Revisando Generalizações e expressões algébricas. Prof.ª: Aline Figueirêdo Nascimento

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Revisando Generalizações e expressões algébricas. Prof.ª: Aline Figueirêdo Nascimento"

Transcrição

1 Revisando Generalizações e expressões algébricas Prof.ª: Aline Figueirêdo Nascimento

2

3 Generalizações e expressões algébricas Ao analisarmos a expressão ( ) 6 + 3, observamos que ela possui uma seqüência de números separados por operações, sendo assim, podemos chamá-la de expressão numérica. A partir da definição de expressão numérica podemos chegar à definição de Expressões Algébricas: Chamamos de Expressões Algébricas uma expressão que envolve números, letras e operações indicadas entre eles. As letras em uma expressão algébrica representam qualquer número real. E são chamadas de incógnitas.

4 Generalizações e expressões algébricas Por Exemplo: Z + 8 Z é a minha incógnita, número qualquer (valor desconhecido). A soma de um número qualquer mais 8. 8 unidades a mais do que um número representado por Z. 7. W W é a minha incógnita, número qualquer (valor desconhecido). O produto de 7 por um número qualquer. O sétuplo de um número qualquer.

5

6 Simplificação de Expressões Algébricas Exemplos: y + y + y = 3y pois os termos são semelhantes (as letras são iguais e os seus expoentes também. m 7m = -6m pois os termos são semelhantes (as letras são iguais e os seus expoentes também. 5. (x + 2) 8. x utilizando a propriedade distributiva. 5x x x e 8x são termos semelhantes -3x como -3x e 10 não são semelhantes então não pode somar.

7 1) Represente algebricamente cada sentença a seguir: a) O dobro de um número adicionado a 20: b) A diferença entre x e y: c) O triplo de um número qualquer subtraído do quádruplo do número: d) Uma pessoa ganha R$ 30,00 por dia de trabalho. Para se efetuar o cálculo de quanto essa pessoa ganhará durante alguns dias de trabalho: e) A terça parte de um número menos o dobro desse número:

8 2) Determine a expressão que representa o perímetro das seguintes figuras: a) c) b) d)

9 3) Simplifique as expressões algébricas abaixo: a) 5xy + 12xy + 3xy b) 4xy 2xy + 7xy c) 4x 2xy + 3xy d) 13a +8x 2a +3x e) 8x +5x 13x f) 3x + 4x³ - 5x + x² + 2x

10 4) Calcule o perímetro do retângulo abaixo: Agora sabendo que, a = 3 cm e b = 2 cm, determine o valor numérico do seu perímetro e da sua área.

11 5)Calcular o valor numérico de x² - 7x + y, para x = 5 e y=-1.

12 Referências GIOVANNI. CASTRUCI. GIOVANNI JR. A Conquista da Matemática, 6ª Série. São Paulo; ed. FTD, pressao-algebrica.htm ao-algebrica.htm

13 Revisando Operações fundamentais com números inteiros Prof.ª: Aline Figueirêdo Nascimento

14 O conjunto dos números inteiros positivos recebe o nome de conjunto dos números naturais. Sendo ele: N = {0,1,2,3,4,5,6, } Enquanto que o conjunto dos números inteiros contempla também os inteiros negativos, constituindo o seguinte conjunto: Z = {,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8, }

15 Os números inteiros estão presentes até hoje em diversas situações do cotidiano da humanidade, como, por exemplo, para medir temperaturas, contar dinheiro, na indicação de altitudes ou profundidades, etc. Sua importância é indiscutível.

16 1) Em uma cidade do Alasca, o termômetro marcou 15 C pela manhã. Se a temperatura descer mais 13 C, o termômetro vai marcar: (A) - 28 C. (B) - 2 C. (C) 2 C. (D) 28 C.

17 2) Na reta numérica da figura abaixo, o ponto E corresponde ao número inteiro -9 e o ponto F, ao inteiro a--b--c--d--e--f--g--h--i--j--k--l--m Nessa reta, o ponto correspondente ao inteiro zero estará (A) sobre o ponto M. (B) entre os pontos L e M. (C) entre os pontos I e J. (D) sobre o ponto J.

18 3) Imagine que uma pessoa tem R$500,00 depositados em um banco e faça sucessivos saques: 1º saque: R$200,00 2º saque: R$100,00 3º saque: R$300,00 Qual o saldo no banco dessa pessoa após os saques?

19 4) O esquema a seguir representa a rua onde Elvira mora. a. Certo dia Elvira saiu de casa e fez o seguinte trajeto: foi até o correio mandar uma carta para sua amiga e em seguida foi assistir à missa. Comeu um lanche na padaria após à missa, foi ao banco pagar uma conta e foi buscar sua filha na escola, pararam na praça para tomar um sorvete foram para casa. Quantos metros Elvira andou nesse percurso?

20 b. Saindo da casa de Elvira, faça o seguinte trajeto sobre a reta numérica: 400 m para a direita, 300 m para a esquerda, 500 m para a direita, 300 m para a esquerda e 100 m para a esquerda. Em que local você parou da reta?

21 5) O termômetro está marcando - 10ºC: Indique a temperatura que o termômetro irá marcar se aumentar 15 C. a) + 10 b) 10 c) +5 d) n.d.a

22 6) Um avião partiu de um aeroporto situado 600 metros acima do nível do mar, com tempo bom e temperatura de 28ºC. Ao atingir a altitude máxima, de 3300 metros acima do nível do mar, o piloto avisou que a temperatura externa era de -40 C. Da decolagem até o momento em que foi atingida a altitude máxima, calcule quanto variou: a) a altitude do avião; b) a temperatura externa.

23 7) Rafael tem um saldo de R$ 500 reais na conta corrente. Se ele retirar R$ 700 e depois fizer um depósito de R$ 350,00. Qual será o saldo? a) + R$ 1500 b) + R$150 c) - R$ 150 d) - R$ 250

24 Referências BIGODE, José Lopes. Matemática Hoje é feita assim, 6ª Série. Editora FTD, iros/inteiros.htm

b) Quantos reais Renato tem a receber até o momento? R.: c) Quem obteve maior prejuízo e quem obteve maior lucro até o momento? R.

b) Quantos reais Renato tem a receber até o momento? R.: c) Quem obteve maior prejuízo e quem obteve maior lucro até o momento? R. EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 7º ANO - ENSINO FUNDAMENTAL - 1ª ETAPA ============================================================================================== 01- Assunto: Operação com Número

Leia mais

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL

ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA COLÉGIO FRANCO-BRASILEIRO NOME: N : TURMA: PROFESSOR(A: ANO: 7º DATA: / 07 / 0 Calcule o valor das expressões: a ( 6 ( ( EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA b { [ 9 ( ]} ( [ 6( ] c ( 9 : ( 7. ( ² +

Leia mais

Ensino Fundamental 1I Data: / /2015

Ensino Fundamental 1I Data: / /2015 Estudante: Educador: Patrícia Passos C. Curricular: Matemática 7º Ano/Turma: Ensino Fundamental 1I Data: / /015 01) Jonas está contente com o seu primeiro dia de trabalho. Ele vai ser ascensorista (cabineiro)

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 A afirmação é falsa ou verdadeira e porque? Todo divisor de 12 é múltiplo de 3 Questão 2 O mês de abril pode

Leia mais

Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Números Inteiros e Números Racionais Exercícios sobre Operações com Números Inteiros 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Exercícios sobre Operações

Leia mais

Conjunto dos números inteiros

Conjunto dos números inteiros E. M. E. F. MARIA ARLETE BITENCOURT LODETTI DISCIPLINA DE MATEMÁTICA PROFESSORA: ADRIÉLE RÉUS DE SOUZA Conjunto dos números inteiros O conjunto dos números inteiros é formado pelos algarismos inteiros

Leia mais

. a d iza r to u a ia p ó C II

. a d iza r to u a ia p ó C II II Sugestões de avaliação Matemática 8 o ano Unidade 3 5 Unidade 3 Nome: Data: 1. Complete as sentenças a seguir sobre expressões algébricas. Depois, cite um exemplo. a) Expressões algébricas são aquelas

Leia mais

Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b

Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Inequações do Primeiro Grau Quando comparamos dois números reais a e b, somente uma das três afirmações é verdadeira: a < b ou a = b ou a > b Se os números a e b forem distintos, então a < b ou a > b e

Leia mais

Plano de Recuperação Semestral 1º Semestre 2017

Plano de Recuperação Semestral 1º Semestre 2017 Disciplina: MATEMÁTICA Série/Ano: 7º ANO Professores: Tammy, Marcelo L., Rafael, Lots, Tiago Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS

OPERAÇÕES COM NÚMEROS RACIONAIS Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição

Leia mais

ax bx c 0, onde a, b e c são números reais quaisquer e a 0.

ax bx c 0, onde a, b e c são números reais quaisquer e a 0. Matemática Básica: Revisão 014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno 1 Aula 6 Equações do º grau com uma variável. Resolução de problemas. Objetivos: Conceituar e classificar equações do segundo

Leia mais

Z = {..., -4, -3, -2, -1, 0, +1, +2, +3,...}

Z = {..., -4, -3, -2, -1, 0, +1, +2, +3,...} Os números inteiros relativos são formados por todos os números inteiros negativos, pelo zero e por todos os números inteiros positivos. Z = {..., -4, -3, -2, -1, 0, +1, +2, +3,...} Ao conjunto dos números

Leia mais

ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro.

ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro. ATIVIDADE 1. Considere os números a seguir e responda: 5; -8; 0; 14; -100; 57; -18; 2/3; -0,4; -1 a) Quais deles são números naturais? b) Quais deles são números inteiros? c) Todo número natural é um número

Leia mais

ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 6º ANO ALUNO: TURMA: DATA:

ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 6º ANO ALUNO: TURMA: DATA: ESCOLA ESTADUAL AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA 6º ANO ALUNO: TURMA: DATA: 1) As estradas 1 e 2 ligam as cidades de Miramar e Mirante. A estrada 3 corta as outras duas. No mapa abaixo, estão representadas

Leia mais

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação

EQUAÇÃO DO 1º GRAU. Toda sentença aberta expressa por uma igualdade é uma equação EQUAÇÃO DO 1º GRAU Toda sentença aberta epressa por uma igualdade é uma equação Interessante : A palavra equação apresenta o prefio equa que em latim quer dizer igual. São Equações + 12 = 21 3 + 7 = 23

Leia mais

Aula 1: Revisando o Conjunto dos Números Reais

Aula 1: Revisando o Conjunto dos Números Reais Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos

Leia mais

CONJUNTOS NUMÉRICOS Questão 01 Dados os números racionais 2,3; ; ; ; ; ; ;, escreva:

CONJUNTOS NUMÉRICOS Questão 01 Dados os números racionais 2,3; ; ; ; ; ; ;, escreva: Educador: Flávia da C. Lemos C. Curricular: Matemática Data: / /2012 Estudante:. 7º Ano CONJUNTOS NUMÉRICOS Questão 01 Dados os números racionais 2,3; ; ; ; ; ; ;, escreva: a) Os números inteiros. b) Os

Leia mais

o altímetro é um aparelho que registra altitudes: alturas medidas em relação ao nível do mar. As

o altímetro é um aparelho que registra altitudes: alturas medidas em relação ao nível do mar. As o altímetro é um aparelho que registra altitudes: alturas medidas em relação ao nível do mar. As altitudes podem ser positivas, quando estão acima do nível do mar, ou negativas, quando estão abaixo do

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Provão. Matemática 5 o ano

Provão. Matemática 5 o ano Provão Matemática o ano 21 Sabemos que o tempo pode ser contado e medido. Selecione as unidades de medida de tempo indicadas pelos ponteiros de um relógio: a) dias, meses e anos. b) horas, dias e minutos.

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio. ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7ª Série / 8º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7ª Série / 8º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 7ª Série / 8º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 Observe as sequências de figuras: Continuando esta sequência,

Leia mais

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre

Colégio SOTER - Caderno de Atividades - 8º Ano - Matemática - 1º Bimestre A melhor maneira de nos prepararmos para o futuro é concentrar toda a imaginação e entusiasmo na execução perfeita do trabalho de hoje. Dale Carnegie 1. Conjuntos Numéricos 1) Pense e Responda: a) Qual

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA. 7º ano - Matemática LISTÃO DE FÉRIAS

COLÉGIO EQUIPE DE JUIZ DE FORA. 7º ano - Matemática LISTÃO DE FÉRIAS LISTÃO DE FÉRIAS 1. Resolva os seguintes problemas: a) A empresa Cami S.A. teve, em janeiro de 2012, um prejuízo de R$ 36.000,00 mas, em fevereiro, recuperou-se e teve um lucro de R$ 210.000,00. Qual foi

Leia mais

SISTEMA ANGLO DE ENSINO G A B A R I T O

SISTEMA ANGLO DE ENSINO G A B A R I T O Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS

Leia mais

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Universidade Federal do Pará - PARFOR Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Lista de Exercícios para Prova Substitutiva Assuntos Abordados: Polinômios, Produtos notáveis

Leia mais

Nome: nº. ano: data: / /

Nome: nº. ano: data: / / 7ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA (PRODUTOS NOTÁVEIS) Ensino Fundamental 8 Ano Vamos colocar em prática os seus conhecimentos matemáticos e tudo o que estudamos em aula sobre produtos

Leia mais

Unidade 1 Números inteiros

Unidade 1 Números inteiros Sugestões de atividades Unidade 1 Números inteiros 7 MATEMÁTICA 1 Matemática 1. Indique com um número positivo ou negativo: a) um lucro de R$ 5.500,00; b) um prejuízo de R$ 5.500,00; c) 5 graus abaixo

Leia mais

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³

Leia mais

Atividades de fixação 1 semestre / 8 ano

Atividades de fixação 1 semestre / 8 ano Querido (a) aluno (a), Atividades de fixação 1 semestre / 8 ano Os exercícios a seguir contemplarão alguns dos conteúdos abordados durante esse semestre. Faça com seriedade... 1-Expresse os números abaixo

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

1 Curso Eduardo Chaves-www.eduardochaves.com

1 Curso Eduardo Chaves-www.eduardochaves.com 1 Curso Eduardo Chaves-www.eduardochaves.com Lista de exercícios de equação do 2º grau, biquadrada e equações irracionais, para estudar para prova do 2º bimestre. 1) Resolva as seguintes equações do 2º

Leia mais

2-) Uma espécie de bactéria se reproduz duplicando-se ao final de cada minuto conforme mostra a tabela abaixo:

2-) Uma espécie de bactéria se reproduz duplicando-se ao final de cada minuto conforme mostra a tabela abaixo: 1-) ) Qual o valor da expressão: 2-) Uma espécie de bactéria se reproduz duplicando-se ao final de cada minuto conforme mostra a tabela abaixo: Supondo que nenhuma bactéria morreu, é correto afirmar que,

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNDAMENTAL 8-º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 8 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 1ª Etapa Ano: 7º Turma: 7.1

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 1ª Etapa Ano: 7º Turma: 7.1 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 1ª Etapa 2014 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 7º Turma: 7.1 Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

(- 48) = = - 6 (saldo negativo)

(- 48) = = - 6 (saldo negativo) Os Jogos Olímpicos são separados em duas fases históricas: a Antiga e a Moderna. a era Antiga, realizou-se a primeira Olimpíada no ano 776 a.c. (776 anos antes de Cristo), e a última, no ano 394 d.e. (394

Leia mais

Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo

Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo Lista de Exercícios 8 ano- Matemática VC Professora: Vanessa Vianna Macedo 1) Resolva as equações a seguir: a)18x - 43 = 65 b) 23x - 16 = 14-17x c) 10y - 5 (1 + y) = 3 (2y - 2) 20 d) x(x + 4) + x(x + 2)

Leia mais

Conjunto dos números inteiros. História dos números inteiros. 1º Texto

Conjunto dos números inteiros. História dos números inteiros. 1º Texto Conjunto dos números inteiros História dos números inteiros 1º Texto O homem criava situações interessantes na contagem de seus objetos, animais e etc., ao levar seu rebanho para a pastagem ele relacionava

Leia mais

OSASCO, DE DE 2012 NOME: PROF. 8º ANO. Data de entrega: 29/02/12 PESQUISA

OSASCO, DE DE 2012 NOME: PROF. 8º ANO. Data de entrega: 29/02/12 PESQUISA OSASCO, DE DE 2012 NOME: PROF. 8º ANO PESQUISA Data de entrega: 29/02/12 Faça uma pesquisa sobre A Matemática e a Arte, valorizando os conceitos de razão de ouro e retângulos áureos. A pesquisa deverá

Leia mais

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica: . Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo

Leia mais

Aula de Polinómios. Faculdade de Ciências e Tecnologias da Universidade de Coimbra. Departamento de Matemática. Ensino da Matemática I

Aula de Polinómios. Faculdade de Ciências e Tecnologias da Universidade de Coimbra. Departamento de Matemática. Ensino da Matemática I Faculdade de Ciências e Tecnologias da Universidade de Coimbra Departamento de Matemática Aula de Polinómios Ensino da Matemática I Professora: Helena Albuquerque (lena@mat.uc.pt) Autor: Tânia Isabel Duarte

Leia mais

CADERNO DE EXERCÍCIOS 1C

CADERNO DE EXERCÍCIOS 1C CADERNO DE EXERCÍCIOS 1C Ensino Fundamental Matemática Questão 1 2 Conteúdo Fração. Interpretação de problema envolvendo a relação parte todo. Soma de frações. Cálculo de área e situações problema envolvendo

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

BANCO DE QUESTÕES - ÁLGEBRA - 7º ANO - ENSINO FUNDAMENTAL ===========================================================================================

BANCO DE QUESTÕES - ÁLGEBRA - 7º ANO - ENSINO FUNDAMENTAL =========================================================================================== PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 7º ANO - ENSINO FUNDAMENTAL =========================================================================================== 01- Determine o módulo

Leia mais

Lista de 1 ponto para a p4 do 4 o Bimestre Equações e Plano cartesiano

Lista de 1 ponto para a p4 do 4 o Bimestre Equações e Plano cartesiano Lista de 1 ponto para a p4 do 4 o Bimestre Equações e Plano cartesiano 01. Imagine uma balança na qual 3 tabletes iguais de margarina mais 1 pacote de manteiga de 250 g equilibram 700 g de queijo. a) Escreva

Leia mais

Programa de Recuperação Paralela PRP - 01

Programa de Recuperação Paralela PRP - 01 Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 013 Disciplina: Matemática - 8º Ano Página 1 de 11-8/6/013-6:15 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Resolva a expressão: 1 0

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências Ver documento METAS CURRICULARES de MATEMÁTICA http://www.dgidc.min-edu.pt Números e Operações Números Naturais Operações com números naturais Regularidades - Relações numéricas composição e decomposição

Leia mais

TÓPICOS DE MATEMÁTICA FINANCEIRA PARA O ENSINO MÉDIO - PROF. MARCELO CÓSER

TÓPICOS DE MATEMÁTICA FINANCEIRA PARA O ENSINO MÉDIO - PROF. MARCELO CÓSER TÓPICOS DE MATEMÁTICA FINANCEIRA PARA O ENSINO MÉDIO - PROF. MARCELO CÓSER 1 PAGAMENTO DE DÍVIDAS Existem mais de uma maneira de se efetuar o pagamento de uma dívida. Ela pode ser toda liquidada em um

Leia mais

Colégio Paulo VI Aluno (a): Nº.: 7 º Ano Ensino Fundamental Turma: Turno: Matutino

Colégio Paulo VI Aluno (a): Nº.: 7 º Ano Ensino Fundamental Turma: Turno: Matutino Colégio Paulo VI Aluno (a): Nº.: 7 º Ano Ensino Fundamental Turma: Turno: Matutino Professora: Alessandra Disciplina: Matemática Data / /2011 1ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA ORIENTAÇÕES:

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

Cálculo Numérico Noções básicas sobre erros

Cálculo Numérico Noções básicas sobre erros Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

Roteiro de recuperação final Matemática 7 Ano

Roteiro de recuperação final Matemática 7 Ano Roteiro de recuperação final Matemática 7 Ano Nome: Nº Série/Ano Data: / / Professor(a): Décio/Fernanda/Vinicius VALOR,0 PONTOS Este roteiro tem o objetivo de promover maior qualidade de seu estudo para

Leia mais

Escola Secundária com 3º CEB de Lousada

Escola Secundária com 3º CEB de Lousada Escola Secundária com º CE de Lousada Ficha de Trabalho de Matemática do 8º no N.º7 ssunto: Ficha de Preparação para o Teste Intermédio (Parte ) bril 011 1. Indique qual das seguintes afirmações é verdadeira:

Leia mais

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol. FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória

Leia mais

CDI I Lista 0. Data da lista: 11/04/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete. (e) 3 (4.

CDI I Lista 0. Data da lista: 11/04/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete. (e) 3 (4. CDI I Lista 0 Data da lista: 11/0/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete 1. Calcule as expressões abaixo. a) 2 + 2 b) 5 2 + 1 2 e) 5 2 f) 5) ) c) 2

Leia mais

Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia

Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia Álvaro Andrini & Maria Vasconcellos SOLUÇÃO PRATICANDO MATEMÁTICA - 8º ANO Bacharel e Mestre em Física pela Universidade Federal da Bahia Maracás Bahia Março de 017 Sumário 1 Conjuntos Numéricos 3 1.1

Leia mais

8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5.

8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. 8º Ano Ficha de Trabalho 16 fevereiro de 2012 1) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. a) No enunciado são referidas duas variáveis, a quantidade (em kg) e o preço a

Leia mais

O uso de letras na linguagem matemática

O uso de letras na linguagem matemática O uso de letras na linguagem matemática Vimos que a linguagem matemática utiliza letras para representar propriedades, como por exemplo a propriedade distributiva: a(b + c) = ab + ac De fato as letras

Leia mais

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,

Leia mais

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos

AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO. Professores: Zélia e Edcarlos AULÃO DE MATEMÁTICA E GEOMETRIA DO 7º ANO Professores: Zélia e Edcarlos . Um ciclista percorreu 4,5 km de manhã. À tarde ele percorreu duas vezes e meia essa distância. Quantos quilômetros ele percorreu

Leia mais

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE TEMA I: INTERAGINDO COM OS NÚMEROS E FUNÇÕES N DESCRITOR

Leia mais

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 2º Ano Metas / Objetivos

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 2º Ano Metas / Objetivos de Avaliação Números e Operações Números Sistema de numeração decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até mil Reconhecer a paridade Descodificar o sistema de numeração

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro)

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Números e operações - Números

Leia mais

MATEMÁTICA DESCRITORES BIM3/2017

MATEMÁTICA DESCRITORES BIM3/2017 4º ANO Calcular o resultado de uma adição ou de uma subtração de números naturais. Calcular o resultado de uma multiplicação ou de uma divisão de números naturais Ler informações e dados apresentados em

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

poliiiómio (2v- REVER Quadrado do binómio: Diferença de quadrados: (o b)? a i 2ab b) +36

poliiiómio (2v- REVER Quadrado do binómio: Diferença de quadrados: (o b)? a i 2ab b) +36 REVER Para efetuar a multiplicaçâo de polinómios, utilizase a propliedade distributiva da multiplicaçào em relação à adição. Contudo, há casos especiais em que essa multipticaçáo pode ser realizada de

Leia mais

SIMULADO SARESP - MATEMÁTICA

SIMULADO SARESP - MATEMÁTICA SIMULADO SARESP - MATEMÁTICA Nome:...N 0 :... 6 a série... 01- Os números 2 e 1 ocupam na reta numérica abaixo as posições indicadas respectivamente pelas letras: (A) P, Q (B) Q, P (C) R, S (D) S, R 02.

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

... (<) 4.3. Unidade I: Números racionais - Multiplicação e divisão, propriedades; - Potências; e - Raiz quadrada e raiz cúbica.

... (<) 4.3. Unidade I: Números racionais - Multiplicação e divisão, propriedades; - Potências; e - Raiz quadrada e raiz cúbica. Unidade I: Números racionais - Multiplicação e divisão, propriedades; - Potências; e - Raiz quadrada e raiz cúbica. 1. Considere o conjunto 8 1 9 A 1 ; ; 0,; ; ; 81; ; ;1. 11 1.1. Indique os números que

Leia mais

PLANO DE AULA POLINÔMIOS

PLANO DE AULA POLINÔMIOS Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA POLINÔMIOS 1 Identificação

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 20 reais mais caro.

Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 20 reais mais caro. SISTEMA DE EQUAÇÕES CONTEÚDO Sistemas de equações do 1º grau com duas incógnitas AMPLIANDO SEUS CONHECIMENTOS Leia as frases: Havia no evento 00 pessoas, somando homens e mulheres. A diferença entre o

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 1.º Período Números e Operações Conteúdos Programados Aulas Previstas Aulas Dadas Números naturais Conhecer os numerais ordinais Utilizar corretamente

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 5º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 5º Teste de avaliação versão2. Grupo I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A 5º Teste de avaliação versão Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA

PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,

Leia mais

ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID. 11/04/2014 e 16/04/2014

ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID. 11/04/2014 e 16/04/2014 ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 11/04/2014 e 16/04/2014 Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui. Supervisora: Marlete Basso Roman Disciplina: Matemática

Leia mais

Calcule a distância percorrida por Aline para ir de sua casa até a praça sabendo que BC e EF são proporcionais a CD e DE.

Calcule a distância percorrida por Aline para ir de sua casa até a praça sabendo que BC e EF são proporcionais a CD e DE. QiD 1 9º ANO PARTE 4 MATEMÁTICA 1. (1,0) A imagem abaixo representa uma horta que Patrícia dividiu paralelamente em canteiros para plantar alface, cebolinha e almeirão. Patrícia cercou a horta com tela.

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,...

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,... SEQUÊNCIAS NUMÉRICAS Sequência numérica é uma sequência ou sucessão que tem como contradomínio (conjunto de chegada) o conjunto dos números reais. As sequências numéricas podem ser finitas, quando é possível

Leia mais

Agrupamento de Escolas de Portela e Moscavide

Agrupamento de Escolas de Portela e Moscavide Domínio: NÚMEROS E OPERAÇÕES (NO2) Números Naturais (Conhecer os numerais ordinais) 1.Utilizar corretamente os numerais ordinais até vigésimo. Números Naturais ( Contar até mil) 1.Estender as regars de

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 2.º Ano letivo 2013.2014 Disciplina Matemática Turmas: 2º ano Professores: todos os docentes do 2.º

Leia mais

Avaliação de Pernambuco

Avaliação de Pernambuco Avaliação de Pernambuco 2013 Matemática 9º ano do Ensino Fundamental Caro(a) Estudante, Siga as orientações básicas a seguir: Leia com atenção cada questão antes de respondê-la. Cada questão tem uma única

Leia mais

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4}

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4} AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Equações do º grau ) Verifique se o número 9 é raiz da equação - 8 0. Se 9 for raiz, terá de satisfazer a equação: 9 -.9 8 8-99 8 0 Então 9 é raiz da equação

Leia mais

Ensino Médio Unidade Parque Atheneu Professor (a): Junior Condez Aluno (a): Série: 3ª Data: / / LISTA DE FÍSICA II

Ensino Médio Unidade Parque Atheneu Professor (a): Junior Condez Aluno (a): Série: 3ª Data: / / LISTA DE FÍSICA II Ensino Médio Unidade Parque Atheneu Professor (a): Junior Condez Aluno (a): Série: 3ª Data: / / 2015. LISTA DE FÍSICA II 1) Duas bolas de dimensões desprezíveis se aproximam uma da outra, executando movimentos

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor

Leia mais

Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento

Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento Conjuntos numéricos Prof.ª: Aline Figueirêdo Nascimento Introdução É indiscutível que os números exercem influência marcante no dia a dia dos seres humanos. Na economia global, por exemplo, os indicadores

Leia mais

Nome: nº Data: / / FICHA DE TRABALHO MATEMÁTICA

Nome: nº Data: / / FICHA DE TRABALHO MATEMÁTICA Nome: nº Data: / / Professora: Tosca Regina Xocaira Hannickel FICHA DE TRABALHO MATEMÁTICA QUESTÃO 01 (Descritor: calcular o perímetro de um circuito utilizando a conseqüência do Teorema de Tales ) Assunto:

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Aluno (a): Para as questões de Ciências Exatas têm que ser apresentados os respectivos cálculos.

Aluno (a): Para as questões de Ciências Exatas têm que ser apresentados os respectivos cálculos. Aluno (a): Matemática 1ª) Determine o conjunto solução das equações a seguir. a) x 4 + 2x 2 + 1 = 0 b) m 4 2m 2 8 = 0 c) 3x + 16 = 4 d) 2x 3 = x 1 2ª) A soma dos inversos de dois números inteiros e consecutivos

Leia mais