Aula 15. Integrais inde nidas Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Tamanho: px
Começar a partir da página:

Download "Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que"

Transcrição

1 Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada ou rimitiva de f se F e uma fun»c~ao cuja derivada e f. Como rimeiros eemlos, temos f() rimitiva de f() 3 3 e e sen cos Observa»c~ao 5. Se F e antiderivada de f em I, ec e uma constante, ent~ao F + c tamb em e uma antiderivada de f em I. De fato, se F 0 () =f(), aratodo I, ent~ao [F ()+c] 0 = F 0 () =f(), eortantof ()+c tamb em e uma antiderivada de f() em I. Assim, or eemlo 3, 3 +5e 3 s~ao rimitivas de 3. Veremos agora que, em um intervalo I, duas rimitivas de uma mesma fun»c~ao diferem entre si or uma constante. Proosi»c~ao 5. Se F e F s~ao antiderivadas de f, emi ½, ent~ao eiste c tal que F () =F ()+c, aratodo I. 5

2 Integrais indefinidas 6 Para demonstrar a roosi»c~ao 5., faremos uso do seguinte resultado. Lema 5. Se f e cont ³nua no intervalo [a; b] e f 0 () =0ara todo ]a; b[, ent~ao f e constante em [a; b], ou seja, eiste c tal que f() =c ara todo [a; b]. Poder ³amos aceitar o lema 5. como evidente e seguir adiante. No entanto, este lema e conseqäu^encia de um teorema imortante sobre fun»c~oes deriv aveis, conhecido como teorema do valor m edio. Como tornaremos a fazer uso do teorema do valor m edio mais adiante, julgamos oortuno cit a-lo agora. Teorema 5. (Teorema do valor m edio) Suonhamos que f e uma fun»c~ao cont ³nua no intervalo [a; b] e deriv avel no intervalo ]a; b[. Ent~ao eiste w ]a; b[ tal que f(b) f(a) b a = f 0 (w) Aceitaremos este teorema sem demonstra»c~ao, e faremos uma interreta»c~ao geom etrica de seu resultado. f(b) f(a) O quociente e a taa de varia»c~ao m edia, f, da fun»c~ao f, nointervalo [a; b], sendo = b a e f = f(b) b a f(a). Ele e o coe ciente angular da reta assando or A =(a; f(a)) e B =(b; f(b)). O teorema do valor m edio diz que essa taa de varia»c~ao m edia e tamb emataade varia»c~ao instant^anea de f, emrela»c~ao a, df=, em algum onto w no interior do intervalo. Em termos geom etricos, a inclina»c~ao da reta AB coincide com a inclina»c~ao de uma reta tangente ao gr a co de f em um onto (w; f(w)), ara algum w ]a; b[. A gura 5. ilustra o teorema do valor m edio. f(b) y B f(a) A 0 a w b Figura 5.. f(b) (f(a) b a = f 0 (w). Uma interreta»c~ao cinem atica do teorema do valor m edio e a seguinte: a velocidade m edia de um onto m ovel, em movimento retil ³neo, no intervalo de temo [t ;t ], coincide com sua velocidade instant^anea em algum instante t 0 ]t ;t [,isto e, s t = s(t ) s(t ) t t = s 0 (t 0 ) em um instante t 0,com t <t 0 <t

3 Integrais indefinidas 7 Por eemlo, se um carro, com velocidade vari avel, faz um ercurso de 80 km em duas horas, sua velocidade m edia e 80km =90km/h. Intuitivamente, sabemos que h em algum instante do ercurso, seu veloc ³metro acusar a a velocidade instant^anea de 90 km/h. Demonstra»c~ao do lema 5.. Suonhamos f 0 () =0ara todo I, sendo I ½ um intervalo. Mostraremos que, quaisquer que sejam e em I, <,tem-sef( )= f( ),eortantof e constanteemi. Temos f cont ³nua em [ ; ] e deriv avel em ] ; [. Pelo teorema do valor m edio, f( ) f( ) = f 0 (w) ara algum w ] ; [. Como f 0 (w) =0,temosf( )=f( ), e nossa demonstra»c~ao termina aqui. Demonstra»c~ao da roosi»c~ao 5.. Suonhamos que, F 0 () =F 0 () =f() ara todo I, I um intervalo de. Consideremos a fun»c~ao ' = F F. Ent~ao, ' 0 () =F 0 () F 0 () =f() f() =0,aratodo I. Pelo lema 5., ' e constante no intervalo I. Assim, eiste c tal que F () F () =c ara todo I. Portanto F () =F ()+c, aratodo I. De ni»c~ao 5. (Integral inde nida) Sendo F uma rimitiva de f no intervalo I, chama-se integral inde nida de f, no intervalo I, µa rimitiva gen erica de f em I, F ()+C, sendo C uma constante real gen erica. Denotamos tal fato or f() = F ()+C Nesta nota»c~ao, omite-se o intervalo I. 5. Integrais imediatas Coletaremos agora algumas integrais inde nidas cujo c alculo e imediato. Proosi»c~ao 5.. = + + C, se 6=. +. =lnjj

4 Integrais indefinidas 8 3. sen = cos 4. cos = sen 5. e = e 6. a = a (a>0;a6= ). ln a 7. sec =tg 8. cosec = cotg 9. sec tg =sec 0. cosec cotg = cosec. = arc tg +. =arcsen Para a dedu»c~ao das integrais acima, basta veri car que a derivada do segundo membro, em cada igualdade, e a fun»c~ao que se encontra sob o sinal de integra»c~ao. Como eemlos, µ + 0 se 6=, =( +) =. (ln jj) 0 ==: se >0, (ln jj) 0 =(ln) 0 ==; se <0, (ln jj) 0 =(ln( )) 0 = ( )0 ==. µ a (a ) 0 = a 0 ln a, logo = a ln a ln a ln a = a. 5.3 Maniula»c~oes elementares de integrais Suonhamos f() = F ()+C,e g() = G()+C.Ent~ao. [F ()+G()] 0 = F 0 ()+G 0 () =f()+g(), logo (f()+g()) = F ()+G()+C = f() + g() (C = C +C ).. Sendo k uma constante real, [k F ()] 0 = k F 0 () =k f(), logo kf() = kf()+c = k f() (kc = C)

5 Integrais indefinidas 9 eunimos os fatos acima, com outros tamb em uteis, na seguinte roosi»c~ao. Proosi»c~ao 5.3 Se f() = F ()+C e g() = G()+C, ent~ao, sendo a; b, a 6= 0,. [f()+g()] = F ()+G()+C. k f() = k F ()+C 3. f( + b) = F ( + b)+c 4. f( b) = F ( b)+c 5. f(b ) = F (b )+C 6. f(a) = a F (a)+c 7. f(a + b) = F (a + b)+c a Demonstra»c~ao. As duas rimeiras roriedades j a foram deduzidas acima. Das cinco roriedades restantes, as quatro rimeiras s~ao conseqäu^encias imediatas da ultima, a unica que deduziremos. Por hi otese, F 0 () =f(). Logo [F (a + b)] 0 = F 0 (a + b) (a + b) 0 = af(a + b), de onde µ 0 F (a + b) = af(a + b) =f(a + b). a a Portanto f(a + b) = F (a + b)+c. a 5.4 Eemlos elementares. cos = sen Logo, (a) cos 3= sen 3 + C 3 (b) cos 3¼ = sen 3¼ + C. e = e Logo, (a) e 5 = e 5 + C (b) e = e + C (c) e 5 = 5 e5 + C 3. Calcular tg.

6 Integrais indefinidas 30 sec =tg Temos cos +sen =, logo +tg =sec. Logo, tg = (sec ) = sec =tg + C 4. Calcular (5 cos + cos 5). (5 cos +cos5) =5 cos + cos 5 =5sen + sen 5 + C 5 5. Calcular sen cos. Temos sen =sen cos, logo sen cos = sen. Da ³ sen cos = sen = ( cos )+C = cos + C Calcular. µ + = + = + = = + = = = +lnjj + C = +lnjj + C 5.5 Integra»c~ao or mudan»ca de vari avel ou integra»c~ao or substitui»c~ao Suonhamos que f() = F ()+C (5.) Suonhamos que = '(t) e uma fun»c~ao deriv avel de t, arat em um intervalo I ½.

7 Integrais indefinidas 3 Na aula 4 de nimos a diferencial de, como sendo = dt dt = '0 (t) dt No conteto daquela aula, a diferencial foi de nida como uma boa aroima»c~ao de, quando dt = t e su cientemente equeno. Neste ca ³tulo, a diferencial ter a um sentido simb olico, sendo emregada quando realizamos troca de vari aveis no c alculo de integrais. Suonhamos de nida em I a fun»c~ao comosta f('(t)). Como veremos agora, odemos substituir = '(t) na eress~ao 5., fazendo = ' 0 (t) dt, ou seja, de 5. obtemos f('(t)) ' 0 (t) dt = F ('(t)) + C (5.) De fato, alicando deriva»c~ao em cadeia, d d [F ('(t))] = [F ()] dt dt = F 0 () ' 0 (t) = F 0 ('(t)) ' 0 (t) = f('(t)) ' 0 (t) logo, f('(t)) ' 0 (t) dt = F ('(t)) Portanto f() = F ()+C =) f('(t)) ' 0 (t) dt = F ('(t)) + C ela mudan»ca de vari avel = '(t), tomando-se = ' 0 (t) dt. Na r atica, quando calculamos f('(t))' 0 (t) dt, tendo-seasconsidera»c~oes acima, assamos ela seqäu^encia de igualdades: f('(t))' 0 (t) dt = f() = F ()+C = F ('(t)) + C Algumas vezes, no entanto, fazendo = '(t), assamosorumaseqäu^encia de igualdades f() = f('(t))' 0 (t) dt = F ('(t)) + C = F ()+C fazendo uso da integral \mais comlicada" f('(t)' 0 (t) dt ara nalmente calcular f(). Isto eoqueocorreemsubstitui»c~oes trigonom etricas, assunto que ser a estudado adiante.

8 Integrais indefinidas 3 Neste caso, estamos assumindo imlicitamente que f('(t)) ' 0 (t) dt = F ('(t)) + C =) f() = F ()+C o que e justi cado desde que ossamos tamb em eressar tamb em t = Ã(), como fun»c~ao inversa e deriv avel de = '(t), ara que ossamos, ao nal dos c alculos, obter a integral inde nida como fun»c~ao de, a artir de sua eress~ao em fun»c~ao de t. Eemlo 5. Calcular 3. Solu»c~ao. Come»camos fazendo a substitui»c~ao u =3. Ent~ao du = du =(3 )0 =. Portanto = du. Assim, temos = 3 Eemlo 5. Calcular tg. µ du = u = u = + C = u + C = 3 + C sen Solu»c~ao. tg = cos. Como (cos ) 0 = sen, tomamosu =cos, e teremos du =(cos) 0 = sen. Assim, sen tg = cos = Eemlo 5.3 Calcular sec. u = du = u =+ + + C du = ln juj + C = ln j cos j + C u Solu»c~ao. Calcularemos esta integral or uma substitui»c~ao que requer um truque eserto. sec (sec +tg) sec +sec tg sec = = sec +tg sec +tg Alicamos a mudan»ca de vari avel u =sec +tg eteremosdu =(sec +tg) 0 =(sec tg +sec ). Logo, sec = du =lnjuj + C =lnj sec +tgj u

9 Integrais indefinidas 33 Eemlo 5.4 Calcular cosec. Solu»c~ao. Imitando o truque usado no eemlo anterior, o leitor oder a mostrar que cosec = ln j cosec + cotg j Eemlo 5.5 Calcular +5. Solu»c~ao. Note que ( +5) 0 =. Isto sugere fazermos u = +5, de onde du =,ouseja,= du. Temos ent~ao +5 = u du = u = du = u = + C = +5+C 5.6 Amliando nossa tabela de integrais imediatas Com a nalidade de dinamizar o c alculo de integrais inde nidas, amliaremos a lista de integrais imediatas da se»c~ao 5., adotando como integrais \imediatas" as quatro seguintes, que deduziremos em seguida. Proosi»c~ao 5.4 Sendo a > 0, e 6= 0,. a + = a arc tg a. a = a ln a + a 3. a = arc sen a 4. Demonstra»c~ao. + =lnj + + j + C Fazendo a a + = a +( a = y, temos = ady,eent~ao a + = a ) a +y dy = a y + dy = a arc tg y + C = a arc tg a + C

10 Integrais indefinidas 34 Para deduzir a segunda integral, lan»camos m~ao da decomosi»c~ao Assim sendo, a = a a = a a + + a a a + + a = ln ja + j a a = ja + j ln a ja j + C = a ln ja j + C a ln a + a + C Para deduzir a terceira integral, fazemos uso da integral inde nida =arcsen + C e rocedemos a uma mudan»ca de vari avel, tal como no c alculo da rimeira integral acima. O leitor oder a comletar os detalhes. Para deduzir a quarta integral, aelaremos ara um recurso nada honroso. Mostraremos que (ln j + + j) 0 = + De fato, sendo u = + +, e sendo ( w) 0 = w w0,temos (ln j + + j) 0 =(lnjuj) 0 = u u0 = + + ( + + ) 0 = + + ( + = + =) = = Nossa tabela de integrais imediatas Adotaremos como integrais imediatas as integrais da tabela 5. dada a seguir. Esta tabela inclui as integrais imediatas da roosi»c~ao 5., as integrais calculadas nos eemlos 5.3 e 5.4, e as integrais da roosi»c~ao 5.4.

11 Integrais indefinidas 35 Tabela 5.. Tabela amliada de integrais imediatas (nas ultimas linhas, a>0 e 6= 0). = + + C, ( 6= ) + sen = cos + C =lnjj + C cos =sen + C e = e + C sec =tg + C a = a ln a (a>0;a6= ) cosec = cotg + C sec tg =sec + C cosec cotg = cosec + C sec =lnj sec +tgj + C cosec = ln j cosec + cotg j + C tg = ln j cos j + C cotg =lnj sen j + C = arc tg + C + a + = a arc tg a + C a =arcsen a + C =arcsen + C a = a ln a + a + =lnj + + j + C 5.7 Problemas Calcule as seguintes integrais inde nidas, utilizando, quando necess ario, mudan»ca de vari aveis. Semre que julgar conveniente, fa»ca uso da tabela de integrais inde nidas da tabela 5... ( + ). esosta ³ 3. esosta esosta. 5

12 Integrais indefinidas ³ + 3. esosta cos a sen a. esosta. a 6. ln. esosta. ln 7. cotg 3. esosta. sen esosta. ln j3 7j tg. esosta. ln j cos j 0. cotg(5 7). esosta. ln j sen(5 7)j 5. cotg 3. esosta. 3lnj sen 3 j. tg ' sec 'd'. esosta. tg ' Sugest~ao. Fa»ca u =tg'. 3. e cotg e. esosta. ln j sen e j Sugest~ao. Fa»ca u = e. 4. sen cos. esosta. sen3 3 Sugest~ao. Fa»ca u = sen. 5. cos 3 sen. esosta. cos esosta. +3+C. Sugest~ao. Fa»ca u = esosta C. 8. sen cos 3. esosta. cos 9. cotg sen. esosta. cotg 0. cos. esosta. tg +C. tg. sen +sen. esosta. + sen Sugest~ao. Fa»ca u =+sen.. arc sen. esosta. arc sen 3. arccos. esosta. arccos esosta. ln( + )+C esosta. ln( + +3)+C. 6. cos. esosta. ln( sen +3)+C. sen esosta. ln j ln j Sugest~ao. Fa»ca u =ln. ln 8. ( +) 4. esosta. ( +) 5 5

13 Integrais indefinidas tg 4. esosta. tg3 3 tg + Sugest~ao. Mostre que tg 4 =tg tg =sec tg sec cos (3 tg +). esosta. ln j3tg +j 3 3. tg 3. esosta. tg4 cos 4 3. e. esosta. e 33. a a. esosta. lna 34. e. esosta. ln( e 4 4e )+C esosta. arc tg( )+C esosta. 3 arc sen( 3)+C esosta. 3 arc sen esosta. arc tg esosta. ln esosta. ln( + +9)+C esosta ln Sugest~ao. Fa»ca 6 =( 3 ),eent~ao u = esosta. arc sen Sugest~ao. Fa»ca u = esosta. arc tg 4 +a 4 a a 44. cos. esosta. arc tg sen a +sen a a 45.. esosta. arc sen(ln )+C. ln 46. arccos. esosta. (arccos ) arc tg +. esosta. ln( + ) (arc tg ) esosta. 4 3 ( + )3 49. cos 3. esosta. sen 4 sen 3sen 3 Sugest~ao. Fa»ca cos 3 sen 4 sen. sen 4 = cos cos = ( sen )cos sen 4, eent~ao u =

Aula 16. Integra»c~ao por partes

Aula 16. Integra»c~ao por partes Aula 16 Integra»c~ao or artes H a essencialmente dois m etodos emregados no c alculo de integrais inde nidas (rimitivas) de fun»c~oes elementares. Um deles e a integra»c~ao or substitui»c~ao, elorada na

Leia mais

Taxas relacionadas. Diferenciais

Taxas relacionadas. Diferenciais Aula 14 Taas relacionadas. Diferenciais 14.1 Taas relacionadas Na linguagem do c alculo diferencial, se uma vari avel u e fun»c~ao da vari avel v, a taa de varia»c~ao (instant^anea) de u, emrela»c~ao a

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial MTDI I - 7/8 - Comlementos de Cálculo Diferencial 34 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste caítulo retende-se relembrar algumas de nições e

Leia mais

Aula 5. Limites laterais. Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( jxj = x se x<0

Aula 5. Limites laterais. Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( jxj = x se x<0 Aula 5 Limites laterais Para cada x real, de ne-se o valor absoluto ou m odulo de x como sendo ( x se x jxj = x se x< Por exemplo, j p 2j = p 2, j+3j =+3, j 4j =4, jj =, j p 2j = p 2 (pois p 2 < ). Para

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

7.1 Mudança de Variável (método de substituição)

7.1 Mudança de Variável (método de substituição) 7. Mudança de Variável (método de substituição) 0. 0. 0. 05. 07. 08. 0... e 5 (res. e 5 =5 + C) sen a (res. a cos a + C; a 6= 0) sen () 7 (res. cotg + C) (res. jln 7j + C) tan (res. ln jcos j + C) cot

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites EXERCÍCIOS & COMPLEMENTOS 3. FORMAS INDETERMINADAS 0 0 0 0 OPERAÇÕES COM OS SÍMBOLOS + = = ( ) = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k =

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Derivando fun»c~oes exponenciais e logar ³tmicas

Derivando fun»c~oes exponenciais e logar ³tmicas Aula 0 Derivando fun»c~oes eponenciais e logar ³tmicas Nesta aula estaremos deduzindo as derivadas das fun»c~oes f() =a e g() =log a, sendo a uma constante real, a>0 e a 6=. O que faz do n umero e uma

Leia mais

Limites. Uma introdu»c~ao intuitiva

Limites. Uma introdu»c~ao intuitiva Aula 4 Limites. Uma introdu»c~ao intuitiva Nos cap ³tulos anteriores, zemos uso de um ite especial para calcular derivadas: f 0 f(+ ) f() () =.!0 Neste cap ³tulo veremos os ites como ferramentas de estudo

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

Derivadas e retas tangentes. Novas regras de deriva»c~ao

Derivadas e retas tangentes. Novas regras de deriva»c~ao Aula 2 Derivadas e retas tangentes. Novas regras de deriva»c~ao 2. A derivada como inclina»c~ao de uma reta tangente ao gr a co da fun»c~ao Na aula anterior, o conceito de derivada foi apresentado atrav

Leia mais

Fun»c~oes trigonom etricas e o \primeiro limite fundamental"

Fun»c~oes trigonom etricas e o \primeiro limite fundamental Aula Fun»c~oes trigonom etricas e o \primeiro ite fundamental" Nesta aula estaremos fazendo uma pequena revis~ao de fun»c~oes trigonom etricas e apresentando um ite que lhes determina suas derivadas..

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x)

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x) 7. Regras Básicas e Derivação 0. regra a soma: [f () + g ()] 0 = f 0 () + g 0 () 0. regra a iferença [f () g ()] 0 = f 0 () g 0 () 0. regra o routo [f () :g ()] 0 = f () g 0 () + f 0 () g () 04. regra

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

r 5 200 m b) 1 min 5 60 s s t a 5

r 5 200 m b) 1 min 5 60 s s t a 5 Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 0 Um atleta desloca-se à velocidade constante de 7,8 m/s numa ista circular de raio 00 m. Determine as medidas, em radianos e

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0.

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0. 4. Em cada caso use a definição para calcular f 0 (). (a) f () = 3, R (b) f () =/, 6= 0 (c) f () =/, > 0. 4.2 Mostre que a função f () = /3, R, não é diferenciável em =0. 4.3 Considere a função f : R R

Leia mais

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 00/ SUMÁRIO. LIMITES E CONTINUIDADE..... NOÇÃO INTUITIVA DE LIMITE..... FUNÇÃO CONTÍNUA NUM

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II z t t C C α y β y Colaboradores para elaboração da apostila: Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler, Rogério

Leia mais

2 - Generalidades sobre funções reais de variável real

2 - Generalidades sobre funções reais de variável real Análise Matemática - 009/010 - Generalidades sobre unções reais de variável real.1-deinição e Propriedades De..1 Sejam A e B conjuntos, e uma correspondência de A para B, isto é um processo de associar

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é: Integral Origem: Wikipédia, a enciclopédia livre. No cálculo, a integral de uma função foi criada para originalmente determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

Deriva»c~ao em cadeia e deriva»c~ao impl ³cita

Deriva»c~ao em cadeia e deriva»c~ao impl ³cita Aula 3 Deriva»c~ao em cadeia e deriva»c~ao impl ³cita A regradacadeia e umaregradederiva»c~ao que nos permite calcular a derivada de uma composi»c~ao (ou um encadeamento) de fun»c~oes, tais como f(g(x))

Leia mais

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal Guia de aulas: Equações diferenciais Prof. Carlos Vidigal Profª. Érika Vidigal 1º Semestre de 013 Índice 1.Introdução... 3. Equações Diferenciais de 1ª Ordem... 7.1. Equações Diferenciais Separáveis...

Leia mais

x 1 f(x) f(a) f (a) = lim x a

x 1 f(x) f(a) f (a) = lim x a Capítulo 27 Regras de L Hôpital 27. Formas indeterminadas Suponha que desejamos traçar o gráfico da função F () = 2. Embora F não esteja definida em =, para traçar o seu gráfico precisamos conhecer o comportamento

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013)

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013) Universidade da Beira Interior - Departamento de Matemática MATEMÁTICA I ECONOMIA (5598) Ficha de eercícios (0/03). Determine o conjunto dos pontos interiores, eteriores e fronteiros dos seguintes conjuntos:

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

6.1 Derivação & Integração: regras básicas

6.1 Derivação & Integração: regras básicas 6. Derivção & Integrção: regrs básics REGRAS BÁSICAS DE DERIVAÇÃO. Regr d som:........................................ (u + k v) = u + k v ; k constnte. Regr do Produto:.....................................................

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

Limites indeterminados e as regras de L'Hopital

Limites indeterminados e as regras de L'Hopital Aula 3 Limites indeterminados e as regras de L'Hopital Nesta aula, estaremos apresentando as regras de L'Hopital, regras para calcular ites indeterminados, da forma 0=0 ou =, usando derivadas. Estaremos

Leia mais

Análise Matemática I - 2013/14 LEI. 1. Para as funções que se seguem, indique o domínio e o contradomínio: 4 x 2;

Análise Matemática I - 2013/14 LEI. 1. Para as funções que se seguem, indique o domínio e o contradomínio: 4 x 2; Análise Matemática I - 03/4 Definição. Seja f uma função real de variável real. Define-se por domínio de f, comummente denotado por D f, o conjunto de todos os pontos onde f está definida, e por contradomínio

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

FUNC» ~OES E ALGUMA HIST ORIA

FUNC» ~OES E ALGUMA HIST ORIA Um pouquinho da hist oria das func»~oes 1 UNIVERSIDADE FEDERAL DE S ~AO CARLOS CENTRO DE CI^ENCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEM ATICA OENSINODA ALGEBRA ELEMENTAR ATRAV ES DE SUA HIST ORIA

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade. 1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0

Leia mais

6. Aplicações da Derivada

6. Aplicações da Derivada 6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

CAPITULO VI. LIMITES E CONTINUIDADE DE FUNÇÕES EM R n

CAPITULO VI. LIMITES E CONTINUIDADE DE FUNÇÕES EM R n CAPITULO VI LIMITES E CONTINUIDADE DE FUNÇÕES EM R n. Generalidades O conceito geral de função e outros associados foram já estudados quando se tratou da teoria dos conjuntos. Foi igualmente estudado com

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3.1 A Circunferência EXERCÍCIOS & COMPLEMENTOS 3.1 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa elos ontos A (5; 1) ; B (4; 2) e

Leia mais

Velocidade instant^anea e derivadas

Velocidade instant^anea e derivadas Aula 1 Velocidade instant^anea e derivadas 1.1 Velocidade instant^anea Um ponto m ovel M desloca-se ao longo de uma linha reta horizontal, a partir de um ponto O. s O M s = 0 s = s(t) s 0 = s(t 0 ) s =

Leia mais

Análise Matemática I. f m f f m+1. f f. a f f. f senh f. f coshf. f tgh f. f cotghf. f sech 2 f. f cosech 2 f. f sechf tgh f. f cosechf cotghf.

Análise Matemática I. f m f f m+1. f f. a f f. f senh f. f coshf. f tgh f. f cotghf. f sech 2 f. f cosech 2 f. f sechf tgh f. f cosechf cotghf. Departamento de Matemática da Universidade de Coimbra Análise Matemática I Tabela de Primitivas PRIMITIVAS IMEDIATAS Na lista de primitivas que se segue considera-se uma função f : I IR diferenciável em

Leia mais

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7.

Gabarito. Sistemas numéricos. 1. Números naturais. 2. N. 3. Infinito. 4. Infinito. 5. Não. Contra-exemplo: número 7. Gabarito Sistemas numéricos. Números naturais.. N. Infinito.. Infinito. 5. Não. Contra-eemplo: número 7. 6. Não, pois sempre é possível encontrar um número maior, bastando somar mais uma unidade. 7. 0

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França CURSO DE ENGENHARIA CARTOGRÁFICA Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Sistema Internacional de unidades (SI). 22/06/1799

Leia mais

Continuidade de uma função

Continuidade de uma função Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Prof AULA 0 - FUNÇÕES.

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

1 Sistemas de Controle e Princípio do Máximo

1 Sistemas de Controle e Princípio do Máximo Sistemas de Controle & Controle Ótimo & Princípio do Máximo Lúcio Fassarella (215) 1 Sistemas de Controle e Princípio do Máximo Essencialmente, sistemas de controle são sistemas dinâmicos cuja evolução

Leia mais

CURSO DE CÁLCULO INTEGRAIS

CURSO DE CÁLCULO INTEGRAIS CURSO DE CÁLCULO MÓDULO 4 INTEGRAIS SUMÁRIO Unidade 1- Integrais 1.1- Introdução 1.2- Integral Indefinida 1.3- Propriedades da Integral Indefinida 1.4- Algumas Integrais Imediatas 1.5- Exercícios para

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 12º ano Cálculo Diferencial II - Exercícios saídos em Exames (séc XX)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 12º ano Cálculo Diferencial II - Exercícios saídos em Exames (séc XX) Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 1º ano Cálculo Diferencial II - Eercícios saídos em Eames (séc XX) 1. Seja f a função real de variável real tal que f()= - /. Quanto ao limite

Leia mais

Cálculo de primitivas ou de antiderivadas

Cálculo de primitivas ou de antiderivadas Aula 0 Cálculo de primitivas ou de antiderivadas Objetivos Calcular primitivas de funções usando regras elementares de primitivação. Calcular primitivas de funções pelo método da substituição. Calcular

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

Derivadas. Incremento e taxa média de variação

Derivadas. Incremento e taxa média de variação Derivadas Incremento e taxa média de variação Consideremos uma função f, dada por y f (x). Quando x varia de um valor inicial de x para um valor x, temos o incremento em x. O símbolo matemático para a

Leia mais

4 Mudança de Coordenadas

4 Mudança de Coordenadas Material by: Caio Guimarães (Equipe Rumoaoita.com) Última atualização: 14 de outubro de 006 4 Mudança de Coordenadas Translação e Rotação de Curvas no R² Introdução O enfoque dos 3 primeiros capítulos

Leia mais

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues Matemáticas Gerais (Licenciatura em Geologia Caderno de eercícios (eercícios propostos e tabelas Armando Gonçalves e Maria João Rodrigues Departamento de Matemática Faculdade de Ciências e Tecnologia da

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais