Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:"

Transcrição

1 Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com folhas enumeradas ou com folhas enumeradas e quadrculadas, do tpo contabldade, de capa dura preta, brochura. Chamaremos de Caderno de Laboratóro. o verso deste caderno você pode fazer o rascunho a láps. a parte enumerada fará o relatóro com a segunte estruturação: o mínmo, para cada epermento o Caderno de Laboratóro deve sempre conter:. Título do epermento data de realzação e colaboradores;. Objetvos do epermento; 3. Rotero dos procedmentos epermentas; Referêncas:. G.L. Squres, "Practcal Phscs" (Cambrdge Unverst Press, 99), capítulo, pp. 39-; e D.W. Preston, "Eperments n Phscs" (John Wle & Sons, 95), pp C. H. de Brto Cruz, H. L. Fragnto, Gua para Físca Epermental Caderno de Laboratóro, Gráfcos e Erros, Insttuto de Físca, Uncamp, IFGW D.W. Preston, "Eperments n Phscs" (John Wle & Sons, 95), pp. -3; G.L.. C.E. Hennes, W.O.. Gumarães e J.A. Rovers, "Problemas Epermentas em Físca" 3ª edção, (Edtora da Uncamp, 99), capítulo V, pp.-7.. Esquema do aparato utlzado; 5. Teora utlzada.. Descrção dos prncpas nstrumentos; 7. Dados Epermentas meddos; Tabelas Epermentas;. Tratamento estatístco dos dados epermentas. Cálculos utlzados; 9. Gráfcos;. Conclusões;. Referêncas. O formato de apresentação destes 9 tens não é rígdo. O mas ndcado é usar um formato seqüencal, anotando-se à medda que o epermento evolu.

2 Dlatação Térmca Introdução e Teora: Objetvos: 3 Acma de varações de temperatura, a natureza lnear de epansão térmca conduz a relações de epansão para duração, área, e volume em termos do coefcente de epansão lnear. Estudo sobre a dlatação lnear de um materal, determnação do coefcente de dlatação lnear, determnação da varação do comprmento devdo a varação da temperatura. Prncpas característcas: Materal Coefcente C - - Epansão fraconal por grau F - Vdro, (comum) 9 5 Vdro (pre). Quartzo (funddo) Alumíno 3 Metal 9 Cobre 7 9. Ferro.7 Aço 3 7. Platna 9 5 Tungstêno.3. Ouro 7. Prata Acma de pequenos valores de temperatura, a epansão térmca fraconára de objetos lneares unformes é proporconal o a mudança de temperatura. A epansão térmca é descrta pelo coefcente de epansão lnear. A epansão lnear é dada por: L L L ( ) L Analogamente, se tvermos uma epansão térmca em um materal bdmensonal, teremos para a área a uma certa temperatura: S S S S ( ) Um materal trdmensonal epandndo-se termcamente, terá volume a uma certa temperatura dada por: V V V V ( ) A relação entre os coefcentes de dlatação superfcal, o coefcente de dlatação volumétrca e o lnear é dada por: 3 corpos de prova: cobre, latão e aço. Relógo comparador: Resolução de. mm. Termômetro dgtal: Escala de - a C. Resolução de C. Base prncpal confecconada em aço, revestda em epó pelo sstema eletrostátco com sapatas nveladoras. Coneão rápda de saída com duto fleível e epansão termnal. Batente móvel no fm do curso. Montagem epermental: Dlatômetro lnear dgtal. Materas ecessáros: base prncpal metálca (l) com meddor de dlatação, dvsão um centésmo de mlímetro (), escala mlmetrada gua com mufa, gua de saída (b) c sapatas nveladoras; l corpo de prova em latão l coneão rápda de saída com duto fleível e epansão termnal;

3 Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando conjunto com coneão rápda de entrada, orfíco para termopar duto fleível e rolha: l pnça com mufa fa; balão volumétrco; l haste com fação M5; l meddor de temperatura; sensor tpo K; batente móvel fm de curso; pano de lmpeza; l fonte de calor; recpente com água fra. Procedmento epermental: Eecute a montagem. Com a gua com mufa na marca dos 5 mm, verfque se o corpo de prova está tocando na pontera do meddor de dlatação. Determne o comprmento ncal do corpo de prova, dstânca L entre o centro da gua com mufa até o meddor, à temperatura : Materal Cobre L (m) L (m) 3 L 3 (m) Materal Cobre Latão Aço F F F3 ( ) F C Encontre a varação do comprmento L do corpo de prova pela equação: L L Com um pano molhado, remova o corpo de prova e esfre. Refaça a atvdade anteror medndo um novo L. Materal: L (m) Dados Epermentas obtdos F Cobre ( C - ) Latão Aço Atve a fonte de calor e aguarde para que o corpo de prova atnja a temperatura máma. O momento para a eecução dessa letura deve ser no mínmo s após a establzação dos meddores. Após o equlíbro térmco, determne as temperaturas dos pontos de entrada e saída dos vapores. Verfque se concdem essas temperaturas. Materal Cobre Latão Aço (entrada) (saída) Calcule a temperatura méda fnal do corpo de prova e a varação de temperatura. Materal: L (m) Materal: L (m) F F latão Aço ( C - ) ( C - ) 3

4 Análse dos dados Epermentas obtdos Utlzando o modo estatístco da calculadora, encontre: A méda de : O desvo padrão populaconal: O erro assocado à méda: Com os dados obtdos, faça um gráfco L versus L. Represente matematcamente a relação estente entre L versus L. Encontre o coefcente lnear da reta e encontre o coefcente de dlatação lnear epermental. Em seguda, compare com o coefcente de dlatação lnear dado na tabela da teora. Comparar os resultados obtdos. Com os dados obtdos, faça um gráfco L versus L. Represente matematcamente a relação estente entre L versus L. Encontre o coefcente lnear da reta e encontre o coefcente de dlatação lnear epermental. Em seguda, compare com o coefcente de dlatação lnear dado na tabela da teora. _Sstema de Undades: M.Kg.S. = [ L ] = [m ] Bblografa:. Sears, Zemansk, Young - VII. Anotações Complementares: Observações/ Conclusões

5 Y Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando Ajuste de pontos por funções Método dos mínmos quadrados Pode-se ajustar pontos (, ) nserdos por dversos tpos de curvas, utlzando uma calculadora de funções g a serem escolhdas. Uma vez escolhda as m funções que se deseja realzar o ajuste dos pontos, pode-se esboçar o gráfco da função juntamente com a dspersão do pontos. O método utlzado é o método dos mínmos quadrados, e a resolução numérca pode ser feta por um método chamado SVD (sngular value decomposton). Fgura Gráfco de dspersão dos pontos e da função ajustada Gráfcos: Ajuste método dos mínmos quadrados X (X, Y ) (X, Y ) Seres3 +-,E+.^+3,E+.^ +-,3E-.^+,E+.^+-,7E+.^ Seres Seres7 Seres Seres9 Seres Seres Seres A escolha da famíla de funções apromadoras g deve levar em conta os seguntes aspectos: Inserr ncalmente os pontos (, ) que se deseja fazer o ajuste da curva f(). Escolher as m funções g k uma a uma, ndvdualmente. m k k k f a g Assm, o problema consstrá em determnar os valores a,a,...,a k que mnmzam a soma dos 5

6 quadrados dos resíduos M(a,a,...,a k ) nos pontos,, 3,..., n : n M ( a, a,.., an) f ( ) g( ) n M ( a, a,.., a ) f ( ) a g ( ) a g ( ) a g ( ) n m m E precsamos obter a,a,...,a k tal que: M ( a,..., am ) al Essas condções geram um sstema de ordem m denomnado sstema normal: g g g g g a g f g g g g g g m a g f g g am f a g g g g g g f a g g g g g g f a g g g g g g g f m m m m m m Os valores de g g j são dados por: g g g g k j k j g f g f k k Para encontrar a matrz nversa de: g g g g g g g g g g A g g Coloca-se A na forma: t A U W V a qual: t U: formado por autovetores de A A t V: formado por autovetores de A A W: Matrz dagonal formada pelas raízes dos t autovalores de A A As entradas não nulas de W são: w ; w ; ; wk k onde,,, são os autovalores não nulos k de A T A assocados aos vetores coluna de V. Os vetores de V são ordenados de tal modo que:. w w w k A V W U Em seguda: T w w Após a nserção dos pontos (, ) e das k funções, temos de encontrar: As matrzes: g g g g g g g g g g A g g g f g f B f Os coefcentes: a a am O gráfco de dspersão dos pontos (, ) juntamente com a curva g(). Os parâmetros estatístcos de cada coluna de dado: Médas: Desvo padrão populaconal: O erro assocado à méda será: ;

7 Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando a Regressão lnear: Fazendo o ajuste de pontos (, ) pela reta: b a b a Teremos: Coefcente angular da reta: b Coefcente lnear da reta: Coefcente de correlação: / R / / Eemplo Medram-se a base e a altura de uma chapa retangular. Os valores meddos estão ndcadas na tabela abao: pontos: (cm) (cm),5 5,, 5,,7 5,9, 5,, 5,3, 5,5,3 5, 3, 5,3 3, 5, (a) Faça um ajuste lnear desses pontos: a b (b) Faça um ajuste quadrátco desses a b c (c) Faça um ajuste do tpo: Solução: ae b e (a) Faça um ajuste lnear desses pontos: a b a b pontos: (b) Faça um ajuste quadrátco desses a b c a b c (c) Faça um ajuste do tpo: 7

8 ae b e a b.5. e 5 e

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Fenômenos de Transporte, Calor e Massa - FTCM - Rotero Epermental - Relatóro Prof.: Dr. Cláudo S. Sartor - EXPERIMETO Dlatação Térmca ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

FGE2255 Física Experimental para o Instituto de Química. Segundo Semestre de 2013 Experimento 1. Corrente elétrica

FGE2255 Física Experimental para o Instituto de Química. Segundo Semestre de 2013 Experimento 1. Corrente elétrica FGE2255 Físca Expermental para o Insttuto de Químca Segundo Semestre de 213 Expermento 1 Prof. Dr. Crstano Olvera Ed. Baslo Jafet, Sala 22 crslpo@f.usp.br Corrente elétrca q Defnção de Corrente elétrca

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Experiência I (aulas 01 e 02) Medidas de Tempo e Pêndulo simples

Experiência I (aulas 01 e 02) Medidas de Tempo e Pêndulo simples Experênca I (aulas 01 e 02) Meddas de Tempo e Pêndulo smples 1. Objetvos 2. Introdução 3. O pêndulo smples 4. Medda do período de osclação de um pêndulo 5. Arranjo e procedmento expermental 6. Análse de

Leia mais

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR

Roteiro-Relatório da Experiência N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR PROF.: Joaqum Rangel Codeço Rotero-Relatóro da Experênca N o 4 CARACTERÍSTICAS DO TRANSISTOR BIPOLAR 1. COMPONENTES DA EQUIPE: ALUNOS 1 2 NOTA Prof.: Joaqum Rangel Codeço Data: / / : hs 2. OBJETIVOS: 2.1.

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 013 PROTOCOLO CT-Floresta - LPC - FOI/004 05/0/013 Aprovado: Mara Luza Otero D'Almeda / SUMÁRIO 1 INTRODUÇÃO... 1 PÚBLICO ALVO...

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR - Mecânca Computaconal para Mecatrônca CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problema de derencação numérca aparentemente é semelante ao de ntegração numérca ou seja obtendo-se um polnômo nterpolador

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

REGRESSÃO LINEAR ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO CURVILÍNEA FUNÇÃO QUADRÁTICA VERIFICAÇÃO DO AJUSTE A UMA RETA PELO COEFICIENTE 3 X 3

REGRESSÃO LINEAR ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO CURVILÍNEA FUNÇÃO QUADRÁTICA VERIFICAÇÃO DO AJUSTE A UMA RETA PELO COEFICIENTE 3 X 3 ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO LINEAR Verfcado, pelo valor de r, que ocorre uma sgnfcante correlação lnear entre duas varáves há necessdade de quantfcar tal relação, o que é feto pela análse

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014)

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014) Método dos Mínmos Quadrados com ênfase em varâncas e com recursos matrcas (3//4) Otavano Helene Curso de etensão unverstára, IFUSP, feverero/4 Baseado no lvro Método dos Mínmos Quadrados com Formalsmo

Leia mais

Instituto de Física de São Carlos-USP. Licenciatura em Ciências Exatas. Laboratório de Física B - SLC0569. Volume 2: Ondas, Fluidos, Calor

Instituto de Física de São Carlos-USP. Licenciatura em Ciências Exatas. Laboratório de Física B - SLC0569. Volume 2: Ondas, Fluidos, Calor Insttuto de Físca de São Carlos-USP Lcencatura em Cêncas Exatas Laboratóro de Físca B - SLC0569 Volume : Ondas, Fludos, Calor Ano 009 1 Lcencatura em Cêncas Exatas IFSC - USP Laboratóro de Físca B (SLC0569)

Leia mais

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA Pedro Luz Rocha Evandro Parente Junor pedroluzrr04@gmal.com evandroparentejr@gmal.com Laboratóro de Mecânca Computaconal e Vsualzação, Unversdade

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

PARTE I Componente teórica

PARTE I Componente teórica Gua de resolução TOPOGRAFIA Mestrado Integrado em ngenhara Cvl 1.º Semestre 016/017 1.ª Época 14 de janero de 017, 11h0m - Duração: h0m Sem consulta Materal admtdo só na parte II: calculadora PART I Componente

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO I Congresso Baano de Engenhara Santára e Ambental - I COBESA NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO Marcos Vnícus Almeda Narcso (1)

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenhara de Lorena EEL LOB1053 - FÍSICA III Prof. Dr. Durval Rodrgues Junor Departamento de Engenhara de Materas (DEMAR) Escola de Engenhara de Lorena (EEL) Unversdade

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM étodo de Ensao ágna 1 de 7 RESUO Este documento, que é uma norma técnca, estabelece o método para determnar a perda de massa por mersão em água, de corpos-de-prova compactados em laboratóro, com equpamento

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ADMINISTRAÇÃO ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Eemplos em STATA. Prof. Dr. Evandro Marcos

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Aula 10: Corrente elétrica

Aula 10: Corrente elétrica Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 28-2, 28-3, 28-4, 28-5 S. 26-2, 26-3, 26-4 T. 22-1, 22-2 Aula 10:

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

DETERMINAÇÃO DO FACTOR CONCENTRAÇÃO DE TENSÕES EM PLACAS UTILIZANDO A EXTENSOMETRIA COM VALIDAÇÃO NUMÉRICA

DETERMINAÇÃO DO FACTOR CONCENTRAÇÃO DE TENSÕES EM PLACAS UTILIZANDO A EXTENSOMETRIA COM VALIDAÇÃO NUMÉRICA DETERMINAÇÃO DO FACTOR CONCENTRAÇÃO DE TENSÕES EM PLACAS UTILIZANDO A EXTENSOMETRIA COM VALIDAÇÃO NUMÉRICA Fonseca, E.M.M. 1 ; Mesquta, L.R. 2 ; Calero, C. 3 ; Lopes, H. 4 ; Vaz. M.A.P. 5 Prof. Adjunta

Leia mais

6 Revisão Bibliográfica

6 Revisão Bibliográfica 45 6 Revsão Bblográfca 6. Métrcas Espacas A defnção da localzação dos pontos que formam uma cadea de suprmentos é um dos aspectos mas mportantes no planejamento de um sstema logístco. ormalmente estes

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Unversdade de São Paulo Escola Superor de Agrcultura Luz de Queroz Departamento de Cêncas Exatas Prova escrta de seleção para DOUTORADO em Estatístca e Expermentação Agronômca Nome do canddato (a): Questão

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

2. Introdução à Condução de Calor (Difusão de Calor)

2. Introdução à Condução de Calor (Difusão de Calor) 7. Introdução à Condução de Calor (Dfusão de Calor) Neste tem serão apresentados os processos de dfusão e convecção de grandezas físcas. presenta-se uma dedução das equações geras de balanço un e trdmensonal.

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO Rodrgo Mkosz Gonçalves John Alejandro Ferro Sanhueza Elmo Leonardo Xaver Tanajura Dulana Leandro Unversdade Federal do Paraná - UFPR

Leia mais

Órion MARATONA UFG FÍSICA. (Leonardo) NOME: Lista 03

Órion MARATONA UFG FÍSICA. (Leonardo) NOME: Lista 03 Óron ARATOA UFG FÍSICA (Leonardo) O: Lsta 03 01 - (FABC) A fgura representa um longo fo retlíneo percorrdo por uma corrente elétrca de ntensdade = 4mA. Podemos afrmar que a ntensdade do campo magnétco

Leia mais

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil Unversdade Federal de Santa Catarna UFSC Departamento de Engenhara Cvl Laboratóro de Efcênca Energétca em Edfcações - LabEEE Netuno 4 Manual do Usuáro Enedr Ghs Marcelo Marcel Cordova Floranópols, Junho

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Unversdade São Judas Tadeu Faculdade de Tecnologa e Cêncas Exatas Cursos de Engenhara Laboratóro de Físca Mesa de Forças Autor: Prof. Luz de Olvera Xaver F r = + = F1 + F + F1. F.cosα = ϕ β α BANCADA:

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais