O sofrimento é passageiro. Desistir é pra sempre! Gravitação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "O sofrimento é passageiro. Desistir é pra sempre! Gravitação"

Transcrição

1 O sofimento é passageio. Desisti é pa sempe! Gavitação 1. (Upe 015) A figua a segui ilusta dois satélites, 1 e, que obitam um planeta de massa M em tajetóias ciculaes e concênticas, de aios 1 e, espectivamente. Sabendo que o planeta ocupa o cento das tajetóias e que a distância mínima e máxima ente os satélites duante seu movimento é popocional à azão 4 / 5, é COEO afima que a azão ente os módulos de suas velocidades tangenciais v 1 / v é igual a a) 5 b) 3 c) d) 1/ e) 4 / 5 [B] A pati da figua abaixo, temos: dmín 1 4 d 5 má x 1 De onde vem: (1) 1 Como a foça esultante em movimentos cuvilíneos é igual á foça centípeta e esta epesenta a foça gavitacional: F c F g Página 1 de 6

2 O sofimento é passageio. Desisti é pa sempe! m v GMm GM v () Gavitação Fazendo a azão v 1/ v : v v 1 1 GM GM 1 Substituindo a equação (1) v1 9 1 v1 9 3 v v 1. (Unicamp 015) A pimeia lei de Keple demonstou que os planetas se movem em óbitas elípticas e não ciculaes. A segunda lei mostou que os planetas não se movem a uma velocidade constante. PEY, Mavin. Civilização Ocidental: uma históia concisa. São Paulo: Matins Fontes, 1999, p. 89. (Adaptado) É coeto afima que as leis de Keple a) confimaam as teoias definidas po Copénico e são exemplos do modelo científico que passou a vigoa a pati da Alta Idade Média. b) confimaam as teoias defendidas po Ptolomeu e pemitiam a podução das catas náuticas usadas no peíodo do descobimento da Améica. c) são a base do modelo planetáio geocêntico e se tonaam as pemissas cientificas que vigoam até hoje. d) foneceam subsídios paa demonsta o modelo planetáio heliocêntico e citica as posições defendidas pela Igeja naquela época. [D] [esposta do ponto de vista da disciplina de Física] As leis de Keple foneceam subsídios paa o modelo heliocêntico (Sol no cento) contapondo-se ao sistema geocêntico (ea no cento) até, então, defendido pela igeja naquela época. [esposta do ponto de vista da disciplina de Históia] Somente a altenativa [D] está coeta. A questão emete ao enascimento Científico vinculado ao enascimento Cultual dos séculos XIV, XV e XVI. O espíito enascentista é pautado pela investigação, a busca do conhecimento, seja pelo método indutivo vinculado ao Empiismo ou ao pelo método dedutivo associado ao acionalismo. Questionava-se qualque tipo de autoidade, sobetudo o pode da Igeja que ea ancoada na filosofia gega de Aistóteles. Este pensado defendia uma visão geocêntica de mundo e teve apoiou de outos estudiosos antigos como Ptolomeu. A Igeja católica no medievo baseou-se no pensamento aistotélico-ptolomaico antigo e também defendeu o geocentismo. No entanto, alguns estudiosos do enascimento Científico começaam a questiona esta pseudo-visão. Ente eles estão Copénico, , que esceveu o livo Da evolução Das Esfeas Celestes, em que combateu a tese geocêntica e defendeu o heliocentismo e Johannes Keple, , pensado alemão que fomulou tês leis impotantes paa a evolução Cientifica do século XVII que consolidou o heliocentismo. Pimeia Lei: das óbitas, os planetas giam em óbitas elípticas ao edo do sol. Segunda Lei: das áeas, um planeta giaá com maio velocidade quanto mais póximo estive do sol. eceia Lei: a elação do cubo da distância média de um planeta ao sol e o quadado do peíodo da evolução do planeta é uma constante sendo a mesma paa todos os planetas. Página de 6

3 O sofimento é passageio. Desisti é pa sempe! Gavitação 3. (Ufsc 015) A tabela abaixo apesenta dados astonômicos efeentes a algumas popiedades dos planetas que compõem o nosso sistema sola. Adote a massa da ea 6,0 10 kg. 4 Distância média ao Sol Mecúio Vênus ea Mate Júpite Satuno Uano Netuno 6 (10 km) 57, Peíodo de evolução (anos) 0,41 0,615 1,00 1,88 11,9 9,5 84,0 165 Velocidade obital (km / s) 47,9 35,0 9,8 4,1 13,1 9,64 6,81 5,43 Massa (ea = 1) Valo de g na supefície 0,0558 0,815 1,000 0, ,1 14,5 17, (m / s ) 3,78 8,60 9,78 3,7,9 ***** 7,77 11,0 Velocidade de escape (km / s) 4,3 10,3 11, ****** 59,5 35,6 1, 3,6 aio equatoial (ea =1) 0,38 0,949 1,000 0,530 11,59 9,44 4,10 3,80 HALLIDAY, David; ESNICK, obet; WALKE, Jeal. Fundamentos de Física ed. io de Janeio: Editoa Com base na tabela acima e nos fenômenos e leis associados à gavitação, é COEO afima que: 01) admitindo que exista um planeta X a uma distância média do Sol tês vezes maio que a distância média da ea ao Sol, o seu peíodo de evolução seá de apoximadamente 3 3 anos. 0) a velocidade obital dos planetas pode se consideada um valo médio; ela seá máxima no ponto mais póximo do Sol, denominado de peiélio, e seá mínima no ponto mais afastado do Sol, denominado de afélio. 04) a velocidade de escape é a velocidade mínima paa que um objeto possa escapa de um campo gavitacional, que depende da massa e do aio do planeta. No caso de Mate, a sua velocidade de escape deve se meno que a da ea e maio que a de Mecúio. 08) a pimeia Lei de Keple define que cada planeta evolve em tono do Sol em uma óbita elíptica, com o Sol no ponto médio ente os focos da elipse. 16) impondeabilidade é um fenômeno que pode se descito como a ausência apaente de massa; apaente, pois paece não have nenhum tipo de foça gavitacional sobe o objeto em questão. 3) com os dados da tabela, é possível estima a aceleação da gavidade de Satuno, que vale apoximadamente 0,0m / s = 07. [01] (Vedadeia) Usando a 3ª Lei de Keple e substituindo o aio de Mate em função do aio da ea, teemos: x 3 3 x x (3 ) x anos teestes. [0] (Vedadeia) Infomação pefeitamente coeta. [04] (Vedadeia) Paa esponde esta questão, basta calcula a velocidade de escape de Mate e compaa com os valoes apesentados na tabela paa a ea e Mecúio. v escape Paa a ea: GM Página 3 de 6

4 11, GM O sofimento é passageio. Desisti é pa sempe! Gavitação Paa Mate: vescape GMM M G 0,107 M 0,107 km vescape 11, 5 0,530 0,530 s [08] (Falsa) A 1ª Lei de Keple diz que os planetas se deslocam ao edo do Sol em óbitas elípticas em que o Sol ocupa um dos focos da elipse. [16] (Falsa) a impondeabilidade envolve apaente ausência de foça gavitacional, ou seja, ausência apaente de peso e não de massa como constou na afimativa. [3] (Falsa) Da Lei da Gavitação Univesal de Newton extaímos o módulo da aceleação da supefície de um planeta, po exemplo, da ea: M g G 1 ( ) Paa Satuno: MS g G ( ) S S Substituindo os valoes elativos à ea extaídos da tabela: MS 95,1 M e S 9,44 95,1 M gs G (9,44 ) Dividindo a equação () pela equação (1), substituindo o valo da aceleação gavitacional da ea: 95,1 M G g S (9,44 ) 95,1 g M G 9,44 ( ) 95,1 gs 9,78 10,44m s 9,44 4. (Ufgs 015) A elipse, na figua abaixo, epesenta a óbita de um planeta em tono de uma estela S. Os pontos ao longo da elipse epesentam posições sucessivas do planeta, sepaadas po intevalos de tempo iguais. As egiões altenadamente coloidas epesentam as áeas vaidas pelo alo da tajetóia nesses intevalos de tempo. Na figua, em que as dimensões dos astos e o tamanho da óbita não estão em escala, o segmento de eta SH epesenta o aio focal do ponto H, de compimento p. Página 4 de 6

5 O sofimento é passageio. Desisti é pa sempe! Gavitação Consideando que a única foça atuante no sistema estela-planeta seja a foça gavitacional, são feitas as seguintes afimações. I. As áeas S 1 e S, vaidas pelo aio da tajetóia, são iguais. 3 II. O peíodo da óbita é popocional a P. III. As velocidades tangenciais do planeta nos pontos A e H, Quais estão coetas? a) Apenas I. b) Apenas I e II. c) Apenas I e III. d) Apenas II e III. e) I, II e III. V A e V H, são tais que A H V V. [C] [I] Coeta. A segunda lei de Keple afima que o segmento de eta Sol-planeta vae áeas iguais em intevalos de tempo iguais. [II] Incoeta. O quadado do peíodo () da óbita é popocional ao cubo do aio médio () da tajetóia (semieixo 3 maio da elipse): k. [III] Coeta. O movimento do planeta é aceleado de H paa A e etadado de A paa H. Potanto, VA V H. 5. (Fuvest 015) A notícia Satélite basileio cai na ea após lançamento falha, veiculada pelo jonal O Estado de S. Paulo de 10/1/013, elata que o satélite CBES-3, desenvolvido em paceia ente Basil e China, foi lançado no espaço a uma altitude de 70 km (meno do que a planejada) e com uma velocidade abaixo da necessáia paa colocá-lo em óbita em tono da ea. Paa que o satélite pudesse se colocado em óbita cicula na altitude de 70 km, o módulo de sua velocidade (com dieção tangente à óbita) deveia se de, apoximadamente, Note e adote: - aio da ea 6 10 km - 4 massa da ea 6 10 kg constante da gavitação univesal G 6,7 10 m / s kg Página 5 de 6

6 O sofimento é passageio. Desisti é pa sempe! a) 61km / s b) 5 km / s c) 11km / s d) 7,7 km / s e) 3,3 km / s Gavitação [D] Dados: km 6 10 m; h 70 km 0,7 10 m; M 6 10 kg; 11 3 G 6,7 10 m /kgs. Como a óbita é cicula, a gavidade tem a função de aceleação centípeta v G M G M 6, ac g v h h 6 6 h , , v ,7 10 m/s 6 6,7 10 v 7,7 km/s. Página 6 de 6

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11 1-0-011 Mecânica Gavitação 1ª Pate Pof. Luís Pena 010/11 Teoia geocêntica Foi com Ptolomeu de Alexandia que sugiu, po volta de 150 d.c. no seu livo Almagest, uma descição pomenoizada do sistema sola. Cláudio

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

1. Mecanica do Sistema Solar (II): Leis de Kepler do movimento planetário

1. Mecanica do Sistema Solar (II): Leis de Kepler do movimento planetário . Mecanica do Sistea Sola (II): Leis de Keple do oviento planetáio Astonoy: A Beginne s Guide to the Univese, E. Chaisson & S. McMillan (Caps. 0 e ) Intoductoy Astonoy & Astophysics, M. Zeilek, S. A. Gegoy

Leia mais

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação:

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação: Capítulo Gavitação ecusos com copyight incluídos nesta apesentação: Intodução A lei da gavitação univesal é um exemplo de que as mesmas leis natuais se aplicam em qualque ponto do univeso. Fim da dicotomia

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

1 10 kg, bem menor que a massa da Terra. O módulo da força gravitacional entre duas massas m 1 e é

1 10 kg, bem menor que a massa da Terra. O módulo da força gravitacional entre duas massas m 1 e é Física nos Vestibulares Prof. icardo Bonaldo Daroz Gravitação 1. (Fuvest 016) O grande mérito do sábio toscano estava exatamente na apresentação de suas conclusões na forma de leis matemáticas do mundo

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

Problema de três corpos. Caso: Circular e Restrito

Problema de três corpos. Caso: Circular e Restrito Poblema de tês copos Caso: Cicula e Restito Tópicos Intodução Aplicações do Poblema de tês copos Equações Geais Fomulação do Poblema Outas vaiantes Equações do Poblema Restito-Plano-Cicula Integal de Jacobi

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva De Keple a Newton (atavés da algeba geomética) 008 DEEC IST Pof. Calos R. Paiva De Keple a Newton (atavés da álgeba geomética) 1 De Keple a Newton Vamos aqui mosta como, a pati das tês leis de Keple sobe

Leia mais

Exercícios Resolvidos Astronomia (Gravitação Universal)

Exercícios Resolvidos Astronomia (Gravitação Universal) Execícios Resolvios Astonoia (Gavitação Univesal) 0 - Cite as leis e Keple o oviento os copos celestes I "As óbitas que os planetas esceve ao eo o Sol são elípticas, co o Sol ocupano u os focos a elipse"

Leia mais

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

MOVIMENTO DE QUEDA LIVRE

MOVIMENTO DE QUEDA LIVRE I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

GRAVITAÇÃO UNIVERSAL

GRAVITAÇÃO UNIVERSAL GAVIAÇÃO UNIVESAL Histórico: Astronomia Uma das ciências mais antigas de que se tem registro. Geocentrismo A erra é o centro do Universo Hiparco ( sec II a.c ) Defensores Cláudio Ptolomeu ( sec II d.c

Leia mais

V H, são tais que VA V H.

V H, são tais que VA V H. 1. A primeira lei de Kepler demonstrou que os planetas se movem em órbitas elípticas e não circulares. A segunda lei mostrou que os planetas não se movem a uma velocidade constante. É correto afirmar que

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 0 INSPER 01/11/00 Seu pé dieito nas melhoes Faculdades 0. Na figua a segui, ABC e DEF são tiângulos equiláteos, ambos de áea S. O ponto D é o baicento do tiângulo ABC e os segmentos BC e DE são paalelos.

Leia mais

DEPARTAMENTO DE ENGENHARIA GEOGRÁFICA, GEOFÍSICA E ENERGIA Princípios e Aplicações da Detecção Remota

DEPARTAMENTO DE ENGENHARIA GEOGRÁFICA, GEOFÍSICA E ENERGIA Princípios e Aplicações da Detecção Remota Cap. Óbitas Óbitas e Swaths Genealidades sobe movimento As leis de Keple Lei da atacção Univesal Estudo do movimento do copo Equação do movimento no plano Estudo do movimento na óbita Os paâmetos da óbita

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais Mecânica Clássica (icenciatuas em Física Ed., Química Ed.) Folha de oblemas 4 Movimentos de coos sob acção de foças centais 1 - Uma atícula de massa m move-se ao longo do eixo dos xx, sujeita à acção de

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

a) 3,6 b) 18 c) 1,0 d) 6,0 e) 10

a) 3,6 b) 18 c) 1,0 d) 6,0 e) 10 Questão - (FUVEST) Um acobata, de massa M A = 60kg, que ealiza uma apesentação em que, seguando uma coda suspensa em um ponto Q fixo, petende descee um cículo de aio = 4,9m, de tal foma que a coda mantenha

Leia mais

1ª Aula do Cap. 6 Forças e Movimento II

1ª Aula do Cap. 6 Forças e Movimento II ATRITO 1ª Aula do Cap. 6 Foças e Movimento II Foça de Atito e Foça Nomal. Atito e históia. Coeficientes de atito. Atito Dinâmico e Estático. Exemplos e Execícios. O efeito do atito ente duas supefícies

Leia mais

Aula 05 Mecânica Celeste

Aula 05 Mecânica Celeste Aula 05 Mecânica Celeste Expessão intoduzida po Piee Sion de Laplace (1749-187) e seu célebe livo Mécanique Celeste (1799-188) (vide BCE) O conjunto de teoias que contê todas os esultados da gavitação

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

Mestrado em Engenharia e Tecnologia. Espacial e Controle.

Mestrado em Engenharia e Tecnologia. Espacial e Controle. sid.inpe.b/iis@1905/005/07.8.3.45-pud INTRODUÇÃO À MECÂNICA ORBITAL -A EDIÇÃO Hélio Koiti Kuga Valdemi Caaa Kondapalli Rama Rao Tópicos de mecânica obital da disciplina de Adaptação, no Cuso de Mestado

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

, (eq.1) Gravitação Universal Com Gabarito. 1. Lei da Gravitação Universal de Newton (1642-1727): Turma ITA IME Professor Herbert Aquino

, (eq.1) Gravitação Universal Com Gabarito. 1. Lei da Gravitação Universal de Newton (1642-1727): Turma ITA IME Professor Herbert Aquino Gavitação Univesal Co Gabaito 1. Lei da Gavitação Univesal de Newton (1642-1727): Apoiado nos estudos de Copénico, Galileu e Keple, Isaac Newton apesentou sua lei da Gavitação Univesal. Ente dois copos

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Bola, taco, sinuca e física

Bola, taco, sinuca e física Revista Basileia de Ensino de ísica, v. 29, n. 2, p. 225-229, (2007) www.sfisica.og. Bola, taco, sinuca e física (Ball, cue, snooke and physics) Eden V. Costa 1 Instituto de ísica, Univesidade edeal luminense,

Leia mais

RUBENS RIBEIRO JACOB MANOBRA ORBITAL TERRA-LUA -TERRA

RUBENS RIBEIRO JACOB MANOBRA ORBITAL TERRA-LUA -TERRA RUBENS RIBEIRO JACOB MANOBRA ORBITAL TERRA-LUA -TERRA Dissetação apesentada à Faculdade de Engenhaia do Campus de Guaatinguetá, Univesidade Estadual Paulista, paa a obtenção do título de Meste em Física

Leia mais

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos Accionamento de máquinas Estudo do moto eléctico, quando acoplado a uma máquina. A máquina accionada impõe duas condicionantes ao aanque: Bináio esistente Inécia das massas. Bináio esistente O conhecimento

Leia mais

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito

Leia mais

INTRODUÇÃO À GEODÉSIA FÍSICA

INTRODUÇÃO À GEODÉSIA FÍSICA INTRODUÇÃO À GEODÉSIA FÍSICA POR José Milton Aana Depatamento de Catogafia Faculdade de Ciências e Tecnologia Unesp Campus de Pesidente Pudente OUTUBRO / 009 ii iii SUMÁRIO CAPA........... i CONTRA CAPA.........

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

- Física e Segurança no Trânsito -

- Física e Segurança no Trânsito - - Física e Seguança no Tânsito - - COLISÕES E MOMENTUM LINEAR - COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES O QUE É MELHOR: - Se atopelado

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 2.1.3 Micofone e altifalante O micofone é um dispositivo que, quando inseido num cicuito eléctico fechado,

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

UNIDADE GRAVITAÇÃO

UNIDADE GRAVITAÇÃO UNIDADE 1.5 - GRAVITAÇÃO 1 MARÍLIA PERES 010 DA GRAVITAÇÃO UNIVERSAL DE NEWTON Cada partícula no Universo atraí qualquer outra partícula com uma força que é directamente proporcional ao produto das suas

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Gravitação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: As leis que descrevem os movimentos dos planetas, e como trabalhar com

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (14 de agosto de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental)

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (14 de agosto de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental) Instuções: XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (14 de agosto de 010) Nível α (6 o e 7 o anos do Ensino Fundamental) Folha de Peguntas A duação da pova é de 3h30min. O tempo mínimo

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Nessas condições, a coluna de água mede, em metros, a) 1,0. b) 5,0. c) 8,0. d) 9,0. e) 10.

Nessas condições, a coluna de água mede, em metros, a) 1,0. b) 5,0. c) 8,0. d) 9,0. e) 10. EVSÃO UEL-UEM-ENEM HDOSTÁTCA. 01 - (FATEC SP/011/Janeio) Nas figuas apesentadas, obsevam-se tês blocos idênticos e de mesma densidade que flutuam em líquidos difeentes cujas densidades são, espectivamente,

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

Problemas sobre Indução Electromagnética

Problemas sobre Indução Electromagnética Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME NACIONAL DO ENSINO SECUNDÁRIO Deceto-Lei n.º 139/01, de 5 de julho Pova Escita de Matemática B 10.º e 11.º Anos de Escolaidade Pova 735/.ª Fase 13 Páginas Duação da Pova: 150 minutos. Toleância:

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL

APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA TEXTO DE APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL Rui Lança, Eq. Pofesso Adjunto David Peeia, Eq. Pofesso Adjunto SETEMBRO DE

Leia mais

Pof. Pauo Cesa Costa 01. (ENEM) O goveno cedeu teenos paa que famíias constuíssem suas esidências com a condição de que no mínimo 9% da áea do teeno fosse mantida como áea de pesevação ambienta. Ao ecebe

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS Consideando que um movimento no plano seja descito pela função vetoial t = Rt cos θ tι$ + senθ tj $, em que $ι e () () () () CONHECIMENTOS ESPECÍFICOS [ ] $J são vetoes unitáios nas dieções x e y, espectivamente,

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

O RAIO REAL DO SOL. I. Introdução 4GM 0. (2) Wilson Lopes Universidade de Guarulhos Guarulhos SP Universidade de Mogi das Cruzes Mogi das Cruzes SP

O RAIO REAL DO SOL. I. Introdução 4GM 0. (2) Wilson Lopes Universidade de Guarulhos Guarulhos SP Universidade de Mogi das Cruzes Mogi das Cruzes SP O RAIO REAL DO SOL Wilson Lopes Univesidade de Guaulhos Guaulhos SP Univesidade de ogi das Cuzes ogi das Cuzes SP Resumo I. Intodução Popõe-se, neste tabalho, que os fótons, ao escapaem asantes da boda

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

o módulo da quantidade de movimento do satélite, em kg m s, é, aproximadamente, igual a: a) b) c) d) e)

o módulo da quantidade de movimento do satélite, em kg m s, é, aproximadamente, igual a: a) b) c) d) e) 1. Considere que um satélite de massa m 5,0 kg seja colocado em órbita circular ao redor da Terra, a uma altitude h 650 km. Sendo o raio da Terra igual a 6.350 km, sua massa igual a 4 5,98 10 kg e a constante

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA ESCOL DE ESPECILISTS DE ERONÁUTIC CONCURSO DE DMISSÃO O CS /00 PROV DE MTEMÁTIC ÍSIC QUÍMIC CÓDIGO D PROV 9 MRQUE NO CRTÃO DE RESPOSTS O CÓDIGO D PROV. s questões de 0 a 0 efeem se a Matemática 0 Se a

Leia mais

= constante 2. r r. F at. ρ = W > 0 quando o sistema realiza trabalho. = ; velocidade de propagação: v = λf. f = ; freqüência angular: w = 2 πf

= constante 2. r r. F at. ρ = W > 0 quando o sistema realiza trabalho. = ; velocidade de propagação: v = λf. f = ; freqüência angular: w = 2 πf FORMULÁRIO DE FÍSICA Movimento linea: s = s + v t + at ; v = v + at ; v = v + a s Movimento angula: m = θ ω ; α m = ω ; v = ω ; a = α Segunda lei de Newton: F = ma Foça centípeta: Foça de atito: Foça elástica:

Leia mais

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS seto 116 1160409 1160409-SP ula 5 ELETIZÇÃO PO INDUÇÃO E TÇÃO DE COPOS NEUTOS = conduto ou isolante, inicialmente eletizado (induto) = conduto, inicialmente neuto (induzido) Passo 1: Passo : Passo 3: Passo

Leia mais

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton

Mecânica e Ondas. Capítulo I Interacção mecânica. Lei da atracção gravitacional de Newton ecânica e Ondas aguspak Cusos EI e EE Capítulo I Inteacção mecânica ei da atacção gavitacional de Newton Se consideamos duas massas pontuais m1 e m, a uma distância ente si, vai have uma foça de atacção

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções vetoiais I) Funções vetoiais a valoes eais: f: I R R t a f(t) (f 1 n (t), f (t),..., f n (t)) I intevalo da eta eal denominada domínio da função vetoial f {conjunto de todos os valoes possíveis

Leia mais

PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS

PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS RAÍZES RECÍPROCAS Pof. Macelo Renato Equação Polinomial Recípoca, ou simplesmente "Equação ecípoca", é aquela que, se possui "x " como aiz, então seu ecípoco ("/x ") também seá aiz da equação. Exemplo:

Leia mais

Reversão da Intensidade de Capital, Retorno das Técnicas e Indeterminação da

Reversão da Intensidade de Capital, Retorno das Técnicas e Indeterminação da evesão da Intensidade de Capital, etono das Técnicas e Indeteminação da Dotação de Capital : a Cítica Saffiana à Teoia Neoclássica. Fanklin Seano, IE-UFJ Vesão evista, Outubo 2005 I.Capital Homogêneo Suponha

Leia mais

Estou desorientado! A televisão noticiava com estardalhaço: um

Estou desorientado! A televisão noticiava com estardalhaço: um A U A UL LA Estou desoientado! A teleisão noticiaa com estadalhaço: um gupo de estudantes estaa pedido na Sea do Ma. As buscas posseguiam, as infomações eam desencontadas. Os pais, aflitos, daam enteistas:

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

UTILIZAÇÃO DE BOBINAS PARA O CONTROLE DE ATITUDE DE SATÉLITES ARTIFICIAIS

UTILIZAÇÃO DE BOBINAS PARA O CONTROLE DE ATITUDE DE SATÉLITES ARTIFICIAIS INPE-131-PRE/898 UTILIZAÇÃO DE BOBINAS PARA O CONTROLE DE ATITUDE DE SATÉLITES ARTIFICIAIS Rafael Navet de Souza * *Bolsista Univesidade São Macos Relatóio Final de Pojeto de Iniciação Científica (PIBIC/CNPq/INPE),

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POBLMAS SOLVIDOS D FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências xatas Univesidade Fedeal do spíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO CRG LÉTRIC caga elética é uma popiedade, dos mateiais, esponsável pelas inteações eletostáticas. xistem dois tipos de caga elética a que se convencionou chama caga positiva e caga negativa. LTRIZÇÃO POR

Leia mais

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME Dinâmica de um Sistema de atículas Da. Diana Andade, Da. Angela Kabbe, D. Caius Lucius & D. Ségio illing 4 MOVIMENTO CIRCULAR UNIFORME Se um onto se moe numa cicunfeência, seu moimento é cicula, odendo

Leia mais

Modelagem Matemática: Resolução de um Problema de Tração

Modelagem Matemática: Resolução de um Problema de Tração Modelagem Matemática: Resolução de um Poblema de ação Gabiel Eleusis Vicente Biasi (UICERO) Édeson Pauletti (UICERO) Vigínia Moeia Justo (UICERO) Maia José de Paula Castanho (UICERO) Maia Regina Cavalho

Leia mais

1ª etapa Despertando o olhar geométrico

1ª etapa Despertando o olhar geométrico Oficina Geometia Nesta oficina seão tabalhados alguns conceitos geométicos impotantes: Ângulos Paalelismo e pependiculaidade Polígonos e cicunfeência Simetia O mateial tem o objetivo de desenvolve as seguintes

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas CONTEÚDOS DA PROVA DE RECUPERAÇÃO FINAL: Hidrostática, Velocidade Escalar Média, Gravitação Universal, 1ª e 2ª Leis de Kepler, Aceleração Escalar, Equações do Movimento Retilíneo Uniformemente Variado

Leia mais

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio Fenômenos de Tanspote Equações Básicas na Foma Integal - I Pof. M. Sc. Lúcio P. Patocínio Objetivos Entende a utilidade do teoema de Tanspote de Reynolds. Aplica a equação de consevação da massa paa balancea

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais