uniforme. Campo Eletromagnetismo gerado por um fio condutor Inicialmente, a eletricidade e o magnetismo foram estudados de forma separada, pois filósofos gregos pensavam que esses dois ramos da física não tinham relação. Porém, após os experimentos de Cristian Oersted foi possível verificar que eletricidade e magnetismo tinham sim uma relação. Em seus experimentos, Oersted pôde comprovar que um fio percorrido por uma corrente elétrica gerava a sua volta um campo magnético. Essa comprovação veio através da movimentação da agulha de uma bússola. Oersted colocou uma bussola próximo a um condutor percorrido por uma corrente elétrica e verificou que ela se orientava em um sentido diferente do sentido que assumia quando cessava a corrente elétrica no fio. Onde μ é a grandeza física que caracteriza o meio no qual o fio condutor está imerso. Essa grandeza é chamada de permeabilidade magnética do meio. A unidade de μ, no SI, é T.m/A (tesla x metro/ampere). Para o vácuo, a permeabilidade magnética (μo) vale, por definição: Vejamos um exemplo: μo = 4π.0-7 T.m/A Suponha que temos um fio percorrido por uma corrente de intensidade igual a 5 A. Determine o campo magnético de um ponto situado a 2 cm do fio. Calculamos o campo através da equação acima, portanto, temos que as grandezas envolvidas no exemplo são: i = 5 A, R = 2 cm = 2 x 0-2 m. Calculemos. Após diversos estudos, verificou-se que a corrente elétrica produz um campo magnético proporcional à intensidade da corrente, isto é, quanto mais intensa for a corrente elétrica que percorre o fio, maior será o campo magnético produzido a sua volta. Podemos determinar o sentido do campo magnético em torno do fio condutor através de 3

4 Campo Magnético no Centro de uma Espira Circular Motores elétricos, transformadores, eletroímãs e outros equipamentos eletrônicos, são dispositivos que utilizam uma bobina de fio enrolado que cria um campo magnético com determinada finalidade. Uma bobina é formada por várias espiras. Estudaremos aqui o campo magnético formado por uma única espira. Consideremos uma espira circular de centro O e raio R, por onde passa uma corrente elétrica. Observe que em torno do condutor se estabelece um campo magnético, como observado na figura abaixo. O vetor indução magnética no centro da espira tem as seguintes características:. direção perpendicular ao plano da espira campo magnético no centro da espira é: Onde: B = intensidade do campo magnético (unidade Tesla T) μ = permeabilidade magnética do meio (unidade ) i = intensidade de corrente elétrica (unidade Ampère A) R = raio da espira (unidade metro m) Concluímos então que o campo magnético B é diretamente proporcional à intensidade de corrente elétrica i e inversamente proporcional ao raio R da espira. * Regra da mão direita: 2. sentido dado pela regra da mão direita*: Imagine que sua mão direita envolva o fio da espira como na figura acima. O polegar representa o sentido da corrente elétrica, os demais dedos, a direção e o sentido do campo magnético. Campo magnético no solenoide Polegar: sentido da corrente elétrica. Dedos: direção e sentido do campo magnético. 3. intensidade do vetor indução magnética no centro da espira depende da intensidade da corrente elétrica, do raio da espira e do meio onde ela se encontra. A equação que representa a intensidade do Na física chamamos de solenoide todo fio condutor longo e enrolado de forma que se pareça com um tubo formado por espiras circulares igualmente espaçadas. Este condutor também pode ser chamado de bobina chata. Portanto, ao se deparar com ambos os nomes, lembre-se que eles são sinônimos, pois nos dois casos temos um agrupamento de espiras. 4

5 O enrolamento de um fio sobre um tubo de caneta, por exemplo, é um solenoide. Configuramos um solenoide a partir da reunião das configurações das linhas de campo magnético produzidas por cada uma das espiras. Para fazermos um solenoide basta enrolarmos um fio longo sobre um tubo de caneta, por exemplo. A figura abaixo nos mostra um solenoide percorrido por uma corrente elétrica i e de comprimento L. O sentido é obtido através da regra da mão direita. Como existe um campo magnético no interior do solenoide, podemos dizer que as extremidades de um solenoide são seus polos. Efeitos de um campo magnético sobre carga Como os elétrons e prótons possuem características magnéticas, ao serem expostos à campos magnéticos, interagem com este, sendo submetidos a uma força magnética. Como todo fio condutor percorrido por uma corrente elétrica gera ao seu redor um campo magnético, não é diferente para um solenoide. O campo magnético gerado em um solenoide possui as seguintes características: - no interior do solenoide consideramos o campo magnético como sendo uniforme, portanto, as linhas de indução são paralelas entre si. - quanto mais comprido for o solenoide, mais uniforme será o campo magnético interno e mais fraco o campo magnético externo. Para o campo magnético uniforme no interior do solenoide teremos um vetor indução em qualquer ponto interno do solenoide, portanto, como se trata de um vetor, ele terá intensidade, direção e sentido. O módulo, isto é, a intensidade do campo magnético no interior de um solenoide é obtido através da seguinte equação: Onde: μ é a permeabilidade magnética do meio no interior do solenoide e N/L representa o número de espiras por unidade de comprimento do solenoide. A direção do vetor indução magnética é retilínea e paralela ao eixo do solenoide. Supondo: campos magnéticos estacionários, ou seja, que o vetor campo magnético em cada ponto não varia com o tempo; partículas com uma velocidade inicial no momento da interação; e que o vetor campo magnético no referencial adotado é ; Podemos estabelecer pelo menos três resultados: Carga elétrica em repouso "Um campo magnético estacionário não interage com cargas em repouso." Tendo um Ímã posto sobre um referencial arbitrário R, se uma partícula com carga q for abandonada em sua vizinhança com velocidade nula não será observado o surgimento de força magnética sobre esta partícula, sendo ela positiva, negativa ou neutra. Carga elétrica com velocidade na mesma direção do campo "Um campo magnético estacionário não interage com cargas que tem velocidade não nula na 5

6 mesma direção do campo magnético." Sempre que uma carga se movimenta na mesma direção do campo magnético, sendo no seu sentido ou contrário, não há aparecimento de força eletromagnética que atue sobre ela. Um exemplo deste movimento é uma carga que se movimenta entre os polos de um Ímã. A validade desta afirmação é assegurada independentemente do sinal da carga estudada. E para cargas negativas para baixo. Carga elétrica com velocidade em direção diferente do campo elétrico Quando uma carga é abandonada nas proximidades de um campo magnético estacionário com velocidade em direção diferente do campo, este interage com ela. Então esta força será dada pelo produto entre os dois vetores, e e resultará em um terceiro vetor perpendicular a ambos, este é chamado um produto vetorial e é uma operação vetorial que não é vista no ensino médio. Mas podemos dividir este estudo para um caso peculiar onde a carga se move em direção perpendicular ao campo, e outro onde a direção do movimento é qualquer, exceto igual a do campo. Carga com movimento perpendicular ao campo Experimentalmente pode-se observar que se aproximarmos um ímã de cargas elétricas com movimento perpendicular ao campo magnético, este movimento será desviado de forma perpendicular ao campo e à velocidade, ou seja, para cima ou para baixo. Este será o sentido do vetor força magnética. Para cargas positivas este desvio acontece para cima: A intensidade de vetorial e será dada pelo produto, que para o caso particular onde são perpendiculares é calculado por: A unidade adotada para a intensidade do Campo magnético é o tesla (T), que denomina, em homenagem ao físico iugoslavo Nikola Tesla. Consequentemente a força será calculada por: Medida em newtons (N) Carga movimentando-se com direção arbitrária em relação ao campo Como citado anteriormente, o caso onde a carga tem movimento perpendicular ao campo é apenas uma peculiaridade de interação entre carga e campo magnético. Para os demais casos a direção do vetor será perpendicular ao vetor campo magnético e ao vetor velocidade. 6

7 o de um vetor que sai do dorso da mão, isto é, o vetor que entra na palma da mão. Para o cálculo da intensidade do campo magnético se considera apenas o componente da velocidade perpendicular ao campo, ou seja,, sendo o ângulo formado entre e então substituindo v por sua componente perpendicular teremos: Exercícios Questão 0 - (ACAFE SC) Numa brincadeira de criança um imã é quebrado em três partes, conforme a figura abaixo. Aplicando esta lei para os demais casos que vimos anteriormente, veremos que: se v = 0, então F = 0 se = 0 ou 80, então sen = 0, portanto F = 0 se = 90, então sen =, portanto Regra da mão direita. Um método usado para se determinar o sentido do vetor é a chamada regra da mão direita espalmada. Com a mão aberta, se aponta o polegar no sentido do vetor velocidade e os demais dedos na direção do vetor campo magnético. Para cargas positivas, vetor terá a direção de uma linha que atravessa a mão, e seu sentido será o de um vetor que sai da palma da mão. Para cargas negativas, vetor terá a direção de uma linha que atravessa a mão, e seu sentido será Assinale a alternativa correta que indica a nova situação das extremidades. a) e 3 repelem-se. b) 2 é polo sul e 3 o polo norte. c) e 4 repelem-se. d) 2 e 3 não formam polos. Questão 02 - (IFSC) De acordo com (Young e Freedman, 2009) Os fenômenos magnéticos foram observados, inicialmente há pelo menos cerca de 2500 anos, em fragmentos de minério de ferro imantados nas proximidades da antiga cidade de Magnésia (agora chamada de Manisa, no leste da Turquia). Esses fragmentos hoje são conhecidos como ímãs permanentes. Sobre o assunto magnetismo, leia e analise as afirmações que seguem: I. Um ímã em forma de barra possui dois polos magnéticos, o polo sul e polo norte. II. Quando se aproximam os polos nortes de dois ímãs distintos, ocorre uma atração entre os ímãs. 7

8 III. Quando se aproximam os polos norte e o sul de dois ímãs distintos, ocorre uma atração entre os ímãs. IV. Quando um ímã permanente possui forma de barra, podendo girar livremente, uma de suas extremidades aponta para o norte magnético. Assinale a alternativa CORRETA. a) Apenas as afirmações II, III e IV são verdadeiras. b) Apenas as afirmações I, III e IV são verdadeiras. c) Apenas as afirmações I, II e IV são verdadeiras. d) Apenas as afirmações I, II e III são verdadeiras. e) Todas as afirmações são verdadeiras. 0 m/s 2 ; para a massa específica (densidade) da água, o valor de 000 kg/m 3 = g/cm 3 ; para o calor específico da água, o valor de,0 cal /(g ºC); para uma caloria, o valor de 4 joules. Questão 04 - (FUVEST SP) Uma bússola é colocada sobre uma mesa horizontal, próxima a dois fios compridos, F e F2, percorridos por correntes de mesma intensidade. Os fios estão dispostos perpendicularmente à mesa e a atravessam. Quando a bússola é colocada em P, sua agulha aponta na direção indicada. Em seguida, a bússola é colocada na posição e depois na posição 2, ambas eqüidistantes dos fios. Nessas posições, a agulha da bússola indicará, respectivamente, as direções Questão 03 - (IFSP) As bússolas são muito utilizadas até hoje, principalmente por praticantes de esportes de aventura ou enduros a pé. Esse dispositivo funciona graças a um pequeno imã que é usado como ponteiro e está dividido em polo norte e polo sul. Geralmente, o polo norte de uma bússola é a parte do ponteiro que é pintada de vermelho e aponta, obviamente, o Polo Norte geográfico. Na Física, a explicação para o funcionamento de uma bússola pode ser dada porque as linhas de campo magnético da Terra se orientam a) do polo Sul magnético ao polo Leste magnético. b) do polo Norte magnético ao polo Sul magnético. c) na direção perpendicular ao eixo da Terra, ou seja, sempre paralelo à linha do Equador. d) na direção oblíqua ao eixo da Terra, ou seja, oblíqua à linha do Equador. e) na direção do campo gravitacional. TEXTO: - Comum à questão: 4 OBSERVAÇÃO Nas questões em que for necessário, adote para g, aceleração da gravidade na superfície da Terra, o valor de Questão 05 - (UNIMONTES MG) Um fio condutor retilíneo e muito longo é percorrido por uma corrente elétrica constante I, que cria um campo magnético B em torno do fio. Podemos afirmar corretamente que esse campo magnético: a) é perpendicular ao fio, e seu módulo depende da distância do ponto em que observamos o campo até o fio. b) tem sentido contrário ao da corrente elétrica. c) é uniforme. d) não é uniforme, mas possui o mesmo módulo, em qualquer ponto do espaço. Questão 06 - (Unicastelo SP) 8

9 A figura mostra dois fios condutores retos e longos, perpendiculares ao plano do papel e percorridos por correntes elétricas de mesma intensidade, e um ponto P, localizado sobre a reta que une os centros dos dois fios e deles equidistante. No fio A, a corrente tem sentido para dentro do papel, e no fio B, para fora dele. III. IV. V. Uma bússola, submetida apenas ao campo gravitacional da Terra, aponta a parte vermelha de sua agulha magnética para o polo norte terrestre. Quando colocada no ponto P, desprezando a interferência do campo magnético terrestre, sua agulha magnética se equilibrará na posição: a) b) c) d) e) Nessas condições, o conjunto que melhor representa o sentido da força magnética que atua sobre o condutor nos itens I, II, III, IV e V, respectivamente, é a) b) c) d) e) Questão 07 - (UPE) Um condutor retilíneo de comprimento l, percorrido por uma corrente elétrica i, é imerso em um campo magnético uniforme B. Na figura a seguir, estão disponibilizadas as seguintes situações I, II, III, IV e V: Questão 08 - (UFU MG) Considere um fio condutor suspenso por uma mola de plástico na presença de um campo magnético uniforme que sai da página, como mostrado na figura abaixo. O módulo do campo magnético é B=3T. O fio pesa 80 g e seu comprimento é 20 cm. I. II. 9

10 Considerando g = 0m/s, o valor e o sentido da corrente que deve passar pelo fio para remover a tensão da mola é: a) 3 A da direita para a esquerda. b) 7 A da direita para a esquerda. c) 0,5 A da esquerda para a direita. d) 2,5 A da esquerda para a direita. Questão 09 - (UEFS BA) Com relação à eletricidade, analise as afirmativas. I. Uma carga elétrica submetida a um campo magnético sofre sempre a ação de uma força magnética. II. Uma carga que se move no interior de um campo magnético fica sujeita à ação de uma força magnética, cujo sentido depende do sinal dessa carga. III. A força magnética que atua sobre uma carga elétrica em movimento na região de um campo magnético é sempre perpendicular à velocidade da carga. IV. A força magnética que atua em um condutor retilíneo imerso, em um campo magnético, é inversamente proporcional ao seu comprimento. V. A força magnética que atua em um condutor retilíneo imerso, em um campo magnético, é diretamente proporcional à corrente elétrica que o atravessa. A alternativa em que todas as afirmativas são verdadeiras é a a) I e II b) IV e V c) I, II e III d) I, III e IV e) II, III e V Questão 0 - (UDESC) Analise as proposições relacionadas às linhas de campo elétrico e às de campo magnético. I. As linhas de força do campo elétrico se estendem apontando para fora de uma carga pontual positiva e para dentro de uma carga pontual negativa. II. As linhas de campo magnético não nascem nem morrem nos ímãs, apenas atravessam-nos, ao contrário do que ocorre com os corpos condutores eletrizados que originam os campos elétricos. III. A concentração das linhas de força do campo elétrico ou das linhas de campo magnético indica, qualitativamente, onde a intensidade do respectivo campo é maior. Assinale a alternativa correta. a) Somente as afirmativas I e III são verdadeiras. b) Somente a afirmativa II é verdadeira. c) Somente as afirmativas II e III são verdadeiras. d) Somente as afirmativas I e II são verdadeiras. e) Todas as afirmativas são verdadeiras. Questão - (UniCESUMAR SP) Um solenoide de 30cm de comprimento, contendo 800 espiras e resistência elétrica de 7,5?, é conectado a um gerador de força eletromotriz igual a 5V e resistência interna de 2,5?. Determine, em tesla (T), o módulo do vetor indução magnética no interior do solenoide. Considere a permeabilidade magnética do meio que constitui o interior do solenoide igual a T.m.A e = 3. a) 0,0048 b) 0,0064 c) 0,092 d) 0, e) 0, Questão 2 - (Unievangà lica GO) Observe o experimento de Oersted a seguir. 0

11 polaridade, o campo magnético produzido duplicará. e) aproximando-se um pedaço de ferro da extremidade A, ele será atraído, e da extremidade B, ele será repelido. Disponível em: < h/37609-h.htm>. Acesso em: 22 set Nesse experimento, quando a agulha muda de direção é porque ocorreu um efeito Questão 4 - (UFPel RS) Dois fios retilíneos muito longos, situados num meio de permeabilidade absoluta = Tm/A, são percorridos por correntes elétricas de sentidos opostos e intensidades iguais a i = A e i2 = 2A, conforme a figura abaixo. a) magnético b) elétrico c) térmico d) quântico Questão 3 - (UEPA) Um dos primeiros sistemas de comunicação a utilizar eletricidade, o telégrafo, fazia uso de um código de sinais, transmitido a distância, e era constituído por um eletroímã alimentado por corrente contínua, como mostrado na figura abaixo. Hoje é um tipo de tecnologia inteiramente superado, embora os eletroímãs continuem tendo ainda um grande número de aplicações. Para o eletroímã mostrado abaixo, se a pilha fornecer corrente para a bobina, afirma-se que: Fonte: http//ciencia.hsw.uol.com.br a) a região A se comporta como um polo sul magnético, e a região B como um polo norte magnético. b) as linhas de indução do campo magnético no interior da bobina estão orientadas no sentido de B para A. c) o campo magnético produzido não depende da diferença de potencial aplicada pela pilha na bobina. d) associando-se em paralelo com a pilha mostrada, outra idêntica, com a mesma Considerando os fios no plano do papel, a intensidade do campo magnético resultante no ponto C é a) T b) 0 7 T c) T d) T e) T f) I.R. Questão 5 - (UNITAU SP) Segundo a lei de Biot-Savart, que também foi deduzida por Ampère, quando uma corrente elétrica percorre um fio fino e extremamente longo, por exemplo, gera em sua vizinhança um campo magnético. Uma experiência de laboratório foi feita no ar seco, cuja permeabilidade magnética é de = T.m/A, com um fio fino reto e muito longo, comparado com o seu diâmetro, onde uma corrente elétrica de 00 A o percorre. É CORRETO afirmar que o módulo do campo magnético distante mm desse fio é de a) 0,05 T. b) 0,02 T. c) 0,20 T. d) 0,30 T. e) 0,40 T. o

12 Questão 6 - (PUC SP) Na figura abaixo temos a representação de dois condutores retos, extensos e paralelos. A intensidade da corrente elétrica em cada condutor é de nos sentidos indicados. O módulo do vetor indução magnética resultante no ponto P, sua direção e sentido estão mais bem representados em 20 2A a) b) Adote 0 = Tm/A c) a) e b) e c) T e d) T e e) T e T T Questão 7 - (UFRN) Visando a discutir os efeitos magnéticos da corrente elétrica sobre quatro pequenas bússolas postas sobre uma placa, um professor montou, em um laboratório didático, o dispositivo experimental representado na Figura abaixo. d) Questão 8 - (FMABC SP) No solenoide da figura, cujo comprimento é de 0cm, temos um fino fio enrolado uniformemente e com revestimento isolante. Ele é percorrido por uma corrente elétrica de intensidade 0A. Podemos dizer que a relação (BAR /BNÚCLEO ) entre as intensidades do vetor indução magnético no interior do solenóide, inicialmente preenchido apenas com ar, e depois, percorrido por uma corrente de A mas totalmente preenchido com um núcleo ferromagnético, cuja permeabilidade magnética é 00 vezes a do ar, vale (Adote: ar 0 = 40-7, SI) Inicialmente, com a chave desligada, as bússolas ficam orientadas exclusivamente pela ação do campo magnético terrestre. Ao ligar a chave e fazer circular uma corrente elétrica no circuito, esta irá produzir um campo magnético muito mais intenso que o terrestre. Com isso, as bússolas irão se orientar de acordo com as linhas desse novo campo magnético. Das representações abaixo, a que melhor representa o efeito do campo magnético produzido pela corrente sobre as bússolas é a) 0-2

13 b) 0 c) 0-2 d) 0 2 e) 0 3 Questão 9 - (FMABC SP) A figura representa um longo fio retilíneo percorrido por uma corrente elétrica de intensidade i = 4mA. Podemos afirmar que a intensidade do campo magnético P, distante d = 8cm do fio, vale Considere: 0 = 40-7 ( SI ) B no ponto carga e o sentido do movimento por ela adquirida no interior do campo são, respectivamente: a),6 0 6 C e horário. b) 2,0 0 6 C e horário. c) 2,0 0 6 C e anti-horário. d),6 0 6 C e anti-horário. Questão 2 - (UFSC) A ideia de linhas de campo magnético foi introduzida pelo físico e químico inglês Michael Faraday (79-867) para explicar os efeitos e a natureza do campo magnético. Na figura abaixo, extraída do artigo Pesquisas Experimentais em Eletricidade, publicado em 852, Faraday mostra a forma assumida pelas linhas de campo com o uso de limalha de ferro espalhada ao redor de uma barra magnética. a) 0-7 T b) 0-8 T c) 0 - T d) 0-3 T e) T Questão 20 - (UERN) Numa região em que atua um campo magnético uniforme de intensidade 4 T é lançada uma carga elétrica positiva conforme indicado a seguir: Ao entrar na região do campo, a carga fica sujeita a uma força magnética cuja intensidade é de 3,2 0 2 N. O valor dessa Sobre campo magnético, é CORRETO afirmar que: 0. o vetor campo magnético em cada ponto é perpendicular à linha de campo magnético que passa por este ponto. 02. as linhas de campo magnético são contínuas, atravessando a barra magnética. 04. as linhas de campo magnético nunca se cruzam. 08. por convenção, as linhas de campo magnético saem do polo sul e entram no polo norte. 6. as regiões com menor densidade de linhas de campo magnético próximas indicam um campo magnético mais intenso. 3

14 32. quebrar um ímã em forma de barra é uma maneira simples de obter dois polos magnéticos isolados. 64. cargas elétricas em repouso não interagem com o campo magnético. Questão 22 - (UFRGS) Partículas, e são emitidas por uma fonte radioativa e penetram em uma região do espaço onde existe um campo magnético uniforme. As trajetórias são coplanares com o plano desta página e estão representadas na figura que segue. I. Em um ponto P no espaço, a intensidade do campo magnético produzido por uma carga puntiforme q que se movimenta com velocidade constante ao longo de uma reta só depende da distância entre P e a reta. II. Ao se aproximar um ímã de uma porção de limalha de ferro, esta se movimenta porque o campo magnético do ímã realiza trabalho sobre ela. III. Dois fios paralelos por onde passam correntes uniformes num mesmo sentido se atraem. Então, a) apenas I é correta. b) apenas II é correta. c) apenas III é correta. d) todas são corretas. e) todas são erradas. Assinale a alternativa que preenche corretamente a lacuna do enunciado abaixo. A julgar pelas trajetórias representadas na figura acima, o campo magnético... plano da figura. a) aponta no sentido positivo do eixo X, no b) aponta no sentido negativo do eixo X, no c) aponta no sentido positivo do eixo Y, no d) entra perpendicularmente no e) sai perpendicularmente do TEXTO: 2 - Comum à questão: 23 Se precisar, utilize os valores das constantes aqui relacionadas. Constante dos gases: R = 8 J/(molK). Pressão atmosférica ao nível do mar: P0 = 00 kpa. Massa molecular do CO2 = 44 u. Calor latente do gelo: 80 cal/g. Calor específico do gelo: 0,5 cal/(gk). cal = erg. Aceleração da gravidade: g = 0,0 m/s 2. Questão 23 - (ITA SP) Considere as seguintes proposições sobre campos magnéticos: Questão 24 - (FPS PE) Uma partícula carregada com carga elétrica q = 0.06 Coulomb propaga-se com velocidade constante, cujo módulo vale v = 00 m/s. A partícula está num local onde existe um campo magnético uniforme e perpendicular à direção de propagação da partícula carregada. O módulo do campo magnético é B = 0.8 Tesla. A força magnética (em módulo) sentida pela partícula será: a),8 N b) 5,8 N c) 3,8 N d) 4,8 N e) 2,8 N Questão 25 - (FPS PE) Uma partícula carregada com carga elétrica q = 0.06 Coulomb propaga-se com velocidade constante, cujo módulo vale v = 00 m/s. A partícula está num local onde existe um campo magnético uniforme e perpendicular à direção de propagação da partícula carregada. O módulo do campo magnético é B = 0.8 Tesla. A força magnética (em módulo) sentida pela partícula será: 4

15 a),8 N b) 5,8 N c) 3,8 N d) 4,8 N e) 2,8 N Questão 26 - (UEM PR) Sobre os conceitos relativos à formação de campos magnéticos e à atuação de forças magnéticas, analise as alternativas abaixo e assinale o que for correto. 0. Um ímã, ou um condutor metálico percorrido por uma corrente elétrica, origina um campo magnético na região do espaço que o envolve. 02. O campo magnético no interior de um solenoide é diretamente proporcional à intensidade da corrente elétrica que flui no solenoide e ao número de espiras desse solenoide. 04. A força magnética que surge em um fio condutor percorrido por uma corrente elétrica é perpendicular à direção de propagação das cargas elétricas nesse condutor. 08. Condutores elétricos paralelos percorridos por correntes elétricas de mesmo sentido se repelem. 6. O vetor campo magnético, em cada ponto do espaço onde existe um campo magnético, é tangente às linhas do campo magnético que passam por esse ponto. GABARITO: ) Gab: A 2) Gab: B 3) Gab: B 4) Gab: A 5) Gab: A 6) Gab: E 7) Gab: D 8) Gab: A 9) Gab: E 0) Gab: E ) Gab: A 2) Gab: A 3) Gab: A 4) Gab: A 5) Gab: B 6) Gab: C 7) Gab: D 8) Gab: A 9) Gab: B 20) Gab: C 2) Gab: 70 22) Gab: D 23) Gab: C 5

16 24) Gab: D 25) Gab: D 26) Gab: 23 6

Resumo de Magnetismo. Imãs

Resumo de Magnetismo. Imãs Resumo de Magnetismo Imãs Um ímã é definido com um objeto capaz de provocar um campo magnético à sua volta. Pode ser natural ou artificial. Um ímã natural é feito de minerais com substâncias magnéticas,

Leia mais

Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº

Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº SALA DE ESTUDOS: MAGNETISMO 1. (G1 - ifsp 2012) Os ímãs têm larga aplicação em nosso cotidiano tanto com finalidades

Leia mais

Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide.

Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide. AULA 16.1 Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide. Habilidades: Compreender os princípios físicos envolvidos no magnetismo e eletromagnetismo para relacionar fenômenos

Leia mais

Fís. Fís. Monitor: João Carlos

Fís. Fís. Monitor: João Carlos Fís. Professor: Leonardo Gomes Monitor: João Carlos Magnetismo: imã 27/29 ago RESUMO Ímãs e magnetos Um ímã é definido com um objeto capaz de provocar um campo magnético à sua volta. Podendo ser ele natural

Leia mais

3ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion DIA: MÊS: 02 MAGNETISMO. Segmento temático: Turma: A ( ) / B ( )

3ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion DIA: MÊS: 02 MAGNETISMO. Segmento temático: Turma: A ( ) / B ( ) LISTA: 01 3ª série Ensino Médio Professor(a): Jean Jaspion Turma: A ( ) / B ( ) Aluno(a): Segmento temático: QUESTÃO 01 (ACAFE SC/2015) Numa brincadeira de criança um imã é quebrado em três partes, conforme

Leia mais

Unidade 3. Noções de Magnetismo e Eletromagnetismo. Objetivos da Unidade. Objetivos Conteúdos da da Unidade

Unidade 3. Noções de Magnetismo e Eletromagnetismo. Objetivos da Unidade. Objetivos Conteúdos da da Unidade Unidade 3 Noções de Magnetismo e Eletromagnetismo Nesta terceira unidade, você estudará os conceitos básicos em relação ao magnetismo e eletromagnetismo. Objetivos da Unidade Definir campo magnético; Definir

Leia mais

Eletromagnetismo. Fenômenos associados a imãs tanto naturais como artificiais.

Eletromagnetismo. Fenômenos associados a imãs tanto naturais como artificiais. Conceitos Básicos Eletromagnetismo Na região conhecida como Magnésia descobriu-se que alguns tipos de rocha atraíam umas ás outras e podiam também atrair objetos de ferro. Essas pedras, denominadas magnetitas,

Leia mais

NOME: PROFESSOR: Glênon Dutra

NOME: PROFESSOR: Glênon Dutra Apostila - Eletromagnetismo NOME: PROFESSOR: Glênon Dutra DISCIPLINA: Física N O : TURMA: DATA: O nome magnetismo vem de Magnésia, região próxima da Grécia onde os gregos encontravam em abundância um mineral

Leia mais

Ensino Médio. Nota. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018. Lista 8 Magnetismo e fontes de campo magnético

Ensino Médio. Nota. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018. Lista 8 Magnetismo e fontes de campo magnético Ensino Médio Professor: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Lista 8 Magnetismo e fontes de campo magnético N2 Nota 1. Assinale as afirmativas corretas. I. A

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Professor: Vilson Mendes Lista de exercícios de Física I Lista 8 Magnetismo e fontes de campo magnético ENSINO MÉDIO NOTA: Aluno (a): Data SÉRIE/TURMA 3ª 1. Assinale as

Leia mais

3. (Unirio RJ) Assinale a opção que apresenta a afirmativa correta, a respeito de fenômenos eletromagnéticos:

3. (Unirio RJ) Assinale a opção que apresenta a afirmativa correta, a respeito de fenômenos eletromagnéticos: Lista 10 - Eletromagnetismo 1. (PUC MG) A figura mostra o nascer do Sol. Dos pontos A, B, C e D, qual deles indica o Sul geográfico? a) A. b) B. c) C. d) D. 2. (UFMG) A figura mostra uma pequena chapa

Leia mais

ELETRICIDADE GERAL E APLICADA. Armando Alves Hosken Neto

ELETRICIDADE GERAL E APLICADA. Armando Alves Hosken Neto ELETRICIDADE GERAL E APLICADA Armando Alves Hosken Neto MAGNETISMO IMÃS: ATRAÇÃO DE CERTOS MATERIAIS (FERRO) MAGNETISMO IMÃ: Dispositivo capaz de atrair Fe, Co, Ni, Aço (ferromagnéticos) MAGNETISMO TIPOS

Leia mais

Eletromagnetismo. Histórico

Eletromagnetismo. Histórico Eletromagnetismo Histórico Desde a antiguidade quando os fenômenos elétricos e magnéticos foram descobertos, se acreditava que o magnetismo e a eletricidade eram fenômenos distintos sem nenhuma relação

Leia mais

Lista de Exercícios. Campo Magnético e Força Magnética

Lista de Exercícios. Campo Magnético e Força Magnética Lista de Exercícios Campo Magnético e Força Magnética 1. Um fio retilíneo e longo é percorrido por uma corrente contínua i = 2 A, no sentido indicado pela figura. Determine os campos magnéticos B P e B

Leia mais

NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS:

NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: CAPÍTULO 3 CAMPO MAGNÉTICO... 3 O Magnetismo e os Trens Balas... 3 A Descoberta Revolucionária de 1820... 3 Campo Magnético Gerado por um Condutor

Leia mais

10 T, circunferências concêntricas. 10 T, 10 T, radiais com origem no eixo do solenoide. 10 T, retas paralelas ao eixo do solenoide. 9 π.

10 T, circunferências concêntricas. 10 T, 10 T, radiais com origem no eixo do solenoide. 10 T, retas paralelas ao eixo do solenoide. 9 π. 1. Considere um longo solenoide ideal composto por 10.000 espiras por metro, percorrido por uma corrente contínua de 0,2A. O módulo e as linhas de campo magnético no interior do solenoide ideal são, respectivamente:

Leia mais

ORIGENS DO ELETROMAGNETISMO

ORIGENS DO ELETROMAGNETISMO ELETROMAGNETISMO ORIGENS DO ELETROMAGNETISMO O termo magnetismo resultou do nome Magnésia, região da Ásia Menor (Turquia), devido a um minério chamado magnetita (ímã natural) com a propriedade de atrair

Leia mais

2.2. Eletromagnetismo Professora Paula Melo Silva

2.2. Eletromagnetismo Professora Paula Melo Silva 2.2. Eletromagnetismo Professora Paula Melo Silva CARGA Propriedade elétrica das partículas atómicas que compõem a matéria. A carga elementar corresponde ao módulo do valor da carga elétrica apresentado

Leia mais

Magnetismo. Propriedades Magnéticas Campo Magnético Vetor Indução Magnética

Magnetismo. Propriedades Magnéticas Campo Magnético Vetor Indução Magnética Magnetismo Propriedades Magnéticas Campo Magnético Vetor Indução Magnética Orientação Geográfica Norte Geográfico N Sul Geográfico S Atração e Repulsão S N N S N S S N N S N S Inseparabilidade N S N S

Leia mais

Apostila de Física 37 Campo Magnético

Apostila de Física 37 Campo Magnético Apostila de Física 37 Campo Magnético 1.0 Definições Ímãs Pedra que atrai ferro ou outras pedras semelhantes. Fenômenos magnéticos Propriedades dos ímãs que se manifestam espontaneamente na Natureza. Magnetita

Leia mais

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1.

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. Engenharias, Física Elétrica, prof. Simões Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. 1.(EEM-SP) É dado um fio metálico reto, muito longo,

Leia mais

Considere os seguintes dados nas questões de nº 01 a 04. Determine a grandeza que falta (F m,v,b)

Considere os seguintes dados nas questões de nº 01 a 04. Determine a grandeza que falta (F m,v,b) Considere os seguintes dados nas questões de nº 01 a 04. Determine a grandeza que falta (F m,v,b) 01. 02. 03. 04. 05. A figura representa um fio condutor reto de comprimento 10cm, percorrido por corrente

Leia mais

EXERCÍCIOS FÍSICA 3ª SÉRIE

EXERCÍCIOS FÍSICA 3ª SÉRIE 3ª SÉRIE PROF. HILTON EXERCÍCIOS COMPLEMENTARES ELETROMAGNETISMO FONTES DO CAMPO MAGNÉTICO QUESTÕES OBJETIVAS Condutor retilíneo. Ação entre condutores 1) (Vunesp) Considere os fenômenos seguintes. I.

Leia mais

Unidade Parque Atheneu Professor (a): Dhanyella Aluno (a): Série: 3ª Data: / / LISTA DE FÍSICA I

Unidade Parque Atheneu Professor (a): Dhanyella Aluno (a): Série: 3ª Data: / / LISTA DE FÍSICA I Unidade Parque Atheneu Professor (a): Dhanyella Aluno (a): Série: 3ª Data: / / 2017. LISTA DE FÍSICA I Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel almaço.

Leia mais

Lista de Magnetismo - 3 ano Profº: Luciano Dias

Lista de Magnetismo - 3 ano Profº: Luciano Dias Conteúdos - MAGNETISMO, - CAMPO MAGNÉTICO INDUZIDO - FORÇA MAGNÉTICA COLÉGIO APHONSIANO Educando com Seriedade Lista de Magnetismo - 3 ano Profº: Luciano Dias Observação: O quadro abaixo informa quais

Leia mais

Após o estudo dos fenômenos elétricos,

Após o estudo dos fenômenos elétricos, Física Aula 7 Magnetismo e Indução Eletromagnética por Luiz Otávio Limurci Após o estudo dos fenômenos elétricos, nos quais a carga corpo tem fundamental importância, vamos analisar os fenômenos eletromagnéticos.

Leia mais

Lista de exercícios do 3º ano do E.M. 1º Trimestre. FÍSICA B Professor Anderson

Lista de exercícios do 3º ano do E.M. 1º Trimestre. FÍSICA B Professor Anderson Lista de exercícios do 3º ano do E.M. 1º Trimestre. FÍSICA B Professor Anderson MAGNETISMO, CAMPO MAGNÉTICO INDUZIDO E FORÇA MAGNÉTICA 1. (FUVEST) A figura I adiante representa um imã permanente em forma

Leia mais

Prof. Flávio Cunha, (19) Consultoria em Física, Matemática e Programação.

Prof. Flávio Cunha,  (19) Consultoria em Física, Matemática e Programação. CAMPO MAGNÉTICO 1. Considere as seguintes afirmações: I. Suspendendo-se um ímã pelo seu centro de gravidade, seu pólo norte se orienta na direção do pólo norte geográfico da Terra e seu pólo sul se orienta

Leia mais

Prof. Igor Dornelles Schoeller

Prof. Igor Dornelles Schoeller Prof. Igor Dornelles Schoeller Os gregos descobriram na região onde hoje chamamos de Turquia, um minério com capacidade de atrair ferro e outros minérios semelhantes. Pedaços de magnetita encontradas na

Leia mais

CAMPO MAGNÉTICO LEONARDO PASSOS SALVATTI

CAMPO MAGNÉTICO LEONARDO PASSOS SALVATTI CAMPO MAGNÉTICO LEONARDO PASSOS SALVATTI APRESENTAÇÃO Neste tópico, introduziremos o conceito de campo magnético e discutiremos as características do vetor indução magnética. Definiremos as linhas de indução

Leia mais

Lista para as aula 16 e 17 / Professor Caio

Lista para as aula 16 e 17 / Professor Caio 1. (Mackenzie 2018) Considere as seguintes afirmações. I. A denominação de Polo Norte de um ímã é a região que se volta para o Norte geográfico da Terra e Polo Sul a região que volta para o Sul geográfico

Leia mais

Unidade Parque Atheneu Professor (a): Dhanyella Aluno (a): Série: 2ª Data: / / LISTA DE FÍSICA I

Unidade Parque Atheneu Professor (a): Dhanyella Aluno (a): Série: 2ª Data: / / LISTA DE FÍSICA I Unidade Parque Atheneu Professor (a): Dhanyella Aluno (a): Série: 2ª Data: / / 2017. LISTA DE FÍSICA I Orientações: - A lista deverá ser respondida em folha de papel almaço. - Caso seja respondida em folha

Leia mais

Ímanes. Os ímanes podem ser de vários materiais e podem ter formas e tamanhos diversos, mas têm sempre um polo norte e um polo sul.

Ímanes. Os ímanes podem ser de vários materiais e podem ter formas e tamanhos diversos, mas têm sempre um polo norte e um polo sul. Ímanes Os ímanes podem ser de vários materiais e podem ter formas e tamanhos diversos, mas têm sempre um polo norte e um polo sul. Os polos do iguais repelem-se e polos diferentes atraem-se, tal como sucede

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Corpos que atraem Fe, Ni, Co (materiais ferromagnéticos) e suas ligas. Possuem duas regiões especiais: PÓLOS

Corpos que atraem Fe, Ni, Co (materiais ferromagnéticos) e suas ligas. Possuem duas regiões especiais: PÓLOS ÍMÃS Corpos que atraem Fe, Ni, Co (materiais ferromagnéticos) e suas ligas. Possuem duas regiões especiais: PÓLOS 1 CLASSIFICAÇÃO ímã natural: magnetita (região da magnésia Ásia menor Turquia Irã - Iraque

Leia mais

Física. Leo Gomes (Vitor Logullo) Eletromagnetismo

Física. Leo Gomes (Vitor Logullo) Eletromagnetismo Eletromagnetismo Eletromagnetismo 1. Um imã preso a um carrinho desloca-se com velocidade constante ao longo de um trilho horizontal. Envolvendo o trilho há uma espira metálica, como mostra a figura. Pode-se

Leia mais

EXERCÍCIOS FÍSICA 3ª SÉRIE

EXERCÍCIOS FÍSICA 3ª SÉRIE 3ª SÉRIE PROF. HILTON 1. A figura a seguir mostra a posição inicial de uma espira retangular acoplada a um eixo de rotação, sob a ação de um campo magnético originado por ímãs permanentes, e percorrida

Leia mais

Curso Técnico em Informática. Eletricidade

Curso Técnico em Informática. Eletricidade Curso Técnico em Informática Eletricidade Eletricidade Aula_01 segundo Bimestre Na aula de hoje... Conceitos básicos de magnetismo Materiais magnéticos e ferromagnéticos Grandezas eletromagnéticas Regras

Leia mais

Ensino Médio. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018

Ensino Médio. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Ensino Médio Professor: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Série: 3ª Turma: Data: / /2018 Lista 9 Força magnética Lista 1. Nos casos indicados a seguir, cada condutor está imerso em um campo

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Professor: Vilson Mendes Lista de exercícios de Física I Lista 9 Força magnética ENSINO MÉDIO NOTA: Aluno (a): Data SÉRIE/TURMA 3ª 1. Nos casos indicados a seguir, cada

Leia mais

EXERCÍCIOS COMPLEMENTARES ELETROMAGNETISMO FONTES DO CAMPO MAGNÉTICO

EXERCÍCIOS COMPLEMENTARES ELETROMAGNETISMO FONTES DO CAMPO MAGNÉTICO FONTES DO CAMPO MAGNÉTICO QUESTÕES OBJETIVAS Condutor retilíneo. Ação entre condutores 1) (Vunesp) Considere os fenômenos seguintes. I. Um raio de luz passou de um meio transparente para outro, mudando

Leia mais

LISTA 12 - Eletromagnetismo

LISTA 12 - Eletromagnetismo LISTA 12 - Eletromagnetismo 1. (UFMG) Em uma aula, o Prof. Antônio apresenta uma montagem com dois anéis dependurados, como representado na figura a seguir. Um dos anéis é de plástico material isolante

Leia mais

Física E Intensivo v. 2

Física E Intensivo v. 2 Física E Intensivo v. Exercícios ) A ) D Polos com indicações contrárias se atraem e polos com indicações iguais se repelem. 8. Incorreta. O principio da inseparidade magnética assegura que todo rompimento

Leia mais

b) determine a direção e sentido do vetor campo magnético nesse ponto indicado.

b) determine a direção e sentido do vetor campo magnético nesse ponto indicado. COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: /12/2017 Valor: 1 - (UEL-PR) Um fio longo e retilíneo, quando percorridos por uma corrente

Leia mais

NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS:

NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: CAPÍTULO 4 FORÇA MAGNÉTICA... 3 Definição... 3 Novos Aspectos da Força Magnética... 4 Condutores Paralelos... 5 1 CAPÍTULO 4 FORÇA MAGNÉTICA 1 DEFINIÇÃO

Leia mais

FACULDADE PITÁGORAS MAGNETISMO E ELETROMAGNETISMO

FACULDADE PITÁGORAS MAGNETISMO E ELETROMAGNETISMO FACULDADE PITÁGORAS MAGNETISMO E ELETROMAGNETISMO Prof. Ms. Carlos José Giudice dos Santos carlos@oficinadapesquisa.com.br www.oficinadapesquisa.com.br UNIDADE III Magnetismo Características dos imãs (polos)

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. 1 O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; -

Leia mais

Plano de Estudos Independentes de Recuperação ( No período de férias escolares)

Plano de Estudos Independentes de Recuperação ( No período de férias escolares) Plano de Estudos Independentes de Recuperação ( No período de férias escolares) 3ºANO Física (Prof. Ronaldo) Carga Elétrica Processos de Eletrização. Lei de Coulomb. Campo e Potencial Elétrico. Trabalho

Leia mais

Campo magnético e forças magnéticas

Campo magnético e forças magnéticas Campo magnético e forças magnéticas 1 Há pelo menos cerca de 2500 anos se observou que certos corpos tem a propriedade de atrair o ferro. Esses corpos foram chamados ímãs. Essa propriedade dos ímãs foi

Leia mais

Magnetismo e Eletromagnetismo

Magnetismo e Eletromagnetismo Magnetismo e Eletromagnetismo Professor Walescko 18 de outubro de 2005 Sumário 1 Exercícios 1. Quando um ímã em forma de barra é partido ao meio, observa-se que (a) separamos o pólo norte do pólo sul.

Leia mais

Física. Leo Gomes (Vitor Logullo) 20 e Magnetismo

Física. Leo Gomes (Vitor Logullo) 20 e Magnetismo Magnetismo Magnetismo 1. Para ser atraído por um ímã, um parafuso precisa ser: a) mais pesado que o ímã b) mais leve que o ímã c) de latão e cobre d) imantado pela aproximação do ímã e) formando por uma

Leia mais

Professora Florence. 1,0 C e q3

Professora Florence. 1,0 C e q3 TEXTO PARA A PRÓXIMA QUESTÃO: Dados: Aceleração da gravidade: 10 m/s 3 Densidade do mercúrio: 13,6 g/cm Pressão atmosférica: 5 1,0 10 N/m Constante eletrostática: k 1 4,0 10 N m C 0 0 1. (Ufpe 01) Três

Leia mais

Magnetismo Prof. Dr. Gustavo A. Lanfranchi

Magnetismo Prof. Dr. Gustavo A. Lanfranchi Magnetismo Prof. Dr. Gustavo A. Lanfranchi Tópicos de Física, Eng. Civil 2018 Magnetismo O que é magnetismo? Existem campos magnéticos na natureza? Como e quais são? Do que depende a força magnética? Como

Leia mais

Magnetismo e movimento de cargas. Fontes de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202

Magnetismo e movimento de cargas. Fontes de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 Eletricidade e Magnetismo - IME Fontes de Campo Magnético Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Magnetismo e movimento de cargas Primeira evidência de relação entre magnetismo

Leia mais

Lista Complementar Magnetismo ( Prof.º Elizeu)

Lista Complementar Magnetismo ( Prof.º Elizeu) FATO Medicina Lista Complementar Magnetismo ( Prof.º Elizeu) 01. (Upf 017) No estudo da eletricidade e do magnetismo, são utilizadas as linhas de campo. As linhas de campo elétrico ou magnético são linhas

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion FORÇA MAGNÉTICA SOBRE CARGAS DIA: MÊS: 05. Segmento temático: Turma: A ( ) / B ( )

2ª série LISTA: Ensino Médio. Aluno(a): Professor(a): Jean Jaspion FORÇA MAGNÉTICA SOBRE CARGAS DIA: MÊS: 05. Segmento temático: Turma: A ( ) / B ( ) LISTA: 09 ª série Ensino Médio Professor(a): Jean Jaspion Turma: A ( ) / B ( ) Aluno(a): Segmento temático: QUESTÃO 01 (UERN/015) Numa região em que atua um campo magnético uniforme de intensidade 4 T

Leia mais

Problemas de magnetismo (campo de fio retilíneo)

Problemas de magnetismo (campo de fio retilíneo) Lista de Magnetismo Problemas de magnetismo (campo de fio retilíneo) 1) (FUVEST 00) Apoiado sobre uma mesa, observa-se o trecho de um fio longo, ligado a uma bateria. Cinco bússolas são colocadas próximas

Leia mais

Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética

Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética Eletromagnetismo Motor Eletroimã Eletroimã Fechadura eletromagnética Motor elétrico Ressonância Magnética Representação de um vetor perpendicular a um plano 1 Campo Eletromagnético Regra da mão direita:

Leia mais

Lei de Coulomb. Interação entre Duas Cargas Elétricas Puntiformes

Lei de Coulomb. Interação entre Duas Cargas Elétricas Puntiformes Lei de Coulomb Interação entre Duas Cargas Elétricas Puntiformes A intensidade F da força de interação eletrostática entre duas cargas elétricas puntiformes q 1 e q 2, é diretamente proporcional ao produto

Leia mais

Imãs 2. a) b) c) d) Página 1 de 7

Imãs 2. a) b) c) d) Página 1 de 7 Imãs 2 1. (Ufu 2015) Três carrinhos idênticos são colocados em um trilho, porém, não se encostam, porque, na extremidade de cada um deles, conforme mostra o esquema abaixo, é acoplado um ímã, de tal forma

Leia mais

Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº

Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº SALA DE ESTUDOS: FORÇA MAGNÉTICA 1. (Ucs 2012) Dentro do tubo de imagem de um televisor, a corrente elétrica,

Leia mais

passagem da partícula pela região de campo uniforme, sua aceleração é:

passagem da partícula pela região de campo uniforme, sua aceleração é: LISTA 11 - Eletromagnetismo 1.(Mackenzie SP) Os radioisótopos são hoje largamente utilizados em diversas pesquisas científicas e aplicados inclusive em medicina terapêutica. Seu decaimento radioativo pode

Leia mais

GOIÂNIA, / 04 / PROFESSOR: Jonas Tavares. ALUNO(a): L2 1º Bim. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

GOIÂNIA, / 04 / PROFESSOR: Jonas Tavares. ALUNO(a): L2 1º Bim. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: GOIÂNIA, / 04 / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): L2 1º Bim No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

RESOLUÇÃO PRATIQUE EM CASA - FÍSICA

RESOLUÇÃO PRATIQUE EM CASA - FÍSICA SOLUÇÃO PC1. O eletroímã irá gerar um campo magnético muito intenso que provocará o surgimento de uma força magnética elevada a ponto de atrair as grandes peças de ferro. SOLUÇÃO PC. A deflexão da bússola

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Pucrj 013) Duas cargas pontuais q1 = 3,0μC e q = 6,0μC são colocadas a uma distância de 1,0 m entre si. Calcule a distância, em metros, entre a carga q 1 e a posição, situada entre as cargas, onde

Leia mais

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi 2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi Disciplina de Eletromagnetismo 1 COMPETÊNCIAS Conhecer as leis fundamentais do

Leia mais

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação 2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação ão: Geração de Corrente Alternada do professor Clóvis Antônio

Leia mais

COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No.

COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: /12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega com atraso,

Leia mais

e q2 0 respectivamente nos pontos A e B, conforme a figura a seguir.

e q2 0 respectivamente nos pontos A e B, conforme a figura a seguir. 6 1. Uma partícula de carga q e massa 10 kg foi colocada num ponto próximo à superfície da Terra onde existe um campo elétrico uniforme, vertical e ascendente de intensidade 5 E 10 N. Sabendo que a partícula

Leia mais

Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)

Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48) Ismael Rodrigues Silva Física-Matemática - UFSC cel: (48)9668 3767 72 Agulhas magnéticas ao redor de um condutor perpendicular à folha (cuja corrente sai da folha) se posicionam da maneira mostrada abaixo

Leia mais

Campo Magnético - Força de Lorentz

Campo Magnético - Força de Lorentz Campo Magnético - Força de Lorentz Evandro Bastos dos Santos 22 de Maio de 2017 1 Campo Magnético Podemos entender que a região próxima a um ímã influencia outros ímãs ou materiais ferromagnéticos e paramagnéticos,

Leia mais

Fís. Fís. Monitor: Leonardo Veras

Fís. Fís. Monitor: Leonardo Veras Professor: Leonardo Gomes Monitor: Leonardo Veras Exercícios sobre Eletromagnetismo 04/06 set EXERCÍCIOS DE AULA 1. Um condutor, suportando uma corrente elétrica I, está localizado entre os pólos de um

Leia mais

CAMPO MAGNÉTICO EM CONDUTORES

CAMPO MAGNÉTICO EM CONDUTORES CAMPO MAGNÉTICO EM CONDUTORES Introdução A existência do magnetismo foi observada há cerca de 2500 anos quando certo tipo de pedra (magnetita) atraía fragmentos de ferro, que são conhecidos como ímãs permanentes.

Leia mais

Eletromagnetismo: imãs, bobinas e campo magnético

Eletromagnetismo: imãs, bobinas e campo magnético Eletromagnetismo: imãs, bobinas e campo magnético 22 Eletromagnetismo: imãs, bobinas e campo magnético 23 Linhas do campo magnético O mapeamento do campo magnético produzido por um imã, pode ser feito

Leia mais

Capítulo 29. Objetivos do Aprendizado

Capítulo 29. Objetivos do Aprendizado Capítulo 29 Objetivos do Aprendizado OA 29.1.0 Resolver problemas relacionados a campos magnéticos produzidos por correntes. OA 29.1.1 Desenhar um elemento de corrente em um fio e indicar a orientação

Leia mais

AULA 05 Magnetismo Transformadores

AULA 05 Magnetismo Transformadores AULA 05 Magnetismo Transformadores MAGNETISMO As primeiras observações de fenômenos magnéticos são muito antigas. Acredita-se que estas observações foram realizadas pelos gregos, em uma cidade denominada

Leia mais

Aula 21 - Lei de Biot e Savart

Aula 21 - Lei de Biot e Savart Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 1-, 1-7 S. 9-, 9-, 9-4, 9-6 T. 5- Aula 1 - Lei de Biot

Leia mais

INDUÇÃO ELETROMAGNÉTICA

INDUÇÃO ELETROMAGNÉTICA INDUÇÃO ELETROMAGNÉTICA 1. (ITA 2009) Uma haste metálica com 5,0 kg de massa e resistência de 2,0 Ω desliza sem atrito sobre duas barras paralelas separadas de 1,0 m, interligadas por um condutor de resistência

Leia mais

1ª Prova do 3º Período (Provão) Física 05/09/2016 Prof. Reinaldo

1ª Prova do 3º Período (Provão) Física 05/09/2016 Prof. Reinaldo 1ª Prova do 3º Período (Provão) Física 05/09/2016 Prof. Reinaldo 0 = 4..10 7 T.m/A B = 0.i / 2..r B = 0.i / 2.r B = 0.n.i FE = q.e FM = q.v.b.sen R = m.v / q.b 75. (Unesp 2016) Um ímã em forma de barra,

Leia mais

Cap. 28. Campos Magnéticos. Prof. Oscar Rodrigues dos Santos Campos Magnéticos 1

Cap. 28. Campos Magnéticos. Prof. Oscar Rodrigues dos Santos Campos Magnéticos 1 Cap. 28 Campos Magnéticos Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Campos Magnéticos 1 Campos Magnéticos - Há mais de 2500 anos eram encontrados fragmentos de ferro imantados nas proximidades

Leia mais

Campo Magnético e Força Magnética Prof. Lutiano Freitas

Campo Magnético e Força Magnética Prof. Lutiano Freitas Campo Magnético e Força Magnética Prof. Lutiano Freitas 01 - (UNIMONES MG/2015) Duas espiras circulares, 1 e 2, coplanares e concêntricas, possuem raios R 1 e R 2 e são percorridas por correntes I 1 e

Leia mais

:desenho abaixo. Considerando a intensidade da aceleração da gravidade g=10 m/s 2, qual a intensidade da força de tração em cada corda?

:desenho abaixo. Considerando a intensidade da aceleração da gravidade g=10 m/s 2, qual a intensidade da força de tração em cada corda? 1 - Um fio condutor retilíneo e muito longo é percorrido por uma corrente elétrica i = 4,0 A. Sabendo que a permeabilidade magnética do meio é, pode-se afirmar que o módulo do campo magnético, a uma distância

Leia mais

Lista de Exercícios Magnetismo/Fio

Lista de Exercícios Magnetismo/Fio 1. (Pucsp) Na experiência de Oersted, o fio de um circuito passa sobre a agulha de uma bússola. Com a chave C aberta, a agulha alinha-se como mostra a figura 1. Fechando-se a chave C, a agulha da bússola

Leia mais

Força Magnética sobre Condutores Retilíneos

Força Magnética sobre Condutores Retilíneos PROFESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Força Magnética sobre Condutores Retilíneos Na aula anterior, pudemos observar que uma partícula dotada de carga elétrica, em movimento

Leia mais

AULA 01: CAMPO MAGNÉTICO

AULA 01: CAMPO MAGNÉTICO PROF. ALEADRO FREITA 1. ÍMÃ: ão corpos que atraem ferro ou que interagem entre si. 2. PROPRIEDADE DO ÍMÃ 1ª) Todo imã possui dois pólos: o orte () e o ul (). AULA 01: CAMPO MAGÉTICO 2ª) Os pólos de um

Leia mais

RESOLUÇÃO DO TC DO CLICK PROFESSOR

RESOLUÇÃO DO TC DO CLICK PROFESSOR Resposta da questão 1: Podemos garantir apenas que o feixe de radiação gama (sem carga) não é desviado pelo campo magnético, atingindo o ponto 3. Usando as regras práticas do eletromagnetismo para determinação

Leia mais

Unimonte, Engenharia Física Elétrica, prof. Simões. Força magnética sobre um fio que conduz uma corrente elétrica. Escolha a alternativa correta

Unimonte, Engenharia Física Elétrica, prof. Simões. Força magnética sobre um fio que conduz uma corrente elétrica. Escolha a alternativa correta Unimonte, Engenharia Física Elétrica, prof. Simões Força magnética sobre um fio que conduz uma corrente elétrica Escolha a alternativa correta 1. (MACKENZIE) Um condutor retilíneo de comprimento 0,5 m

Leia mais

TEORIA DOS DOMÍNIOS MAGNÉTICOS. Dorival Brito

TEORIA DOS DOMÍNIOS MAGNÉTICOS. Dorival Brito TEORIA DOS DOMÍNIOS MAGNÉTICOS Dorival Brito TEORIA DOS DOMÍNIOS MAGNÉTICOS GRANDEZAS MAGNÉTICAS FUNDAMENTAIS MAGNETISMO O magnetismo é uma forma de energia apresentada apenas por alguns materiais, tais

Leia mais

LISTA ELETROSTÁTICA. Prof: Werlley toledo

LISTA ELETROSTÁTICA. Prof: Werlley toledo LISTA ELETROSTÁTICA Prof: Werlley toledo 01 - (UEPG PR) Uma pequena esfera com carga q é colocada em uma região do espaço onde há um campo elétrico. Sobre esse evento físico, assinale o que for correto.

Leia mais

Comunicação a curtas distâncias CAMPOS MAGNÉTICOS E ELÉTRICOS

Comunicação a curtas distâncias CAMPOS MAGNÉTICOS E ELÉTRICOS Comunicação a curtas distâncias CAMPOS MAGNÉTICOS E ELÉTRICOS 1 Microfone Sinal sonoro Sinal elétrico Altifalante Sinal elétrico Sinal sonoro 2 Fenómenos elétricos e magnéticos estão presentes em muitos

Leia mais

INSCREVA-SE: CANAL FISICA DIVERTIDA. ELETRIZAÇÃO, LEI DE COULOMB e CAMPO ELÉTRICO

INSCREVA-SE: CANAL FISICA DIVERTIDA. ELETRIZAÇÃO, LEI DE COULOMB e CAMPO ELÉTRICO ELETRIZAÇÃO, LEI DE COULOMB e CAMPO ELÉTRICO 1. (FUVEST) Três esferas metálicas, M 1, M 2 e M 3, de mesmo diâmetro e montadas em suportes isolantes, estão bem afastadas entre si e longe de outros objetos.

Leia mais

- Carga elétrica - Força elétrica -Campo elétrico - Potencial elétrico - Corrente elétrica - Campo magnético -Força magnetica

- Carga elétrica - Força elétrica -Campo elétrico - Potencial elétrico - Corrente elétrica - Campo magnético -Força magnetica GOIÂNIA, / / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): Trabalho Recuperação 1º semestre No Anhanguera você é + Enem RELAÇÃO DE CONTEÚDOS PARA RECUPERAÇÃO - Carga elétrica - Força

Leia mais

Exercícios - Magnetismo e Indução Eletromagnética

Exercícios - Magnetismo e Indução Eletromagnética Exercícios - Magnetismo e Indução Eletromagnética 1. (Fuvest 2010) Aproxima-se um ímã de um anel metálico fixo em um soporte isolante, como mostra a figura. O movimento do ìmã, em direção ao anel: A) Não

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Força Magnética em Cargas

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Força Magnética em Cargas Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Força Magnética em Cargas 1. (G1 - ifsp 2012) Os ímãs têm larga aplicação em nosso cotidiano tanto

Leia mais

Eletromagnetismo refsant

Eletromagnetismo refsant Eletromagnetismo refsant 1. A figura mostra duas cargas elétricas e as linhas de campo elétrico criadas por essas cargas. 1.1 Indique o sinal de cada uma das cargas. 1.2refira, justificando, em que região,

Leia mais

FÍSICA MÓDULO 9 CAMPO MAGNÉTICO. Professor Sérgio Gouveia

FÍSICA MÓDULO 9 CAMPO MAGNÉTICO. Professor Sérgio Gouveia FÍSICA Professor Sérgio Gouveia MÓDULO 9 CAMPO MAGNÉTICO 1. INTRODUÇÃO A magnetita (um óxido de ferro natural, Fe 3 O 4 ) apresenta as propriedades de atrair o ferro e, convenientemente cortada, de se

Leia mais

Prof Wildson de Aragão

Prof Wildson de Aragão Prof Wildson de Aragão Introdução Ímã - Corpo com poder de atrair ferro ou outros ímãs. - Fenômeno observado na Magnésia (atual Turquia) há mais de mil anos. - Composto de magnetita (óxido de ferro Fe3O4),

Leia mais

UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE FORMAÇÃO DE PROFESSORES ROTEIRO EXPERIMENTAL ELETROÍMÃ

UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE FORMAÇÃO DE PROFESSORES ROTEIRO EXPERIMENTAL ELETROÍMÃ UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE FORMAÇÃO DE PROFESSORES ROTEIRO EXPERIMENTAL ELETROÍMÃ 1. Introdução Um solenoide conduzindo uma corrente elétrica constitui um eletroímã. Um solenoide

Leia mais

Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força

Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força Exercícios com Gabarito de Física Superfícies Equipotenciais e Linhas de Força 1) (Faap-1996) A figura mostra, em corte longitudinal, um objeto metálico oco, eletricamente carregado. Em qual das regiões

Leia mais