Isometrias ESCOLA SECUNDÁRIA ANSELMO DE ANDRADE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Isometrias ESCOLA SECUNDÁRIA ANSELMO DE ANDRADE"

Transcrição

1 Isometrias

2 Isometria: do grego ισο + μέτρο (ισο = iso = igual; μέτρο = metria = medida) Uma isometria é uma transformação geométrica que preserva as distâncias entre pontos e consequentemente as amplitudes dos ângulos, transformando uma figura noutra figura congruente.

3 Existem quatro tipos de isometrias: Rotação Translação Reflexão Reflexão deslizante

4 ROTAÇÃO A Fig. 2 O que é uma rotação? O Rodar uma figura em torno de um ponto chamado centro de rotação (O). Fig. 1 A 180º A distância dos pontos ao centro de rotação mantém-se constante.

5 ROTAÇÃO Numa rotação: um segmento de recta é transformado num segmento de recta congruente um ângulo é transformado noutro ângulo congruente e com o mesmo sentido Uma rotação é uma transformação geométrica, associada a um ponto, o centro da rotação, e a um ângulo, cuja amplitude pode ser positiva ou negativa.

6 ROTAÇÃO Associado ao conceito de rotação está o conceito de ângulo orientado. Convencionou-se que a rotação tem sentido positivo quando a rotação se efectua no sentido contrário ao do movimento dos ponteiros de um relógio. Quando se efectua uma rotação no sentido do movimento dos ponteiros de um relógio, então diz-se que se efectuou uma rotação no sentido negativo. Sentido positivo ângulo orientado +90º Sentido negativo ângulo orientado -90º

7 Rotação no sentido positivo Rotação no sentido negativo

8 Pavimentações usando as rotações

9 Pavimentações usando as rotações

10 TRANSLAÇÃO O que é uma translação? Vector v Fig. 1 Fig. 2 Deslocamento de uma figura segundo um vector (um vector é um ser matemático que é caracterizado por uma direcção, um sentido e um comprimento).

11 TRANSLAÇÃO Em baixo, a figura B é a imagem da figura A pela translação T no plano. A figura A é a figura original (o objecto) e a figura B é a sua imagem (o transformado) através de uma translação. José 11

12 TRANSLAÇÃO Na figura que podes observar agora, o deslocamento foi feito segundo a mesma direcção e o mesmo sentido, mas não foi mantida a distância em todos os deslocamentos. A figura D não foi obtida por translação da figura C. Não existe nenhuma translação que permita obter a figura D a partir da figura C. José 12

13 TRANSLAÇÃO Uma translação transforma uma figura numa outra figura geometricamente igual. Todos os pontos da figura transformada (imagem) resultam de um deslocamento de todos os pontos da figura original definidos por: uma direcção; um sentido; um comprimento. José 13

14 TRANSLAÇÃO Todos os segmentos orientados que têm a mesma direcção, o mesmo sentido e o mesmo comprimento (ou norma) representam o mesmo vector. O vector é o representante de todos os segmentos de recta equipolentes (ou seja, com a mesma direcção, mesmo sentido e mesmo comprimento). José 14

15 TRANSLAÇÃO Um vector fica então definido desde que se conheça: a direcção (que é dada pela recta onde esse vector se encontra: - a recta suporte do vector) o sentido (um dos dois possíveis na direcção) o comprimento (ou norma) José 15

16 TRANSLAÇÃO Consideremos o triângulo da figura abaixo e vamos obter a sua imagem através da translação associada ao vector representado a vermelho. 1.º passo: A partir de cada um dos vértices do triângulo, com régua e esquadro, vamos traçar paralelas com a direcção do vector dado José 16

17 TRANSLAÇÃO 2.º passo: Abrimos o compasso com comprimento igual ao do vector dado 3.º passo: Marcam-se as imagens dos vértices, respeitando o sentido indicado pelo vector José 17

18 TRANSLAÇÃO 4.º passo: Traçam-se os lados do novo triângulo cujos vértices são as imagens obtidas, obtendo-se a translação da figura original José 18

19 PROPRIEDADES DA TRANSLAÇÃO Concluindo: Uma translação transforma um segmento de recta num outro segmento de recta paralelo e congruente. Uma translação transforma um ângulo noutro ângulo congruente (com a mesma amplitude). Uma translação transforma uma figura noutra figura geometricamente igual. José 19

20 Translação associada ao vector u=(1,1)

21 Pavimentações usando as translações

22 Pavimentações usando as translações

23 REFLEXÃO O que é uma reflexão? Reflexão em redor de um eixo. Dada uma recta L chama-se reflexão em torno do eixo L ao movimento que transforma um ponto C em outro ponto C' verificando que: O segmento CC' é perpendicular a L. Os pontos C e C' são equidistantes do eixo L. Dito de outra forma o eixo L é a mediatriz do segmento CC'

24 Reflexão

25 Exemplos de Reflexões

26 REFLEXÃO DESLIZANTE O que é uma reflexão deslizante? A reflexão deslizante é a combinação de uma reflexão com uma translação. A figura que resulta da combinação de uma reflexão com uma translação chama-se de reflexão deslizante. O vector associado à translação tem de ser paralelo ao eixo de reflexão

27 Reflexão deslizante O quadrilátero [ABCD] é reflectido segundo uma reflexão obtendo-se o quadrilátero [A B C D ]. Em seguida, sofre uma translação associada ao vector u, obtendo-se o quadrilátero [A B C D ]. Assim, o quadrilátero [A B C D ] é a imagem do quadrilátero [ABCD] segundo uma reflexão deslizante.

28 SIMETRIAS

29 Existe uma simetria para cada um dos quatro tipos de isometrias: Simetria de Reflexão Simetria de Rotação Simetria de Translação Simetria de reflexão deslizante

30 SIMETRIA DE REFLEXÃO Existe, pelo menos, uma reflexão que deixa a figura globalmente invariante. Tal pode ser identificado se conseguirmos dobrar a figura de tal modo que as duas partes obtidas se sobreponham exactamente se conseguirmos colocar um espelho sobre a figura de modo a que a junção da parte reflectida com a não reflectida seja exactamente igual à figura toda

31 SIMETRIA DE REFLEXÃO A simetria de reflexão também se designa por simetria axial; o eixo de reflexão também se designa por eixo de simetria ou linha de simetria

32 EIXO DE SIMETRIA Eixo de simetria de uma figura é a recta sobre a qual se faz a dobra ou se coloca o espelho/mira que divide a figura ao meio de modo que uma metade da figura seja a reflexão da outra metade. Caso contrário, a recta não é eixo de simetria.

33 EIXOS DE SIMETRIA 1 eixo 2 eixos 6 eixos 1 eixo 2 eixos Não tem eixos

34 EIXOS DE SIMETRIA numa circunferência Os eixos de simetria duma circunferência são as rectas que passam pelo centro. Uma circunferência tem uma infinidade de eixos de simetria.

35 EIXOS DE SIMETRIA em polígonos regulares Triângulo Quadrado Pentágono Hexágono Octógono 3 lados 4 lados 5 lados 6 lados 8 lados 3 eixos 4 eixos 5 eixos 6 eixos 8 eixos Um polígono regular com n lados tem n eixos de simetria

36 EIXOS DE SIMETRIA em polígonos regulares Se o número de lados do polígono regular é ímpar, cada um dos eixos de simetria une um vértice ao ponto médio do lado oposto

37 EIXOS DE SIMETRIA em polígonos regulares Se o número de lados do polígono regular é par, cada um dos eixos de simetria une dois vértices opostos ou une os pontos médios dos lados opostos

38 SIMETRIA DE ROTAÇÃO Existe, pelo menos, uma rotação com uma amplitude superior a 0º e inferior a 360º que deixa a figura globalmente invariante. Tal pode ser identificado se conseguirmos girar a figura em torno de um ponto fixo (centro da figura), de modo a que a imagem resultante, através da rotação, coincida com a figura original.

39 SIMETRIA DE ROTAÇÃO Figura original Um terço de volta 120º Dois terços de volta 240º Um volta inteira 360º O centro da simetria rotacional é o ponto em torno do qual a figura roda (centro da figura) O ângulo da simetria rotacional é o ângulo orientado que descreve o movimento da figura

40 Exemplos de simetrias de rotação

41 SIMETRIA DE REFLEXÃO DESLIZANTE Esta simetria de reflexão deslizante caracteriza-se por ser uma reflexão que envia a pegada de baixo para cima seguida de um deslizamento que a faz avançar um passo. r 1º A pegada sofre uma reflexão em torno da recta r. 2º A pegada sofre uma translação na direcção e no sentido de um vector paralelo ao eixo de simetria. NOTA: Só existe simetria de reflexão deslizante em figuras infinitas

42 FIM

Agrupamento de Escolas O Rouxinol Escola Básica 2, 3 de Corroios Matemática 8ºAno: Translações. Translações

Agrupamento de Escolas O Rouxinol Escola Básica 2, 3 de Corroios Matemática 8ºAno: Translações. Translações Translações 1 Se reparares com atenção, podes observar que certos elementos se repetem periodicamente, numa determinada direcção e sentido. 2 Nos azulejos, por exemplo, podes observar essa repetição. 3

Leia mais

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO -

ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - ISOMETRIAS - TRANSLAÇÃO, ROTAÇÃO E REFLEXÃO - MATEMÁTICA 8º Ano Professora: Patrícia Isidoro Antes de Começar para recordar Posição relativa de duas retas no plano Retas Concorrentes Perpendiculares Oblíquas

Leia mais

Existem quatro tipos de simetrias de uma figura plana:

Existem quatro tipos de simetrias de uma figura plana: Escola Secundária de Lousada Matemática do 8º ano FT nº11 Data: / 11/ 2011 Assunto: Tipos de simetrias; rosáceas, frisos e padrões Lição nº e SIMETRIA: Quando a imagem de uma figura, através de uma isometria

Leia mais

Matemática do 8º ano FT nº7 Data: / 10 / 2011 Assunto: Isometrias: resumo Lição nº e. 1, pela reflexão de eixo r ( F

Matemática do 8º ano FT nº7 Data: / 10 / 2011 Assunto: Isometrias: resumo Lição nº e. 1, pela reflexão de eixo r ( F Escola Secundária de Lousada Matemática do 8º ano FT nº7 Data: / 10 / 2011 Assunto: Isometrias: resumo Lição nº e REFLEXÃO A reflexão: é uma isometria negativa, já que altera a orientação dos ângulos.

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Abril 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

Que imagens têm ou não têm simetria?

Que imagens têm ou não têm simetria? O mundo da simetria Que imagens têm ou não têm simetria? Isometrias Isometria: Transformação geométrica que preserva as distâncias; as figuras do plano são transformadas noutras geometricamente iguais.

Leia mais

Tema: Circunferência e Polígonos. Rotações

Tema: Circunferência e Polígonos. Rotações Nome: N.º: Turma: 9.º no Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência e Polígonos. Rotações 1. Na figura está representado um decágono regular [ BCDEFGHIJ

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2012/2013 Ficha de Trabalho Fevereiro 2013 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

SOLUCÃO DAS ATIVIDADES COM MOSAICOS

SOLUCÃO DAS ATIVIDADES COM MOSAICOS SOLUCÃO DAS ATIVIDADES COM MOSAICOS. Medidas dos ângulos internos dos polígonos regulares convexos, em graus. Lados Ângulo interno Lados Ângulo interno 2 50 4 90 5 56 5 08 8 6 20 20 62 7 28 4 24 65 7 8

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta

Leia mais

MATEMÁTICA Polígonos e circunferências. Circunferência

MATEMÁTICA Polígonos e circunferências. Circunferência MTEMÁTI ircunferência hama-se circunferência de centro e raio r ao conjuntos de pontos do plano cuja a distância ao ponto é igual a r. Uma circunferência de centro e raio r designa-se geralmente por (,

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro)

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Números e operações - Números

Leia mais

PAVIMENTAÇÕES. vértice do polígono que não é vértice da pavimentação

PAVIMENTAÇÕES. vértice do polígono que não é vértice da pavimentação PAVIMENTAÇÕES Uma pavimentação no plano é a cobertura do plano de modo a que não haja sobreposições nem espaços vazios. Uma pavimentação diz-se monoédrica ou pura se for constituída pela repetição de um

Leia mais

Exercícios Recuperação 2º semestre

Exercícios Recuperação 2º semestre ENSINO FUNDAMENTAL II Aluno: Ano: 6 Turno: Matutino Turma: Data: / / 2014 DG Professor (a):lucimar Exercícios Recuperação 2º semestre QUESTÃO 01 Polígono é uma figura geométrica cuja palavra é proveniente

Leia mais

GEOMETRIA NO PLANO. Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico a uma dimensão).

GEOMETRIA NO PLANO. Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico a uma dimensão). GEOMETRIA NO PLANO 1 Noções Elementares Ponto O objecto geométrico mais elementar (sem dimensão). Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

Novo Programa de Matemática do Ensino Básico - 3º Ciclo

Novo Programa de Matemática do Ensino Básico - 3º Ciclo Proposta de cadeia de tarefas para o 8.º ano - 3.º ciclo Isometrias Autores: Professores das turmas piloto do 8.º ano de escolaridade Ano Lectivo 2009/2010 Outubro de 2010 Isometrias Página 1 Índice Introdução

Leia mais

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Geometria e Medida 3.º ciclo Grandes temas: 1. Continuação do estudo dos polígonos

Leia mais

Oferenda Musical de Bach. Série Matemática na Escola

Oferenda Musical de Bach. Série Matemática na Escola Oferenda Musical de Bach Série Matemática na Escola Objetivos 1. Apresentar isometrias no plano por meio de uma música chamada Oferenda Musical de Bach; 2. Discutir isometria na música, isometria nas artes,

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

FIGURAS GEOMÉTRICAS. MEDIDA

FIGURAS GEOMÉTRICAS. MEDIDA 7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Propriedades dos trapézios, paralelogramos e papagaios Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família

Leia mais

Plano Curricular de Matemática 6ºAno - 2º Ciclo

Plano Curricular de Matemática 6ºAno - 2º Ciclo Plano Curricular de Matemática 6ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Geometria Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental

Leia mais

ASSUNTO PLANIFICAÇÃO ANUAL 6º ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS

ASSUNTO PLANIFICAÇÃO ANUAL 6º ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 6º ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO EB 2.3 DE SÃO JOÃO DO ESTORIL 2016/17 MATEMÁTICA PERFIL DO ALUNO PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO /DOMÍNIOS NUMEROS E OPERAÇÕES NO5 GEOMETRIA E MEDIDA GM5 ALG5 ORGANIZAÇÃO E TRATAMENTO

Leia mais

>> REVISÕES GERAIS: Transformações rígidas do plano

>> REVISÕES GERAIS: Transformações rígidas do plano GD AULA TEÓRICA 1 Apresentação do programa e objectivos da disciplina, bibliografia, critérios de avaliação e informações gerais. Revisões gerais sobre o tipo de projecções e sistemas de representação.

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Figura disponível em: .

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

MOSAICOS, FAIXAS E ROSETAS NO GEOGEBRA

MOSAICOS, FAIXAS E ROSETAS NO GEOGEBRA MOSAICOS, FAIXAS E ROSETAS NO GEOGEBRA Sérgio Carrazedo Dantas Universidade Estadual do Paraná (UNESPAR) sergio@maismatematica.com.br Guilherme Francisco Ferreira Universidade Estadual Paulista (UNESP)

Leia mais

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 011 Assunto: Preparação para o Exame Nacional 1. Copia o triângulo [ ABC ] para o teu caderno. Desenha o triângulo [ A '

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

Matriz da Prova Global do Agrupamento. Matemática - 6.º Ano. Agrupamento de Escolas Silves Sul. Direção de Serviços Região Algarve

Matriz da Prova Global do Agrupamento. Matemática - 6.º Ano. Agrupamento de Escolas Silves Sul. Direção de Serviços Região Algarve Matriz da Prova Global do Agrupamento Direção de Serviços Região Algarve Agrupamento de Escolas Silves Sul Matemática - 6.º Ano Tipo de prova: Teórica Matriz: A,B,C Duração: 60 minutos Figuras geométricas

Leia mais

exercícios de perspectiva linear

exercícios de perspectiva linear G E O M E T R I A D E S C R I T I V A E C O N C E P T U A L I exercícios de perspectiva linear MESTRADOS INTEGRADOS EM ARQUITECTURA e LICENCIATURA EM DESIGN - FA/UTL - 2010/2011 Prof.Aux. António Lima

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

A Geometria nas Provas de Aferição

A Geometria nas Provas de Aferição Escola E.B. 2 e 3 de Sande Ficha de Trabalho de Matemática 6.º Ano A Geometria nas Provas de Aferição Nome: N.º Turma: 1. Assinala com um x a figura em que os triângulos representados são simétricos em

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Algumas propriedades dos quadriláteros Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família dos paralelogramos.

Leia mais

EXPLORANDO A GEOMETRIA DO ENSINO FUNDAMENTAL POR MEIO DE REFLEXÕES, TRANSLAÇÕES E ROTAÇÕES.

EXPLORANDO A GEOMETRIA DO ENSINO FUNDAMENTAL POR MEIO DE REFLEXÕES, TRANSLAÇÕES E ROTAÇÕES. EXPLORNDO GEOMETRI DO ENSINO FUNDMENTL POR MEIO DE REFLEXÕES, TRNSLÇÕES E ROTÇÕES. Lilian Nasser IM/UFRJ e CETIQT/SENI Geneci de Sousa SEE/RJ, SME/RJ José lexandre Pereira SEE/RJ, SME/RJ Projeto Fundão

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Definição de Polígono

Definição de Polígono Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais

Leia mais

Nesse texto abordamos a construção de polígonos com a utilização do mouse e por meio da digitação de comandos na Entrada.

Nesse texto abordamos a construção de polígonos com a utilização do mouse e por meio da digitação de comandos na Entrada. 12 Nesse texto abordamos a construção de polígonos com a utilização do mouse e por meio da digitação de comandos na Entrada. POLÍGONOS A ferramenta Polígono possibilita construir polígonos a partir de

Leia mais

19 de Outubro de 2012

19 de Outubro de 2012 Escola Básica Integrada com JI de Santa Catarina Ficha de Avaliação de Matemática 19 de Outubro de 2012 A PREENCHER PELO ALUNO 8ºano Nome: nº Turma A PREENCHER PELO PROFESSOR Classificação: Nível: ( )

Leia mais

GEOMETRIA: POLÍGONOS

GEOMETRIA: POLÍGONOS Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

DESENHAR COM PRECISÃO - O SISTEMA DE COORDENADAS

DESENHAR COM PRECISÃO - O SISTEMA DE COORDENADAS DESENHAR COM PRECISÃO - O SISTEMA DE COORDENADAS Para criar linhas, polígonos, sólidos ou outros objetos, sempre teremos que informar o Rhino o ponto de partida e o ponto final. Tais pontos podem ser criados

Leia mais

Nome: Professora: Cristina Alves

Nome: Professora: Cristina Alves Escola Básica e Secundária de Vila Cova Ano letivo: 2012/2013 Outubro 2012 Ficha de Avaliação Formativa Matemática 8º Ano Isometrias Com trabalho e perseverança, tudo se alcança Nome: Nº: Turma: Professora:

Leia mais

ATIVIDADES COM GEOPLANO QUADRANGULAR

ATIVIDADES COM GEOPLANO QUADRANGULAR ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

Escola Secundária c/3º CEB de Lousada

Escola Secundária c/3º CEB de Lousada Escola Secundária c/3º CEB de Lousada Planificação Anual da Disciplina de Matemática 9º Ano Ano Lectivo: 2011/2012 CONTEÚDOS 1º PERÍODO OBJECTIVOS E COMPETÊNCIAS Nº de Tempos (45min.) Equações -Equações

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Exame Nacional de a chamada

Exame Nacional de a chamada Exame Nacional de 007. a chamada 1. O Paulo tem dois dados, um branco e um preto, ambos equilibrados e com a forma de um cubo. As faces do dado branco estão numeradas de 1 a, e as do dado preto estão numeradas

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2014 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

FICHA N.º1:Isometrias: Reflexão, rotação e translação ISOMETRIAS

FICHA N.º1:Isometrias: Reflexão, rotação e translação ISOMETRIAS FICHA N.º1:Isometrias: Reflexão, rotação e translação Matemática 8º Ano Aluno: Data: / /2013 Nº Ano/Turma: 8º ISOMETRIAS Uma ISOMETRIA (iso = igual, metria = medição) é uma transformação geométrica que

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

AGRUPAMENTO DE ESCOLAS SANTO ANTÓNIO - PAREDE ESCOLA EB23 DE SANTO ANTÓNIO - PAREDE

AGRUPAMENTO DE ESCOLAS SANTO ANTÓNIO - PAREDE ESCOLA EB23 DE SANTO ANTÓNIO - PAREDE NOTA: O formulário e a tabela trigonométrica encontram-se nas páginas e da prova e não nas páginas e 4 como é referido nas Instruções Gerais. 1. 1.1. Número de casos possíveis = Número de casos favoráveis

Leia mais

AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS

AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS ESCOLA E.B. /3 DE PEDROUÇOS DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS GRUPO DISCIPLINAR DE MATEMÁTICA º CICLO PLANIFICAÇÃO DE MATEMÁTICA 6º ANO Ano

Leia mais

5. Desenhos geométricos

5. Desenhos geométricos 17 Exercícios: 1. Na folha A4 impressa escreva o alfabeto com letras maiúsculas e minúsculas e a numeração de 0 a 9, com letras verticias. Faça ainda a legenda da folha 2. Na folha A4 impressa escreva

Leia mais

15º EREPM, 30/4/2011- Bragança. O mundo da simetria. Reflectindo sobre desafios do PMEB. Ana Maria Roque Boavida ana.boavida@ese.ips.

15º EREPM, 30/4/2011- Bragança. O mundo da simetria. Reflectindo sobre desafios do PMEB. Ana Maria Roque Boavida ana.boavida@ese.ips. 15º EREPM, 30/4/2011- Bragança O mundo da simetria Reflectindo sobre desafios do PMEB Ana Maria Roque Boavida ana.boavida@ese.ips.pt Observando o PMEB tendo a simetria por horizonte Tópicos Objectivos(extractos)

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012

ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012 Escola Martim de Freitas ESCOLA BÁSICA 2,3 MARTIM DE FREITAS NÚCLEO DE ESTÁGIO DE MATEMÁTICA ANO LETIVO 2011/2012 Disciplina de Matemática Tópico: Isometrias Ficha de Trabalho n.º 1 Data: 20 / 10 / 2011

Leia mais

O origami no ensino da Matemática

O origami no ensino da Matemática O origami no ensino da Matemática A construção de um origami parte sempre da dobragem de uma folha de papel num quadrado perfeito. Ao voltarmos a dobrar este quadrado podemos obter triângulos e outros

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

UNIDADE 1 ESTATÍSTICA E PROBABILIDADES 9 tempos de 45 minutos

UNIDADE 1 ESTATÍSTICA E PROBABILIDADES 9 tempos de 45 minutos EBIAH 9º ANO PLANIFICAÇÃO A LONGO E MÉDIO PRAZO EBIAH PLANIFICAÇÃO A MÉDIO PRAZO 9º ANO - 1º Período Integração dos alunos 1 tempo ESTATÍSTICA A aptidão para entender e usar de modo adequado a linguagem

Leia mais

MAT-230 Diurno 1ª Folha de Exercícios

MAT-230 Diurno 1ª Folha de Exercícios MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e

Leia mais

PAVIMENTAÇÕES DO PLANO POR POLÍGONOS REGULARES E VISUALIZAÇÃO EM CALEIDOSCÓPIOS

PAVIMENTAÇÕES DO PLANO POR POLÍGONOS REGULARES E VISUALIZAÇÃO EM CALEIDOSCÓPIOS PAVIMENTAÇÕES DO PLANO POR POLÍGONOS REGULARES E VISUALIZAÇÃO EM CALEIDOSCÓPIOS Marli Regina dos Santos Universidade Federal de Viçosa marliregs@hotmail.com Claudemir Murari Universidade Estadual Paulista

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Os ângulos são formados por duas semi-retas que têm a mesma origem O. OBS.: o ângulo é denominado

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade

PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade Nome: N.º Turma Data: / / Avaliação Professor Encarregado Educação Parte 1: 35 minutos. (é permitido o uso de calculadora) 1 2 1. Sabe-se que A ]3, 21 21 ] = ] 2, ]. 2 2 Qual dos conjuntos seguintes poderá

Leia mais

MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO

MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO Produto Final da Dissertação apresentada à Pontifícia Universidade Católica de São Paulo

Leia mais

Regulares, são só esses?

Regulares, são só esses? Reforço escolar M ate mática Regulares, são só esses? Dinâmica 8 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Ensino Médio 2ª Geométrico Introdução à Geometria Espacial Primeira Etapa Compartilhar

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com º ciclo D. Dinis 0º no de Matemática TEM Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Tarefa nº 5 FUNÇÕES LINERES E VRIÇÃO DE PRÂMETROS. Considere as seguintes

Leia mais

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 6ºANO 1º Período 2º Período 3º Período Apresentação,

Leia mais

Estudo de Geometria. Iniciação ao. » Passeio no Parque» Circunferências

Estudo de Geometria. Iniciação ao. » Passeio no Parque» Circunferências Iniciação ao Estudo de Geometria com TI-Nspire» Passeio no Parque» Circunferências P Estrada Parque CONTEÚDO ELABORADO PELO GRUPO T 3 PORTUGAL, UTILIZADO NAS SESSÕES PRÁTICAS DOS DIAS T 3 2014 I. Passeio

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano

Leia mais

ATIVIDADES COM VARETAS

ATIVIDADES COM VARETAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento.

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 9 (entregar em 11-03-011)

Leia mais

Revisional 3 Bim - MARCELO

Revisional 3 Bim - MARCELO 6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

Aula 15 Parábola. Objetivos

Aula 15 Parábola. Objetivos MÓDULO 1 - AULA 15 Aula 15 Parábola Objetivos Descrever a parábola como um lugar geométrico determinando a sua equação reduzida nos sistemas de coordenadas com eixo x paralelo à diretriz l e origem no

Leia mais

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas 1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

Agrupamento de Escolas Dr. Vieira de Carvalho

Agrupamento de Escolas Dr. Vieira de Carvalho Agrupamento de Escolas Dr. Vieira de Carvalho P L A N I F I C A Ç Ã O A N U A L D E M A T E M Á T I C A 6 º A NO ANO LETIVO 2016/2017 1 o PERÍODO DOMÍNIO: Números e operações NO6 1 - Números naturais Números

Leia mais

ÂNGULOS. Dados dois pontos distintos, a reunião do conjunto desses dois pontos com o conjunto dos pontos que estão entre eles é o segmento de reta.

ÂNGULOS. Dados dois pontos distintos, a reunião do conjunto desses dois pontos com o conjunto dos pontos que estão entre eles é o segmento de reta. ÂNGULOS 1 CONSIDERAÇÕES PRELIMINARES 1.1 Notação de ponto, reta e plano: a) Letras: Ponto: letras maiúsculas: A, B, C,... Reta: letras minúsculas: a,b,c... Plano: letras gregas minúsculas: α, β, γ,...

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

Matemática Régis Cortes GEOMETRIA PLANA

Matemática Régis Cortes GEOMETRIA PLANA GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d

Leia mais

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo:

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo: 2 Conteúdo: Aula Revisão 1: Geometria Polígonos: Classificação, nome, cálculo das diagonais e a soma dos ângulos internos. Congruência e Semelhança de triângulos 3 Conteúdo: Aula Revisão 2: Álgebra Polinômios:

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais