Modelagem Matemática de Sistemas Térmicos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Modelagem Matemática de Sistemas Térmicos"

Transcrição

1 Modelagem Matemática de Sistemas Térmicos INTODUÇÃO Sistemas térmicos são sistemas nos quais estão envolvidos o armazenamento e o fluxo de calor por condução, convecção ou radiação A rigor, sempre estão envolvidas simultaneamente as três formas de transferência de calor Entretanto, na prática, tem-se em geral a preponderância de uma forma sobre as demais ou então a preponderância de duas formas sobre a terceira, o que é mais comum Exemplos clássicos de sistemas térmicos são o sistema de arrefecimento do motor de um automóvel, o refrigerador doméstico, o sistema de condicionamento de ar de um escritório, etc Há três maneiras pelas quais o calor pode fluir de uma substância para outra: condução, convecção e radiação Na transferência de calor por condução ou convecção, o fluxo de calor q, em kcal/s, é dado por () q K θ onde () θ diferença de temperatura, em K K coeficiente de proporcionalidade, em kcal/sk, dado por ka K na condução X (3) K ha na convecção onde k condutividade térmica, em kcal/msk A área normal ao fluxo de calor, m X espessura do condutor, em m h coeficiente de transferência de calor por convecção, kcal/m sk Na transferência de calor por radiação, o fluxo de calor q, em kcal/s, é dado por (4) q K ( θ θ ) r 4 4 onde K r coeficiente de proporcionalidade, em kcal/sk 4, que depende da emissividade, tamanho e configuração da superfície θ temperatura do emissor, em K θ temperatura do emissor, em K

2 Na modelagem que será feita a seguir, serão consideradas apenas as transferências de calor por condução e por convecção, desprezando-se o efeito da radiação VAIÁVEIS TÉMICAS As variáveis usadas para descrever o comportamento de um sistema térmico são: θ temperatura em Kelvins [K] q fluxo de calor em Watts [W] o C K - 73,5 W J/s As temperaturas em vários pontos de um corpo variam com a localização, o que significa que o sistema térmico é inerentemente um sistema com parâmetros distribuídos Em conseqüência, os modelos matemáticos são constituídos por equações diferenciais parciais, pois as propriedades são distribuídas e não concentradas Na modelagem e na análise, entretanto, para simplificar o problema, é conveniente admitir que um sistema térmico possa ser representado por um modelo de parâmetros concentrados, no qual as substâncias que são caracterizadas pela resistência ao fluxo de calor têm capacitância térmica desprezível e que as substâncias que são representadas pela capacitância térmica têm resistência desprezível ao fluxo de calor Isso nos conduzirá a modelos regidos por equações diferenciais ordinárias, com as suas já conhecidas vantagens 3 NÚMEO DE BIOT Existe um parâmetro adimensional, denominado Número de Biot, que serve de critério para definir se um sistema térmico pode ser admitido como de parâmetros concentrados Ele é definido como (5) hl Bi k c onde h e k já foram definidos e onde L c é o comprimento característico do sólido, definido por V (6) L c As onde V volume do sólido, em m 3 A s é a área da superfície de contato entre sólido e fluido, no caso de transferência de calor por convecção, em m Evidentemente, L c depende da forma do sólido Assim, para esferas de raio r, temos:

3 3 Para cilindros maciços de raio r e comprimento L: L 4 πr 3 4πr 3 c r 3 L c πr L πrl + πr rl (r + L) Para cubos de aresta L: L 3 c L 6L L 6 Um critério aceitável para que a temmperatura no interior de um sólido não varie com a localização é que hl (7) Bi c < 0, k 4 VAIÁVEIS INCEMENTAIS Para a maioria dos sistemas térmicos existe uma condição de equilíbrio que define o ponto de operação do sistema Assim, podemos definir uma temperatura incremental e um fluxo de calor incremental como ^ (8) θ (t) θ(t) θ (9) q^(t) q(t) q onde θ e - q são os valores das variáveis no ponto de operação 5 CAPACITÂNCIA TÉMICA Existe uma relação entre a temperatura de um corpo físico e o calor nele armazenado Não havendo mudança de fase e desde que a faixa de temperaturas não seja excessiva, tal relação pode ser considerada linear Assim, sendo q i (t) o fluxo de calor que entra em um corpo e q o (t) o fluxo de calor que sai do mesmo corpo, o calor líquido (no sentido contábil) armazenado no corpo entre dois instantes de tempo t 0 e t é dado por t [ qi ( λ) qo t 0 ( λ)] dλ onde λ é uma variável muda usada na integração 3

4 4 Vamos assumir que o calor armazenado durante esse intervalo de tempo seja igual a uma certa constante C multiplicada pela variação de temperatura, ou seja t t 0 [ qi ( λ) qo ( λ)]dλ C[ θ(t) θ(t0 )] onde θ(t 0 ) é a temperatura do corpo no instante de referência t 0 Podemos rescrever a equação acima como t (0) θ( t) θ(t0 ) + [qi ( λ) qo ( λ)] dλ C t 0 onde a constante C é definida como a capacitância térmica do corpo, dada em [J/K] Para um corpo de massa M e calor específico c, a capacitância térmica é dada por C Mc, para M em [kg] e c em [J/kgK] Diferenciando a eq (0), obtemos () θ( t) [qi (t) qo (t)] C equação que é muito usada quando o sistema é modelado no espaço de estados 6 ESISTÊNCIA TÉMICA No caso de transferência de calor por condução, a Lei de Fourier estabelece que o fluxo de calor q(t) entre dois corpos com temperatura θ (t) > θ (t), separados por um meio condutor, é dado por q(t) θ αa (t) θ d (t) onde α condutividade térmica do material condutor [J/msK] ou [W/mK] (tabelada) A área normal ao fluxo de calor [m ] d espessura do condutor [m] Podemos rescrever a equação acima como () q(t) [ θ (t) θ (t)] onde é definida como a resistência térmica e é função do material e das dimensões do meio condutor, sendo dada por d (3) A α 4

5 5 Só podemos usar a eq () quando não há armazenamento de energia térmica no meio condutor Caso isso não aconteça, devemos então incluir a capacitância térmica do meio condutor no modelo esistências térmicas em série Consideremos dois corpos com temperaturas θ (t) > θ (t), separados por duas resistências térmicas em série e, conforme ilustra a fig (a): Fig Sendo q(t) o fluxo de calor através das mesmas e estando as resistências perfeitamente isoladas termicamente, queremos achar uma resistência térmica equivalente eq, conforme a fig (b) Chamando θ B a temperatura na interface das duas resistências, podemos escrever a eq () duas vezes: q ( θ θb ) Eliminando θ B nas equações acima, chegamos a q ( θb θ ) q ( θ θ ) + que, comparada com a eq (), permite que escrevamos eq + donde podemos concluir que existe uma analogia com as resistências elétricas em série Podemos estender o resultado para n resistências térmicas em série: (4) eq i n i 5

6 6 esistências térmicas em paralelo Aproveitando a analogia citada, podemos estabelecer uma expressão para n resistências térmicas em paralelo: (5) eq n i i 7 FONTE TÉMICA A fonte térmica ideal adiciona ou retira energia térmica do sistema No primeiro caso, o fluxo de calor q i (t) é positivo e, no segundo caso, q i (t) é negativo A fonte térmica ideal é representada pela fig : Fig Vamos estudar, a seguir, a modelagem matemática de alguns sistemas térmicos através de exemplos 8 MODELOS MATEMÁTICOS DE SISTEMAS TÉMICOS Exemplo A fig 3 mostra uma capacitância térmica C isolada do ambiente por uma resistência térmica equivalente A temperatura interna é θ, considerada uniforme, enquanto que a temperatura ambiente é θ a, também uniforme Calor é adicionado ao interior do sistema com um fluxo q i (t) No ponto de operação, os valores de q i e θ são qi e θ, respectivamente Desenvolver um modelo matemático para o sistema em termos das variáveis incrementais - Fig 3 6

7 7 Solução Aplicando a eq (): qo (t) [ θ(t) θa ] Substituindo na eq (): θ( t) {qi (t) [ θ(t) θa ]} C ou C θ(t) + θ(t) q (t) + θ onde reconhecemos uma EDOL de a ordem com coeficientes constantes, não homogênea, com duas entradas q i (t) e θ a e saída θ(t) A constante de tempo do sistema é dada por τ C i a Em termos das variáveis incrementais ^ θ (t) θ(t) θ q^(t) q(t) q e podemos obter um modelo matemático substituindo θ(t), q i (t) e suas derivadas na EDOL acima, chegando a ^ ^ C θ(t) + θ(t) q (t) ^ i Vemos, agora, que temos um sistema com apenas uma entrada e uma saída Exemplo - Termômetro de mercúrio A fig 4 ilustra um sistema térmico constando de um termômetro de mercúrio que está, inicialmente, à temperatura ambiente θ e é mergulhado em um reservatório cujo líquido está a uma temperatura θ + θ b, isto é, θ b acima da temperatura ambiente Fig 4 O reservatório tem capacitância térmica C e o termômetro tem resistência térmica Desenvolver um modelo matemático para o sistema em termos das variáveis incrementais 7

8 8 Solução Aplicando a eq () para o termômetro: qi (t) [ θb θ(t)] Substituindo na eq (): θ( t) { [ θb θ (t)]} C ou (6) C θ(t) + θ(t) θ onde reconhecemos uma EDOL de a ordem com coeficientes constantes, não homogênea, com entrada θ b e saída θ(t) A constante de tempo do sistema é dada por τ C b Comparando a eq (6) com a EDOL modelo matemático do circuito elétrico C paralelo mostrado na fig 5, dada por d eo C + eo ei dt Fig 5 vemos que existe uma analogia entre o sistema térmico e o sistema elétrico, denominada analogia eletrotérmica, dada pela tabela seguinte: Sistema elétrico voltagem e corrente elétrica i resistência elétrica Capacitância C Sistema térmico temperatura θ fluxo de calor q resistência térmica capacitância térmica C Exemplo 3 A fig 6 mostra um vaso indeformável de volume V, no qual um líquido de massa específica ρ e calor específico c escoa através dele Um "mixer" assegura que a temperatura do líquido permaneça uniforme em todo o reservatório e igual a θ(t) O líquido entra no reservatório com uma vazão volumétrica constante w à temperatura θ i (t) Ele sai do reservatório com a mesma vazão volumétrica à temperatura θ o (t), considerada igual à temperatura do líquido θ(t), devido à mistura perfeita feita pelo "mixer" A resistência térmica do vaso é e a temperatura ambiente é constante e igual a θ a 8

9 9 Fig 6 É adicionado um fluxo de calor q h (t) ao líquido por meio de um aquecedor Desenvolver um modelo matemático para o sistema Solução Calor que entra no vaso: q (t) q (t) + w ρcθ (t) i h i _ 0 ρ θ q (t) θ θ a + Capacitância térmica: C Mc ρvc Calor que sai do vaso: [ (t) ] w c (t) Levando na eq (): θ( t) [q i(t) qo (t)] {[qh (t) + w ρcθi(t)] [ ( θ(t) θa ) + w ρcθ(t)]} C ρcv earrumando a equação acima, chegamos à EDOL de a ordem w w θ( t) + ( + ) θ(t) θi (t) + qh (t) + θ V C V C C a onde a constante de tempo é dada por τ w V + C Podemos observar que temos três entradas, θ i (t), q h (t) e θ a, e apenas uma saída, θ(t) Exemplo 4 Uma esfera de cobre (ρ 8954 kg/m 3, c 383, J/kg 0 C e k 385 W/m 0 C), de diâmetro 0,06 m, é subitamente colocada em um reservatório que contem um líquido quente a uma temperatura θ o Em conseqüência, a temperatura da esfera, θ(t), cresce com o tempo O coeficiente de transferência de calor por convecção é h 5 W/ m 0 C Pedem-se: 9

10 0 (a) É válido usar um modelo com parâmetros concentrados? Justifique; (b) Caso positivo, obter um modelo matemático para o sistema; (c) Calcular a constante de tempo do sistema Solução (a) Logo, é possível (b) Aplicando a eq (): onde 0,06 L c r 0,0 m 3 3 hlc 5x0,0 4 Bi 6,49x0 < 0, k 385 θ( t) [qi (t) qo (t)] C C Mc ρvc q i ha [ θ s o θ(t)] ρvc q o 0 ( s o Logo: θ t) { ha [ θ θ(t)] 0} ρvc θ(t) + θ(t) θ ha s o (c) ρvc τ ha s ρcl h c 8954x383,x0, s,87 h 0

11 EXECÍCIOS A figura mostra um vaso fechado, isolado, cheio de líquido e contendo um aquecedor elétrico imerso no líquido A resistência elétrica do aquecedor, por sua vez, está colocada dentro de uma jaqueta metálica de resistência térmica HL A resistência térmica do vaso e de seu isolamento é La O aquecedor tem uma capacitância térmica C H e o líquido uma capacitância térmica C L A temperatura do aquecedor é θ H e a do líquido é θ L, a qual é considerada uniforme devido ao "mixer" Dados numéricos: C H 0 x 0 3 J/K C L x 0 6 J/K HL x 0-3 K/W LA 5 x 0-3 K/W θ a 300 K O aquecedor elétrico e o líquido estão inicialmente à temperatura ambiente θ a, estando o aquecedor desligado No instante t 0, o aquecedor é ligado, de modo que o fluxo de calor fornecido ao sistema é q i (t) Pedem-se: (a) modelo matemático no espaço de estados, usando as variáveis de estado θ H (t) e θ L (t), as quais podem ser obtidas diretamente a partir da eq (9); (b) usando o VisSim, graficar as temperaturas θ H (t) e θ L (t) para as entradas θ a 300 K e q i (t) sendo um degrau de amplitude,5 x 0 4 W; (c) a partir do gráfico do item (b), achar o tempo que leva o líquido para atingir a temperatura desejada θ d 365 K Obs: para os itens (b) e (c) usar os dados numéricos mostrados ao lado da figura Uma esfera de alumínio de diâmetro 0,08 m encontra-se em um forno à temperatura de 00 0 C Ela é retirada do forno e colocada ao ar livre que se encontra à temperatura de 0 0 C Conhecendo as propriedades do alumínio, dadas abaixo, pedem-se: (a) É válido usar um modelo com parâmetros concentrados? Justifique; (b) Caso positivo, obter um modelo matemático para o sistema; (c) Calcular a constante de tempo do sistema Dados do Alumínio: ρ 707 kg/m 3 ; c 896 J/kg 0 C; k 04 W/m 0 C; h 3,5 W/ m 0 C esp: (a) Sim; ρvc (b) θ(t) + θ(t) θ ar ha (c),56 h s

12

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Aula 3 Equação diferencial de condução de calor Condições iniciais e condições de fronteira; Geração de Calor num Sólido;

Leia mais

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados.

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados. Condução de Calor Lei de Fourier A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados Considerações sobre a lei de Fourier q x = ka T x Fazendo Δx 0 q taxa de calor [J/s] ou

Leia mais

Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar

Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar Condução de calor em regime transiente Condições variam com o tempo ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar ) Passa-se algum tempo antes

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3083 e LOM3213 Fenômenos de Transporte Prof. Luiz T. F. Eleno Lista de exercícios 2 1. Considere uma parede aquecida por convecção de um

Leia mais

Capítulo 8: Transferência de calor por condução

Capítulo 8: Transferência de calor por condução Capítulo 8: ransferência de calor por condução Condução de calor em regime transiente Condução de calor em regime transiente Até o momento só foi analisada a transferência de calor por condução em regime

Leia mais

MODELAGEM MATEMÁTICA DE SISTEMAS PNEUMÁTICOS

MODELAGEM MATEMÁTICA DE SISTEMAS PNEUMÁTICOS Modelagem Matemática de Sistemas Pneumáticos MODELAGEM MATEMÁTICA DE SISTEMAS PNEUMÁTICOS INTRODUÇÃO Os sistemas pneumáticos são sistemas fluidos que usam principalmente o ar como meio para a transmissão

Leia mais

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Como resultado de um aumento de temperatura de 32 o C, uma barra com uma rachadura no seu centro dobra para cima (Figura). Se a distância fixa for 3,77 m e o coeficiente de expansão linear

Leia mais

Capítulo 8: Transferência de calor por condução

Capítulo 8: Transferência de calor por condução Capítulo 8: Transferência de calor por condução Aletas Condução de calor bidimensional Transferência de calor É desejável em muitas aplicações industriais aumentar a taxa de transferência de calor de uma

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 3 Termologia Física II Prof. Roberto Claudino Ferreira Prof. Roberto Claudino 1 ÍNDICE 1. Conceitos Fundamentais;

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º Ano 1 Aula Prática 4 Regime transiente 2 Problema -10.1 Placas de latão de 20 mm de espessura são aquecidas durante 15 minutos

Leia mais

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO PROF.: KAIO DUTRA Convecção Térmica O modo de transferência de calor por convecção é composto por dois mecanismos. Além da transferência

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

Aula 3 de FT II. Prof. Geronimo

Aula 3 de FT II. Prof. Geronimo Aula 3 de FT II Prof. Geronimo Raio crítico de isolamento O conceito de raio crítico de isolamento, é introduzido para geometrias onde a área de troca de calor varia com uma dimensão especificada. Por

Leia mais

Aula 6 de FT II. Prof. Gerônimo

Aula 6 de FT II. Prof. Gerônimo Aula 6 de FT II Prof. Gerônimo Transferência de calor em superfícies estendidas Superfície estendida é comumente usado para descrever um caso especial importante envolvendo a transferência de calor por

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A VI Capítulo 19 Temperatura, Calor e a

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 11 FUNDAMENTOS DE TRANSFERÊNCIA DE CALOR PROF.: KAIO DUTRA Transferência de Calor Transferência de calor (ou calor) é a energia em trânsito devido a uma diferença de temperatura.

Leia mais

TRANSMISSÃO DE CALOR

TRANSMISSÃO DE CALOR AULA 14 TRANSMISSÃO DE CALOR 1- INTRODUÇÃO Neste capítulo estudaremos os três processos de transmissão de calor e a dilatação térmica nos sólidos e nos líquidos. 2- CONDUÇÃO Condução é o processo de transmissão

Leia mais

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (Eletromagnetismo) Nos capítulos anteriores estudamos as propriedades de cargas em repouso, assunto da eletrostática. A partir deste capítulo

Leia mais

Cap. 5 - Corrente, Resistência e Força Eletromotriz

Cap. 5 - Corrente, Resistência e Força Eletromotriz Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 5 - Corrente, Resistência e Força Eletromotriz Prof. Elvis Soares Nesse capítulo, estudaremos a definição de corrente,

Leia mais

Condução de Calor Bidimensional

Condução de Calor Bidimensional Condução de Calor Bidimensional Soluções analíticas para condução térmica em casos 2D requer um esforço muito maior daquelas para casos 1D. Há no entanto inúmeras soluções baseadas em técnicas da Física-Matemática,

Leia mais

Q t. Taxa de transferência de energia por calor. TMDZ3 Processos de Transmissão de calor. Prof. Osvaldo Canato Jr

Q t. Taxa de transferência de energia por calor. TMDZ3 Processos de Transmissão de calor. Prof. Osvaldo Canato Jr Taxa de transferência de energia por calor P Q t no SI : Q J; t s; P J / s W ( watt) Condução Para um bloco com corte transversal de área A, espessura x e temperaturas T 1 e T 2 em suas faces, têm-se:

Leia mais

Mecanismos de Transferência de Calor

Mecanismos de Transferência de Calor Mecanismos de Transferência de Calor Bibliografia de Aula: Halliday, Resnick e Walker, 8 a Ed; Vol 2, capítulo 18. Já estudamos como ocorrem as trocas de calor entre sistemas físicos. Aprendemos que em

Leia mais

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Capítulo 11 Material Suplementar 11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Embora as condições de escoamento em trocadores

Leia mais

PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR

PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR PNV-31 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR TRANSMISSÃO DE CALOR 1) INTRODUÇÃO Sempre que há um gradiente de temperatura no interior de um sistema ou quando há contato de dois sistemas com temperaturas

Leia mais

5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera

5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera 5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera Nas Seções 5.5 e 5.6, foram desenvolvidas aproximações pelo primeiro termo para a condução

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria

Leia mais

Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos

Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos Aula 02 : EM-524 Capítulo 2 : Definições e Conceitos Termodinâmicos 1. Termodinâmica Clássica; 2. Sistema Termodinâmico; 3. Propriedades Termodinâmicas; 4. As propriedades termodinâmicas pressão, volume

Leia mais

Transmissão de Calor

Transmissão de Calor Transmissão de Calor Revisão de Conceitos da Termodinâmica 11/08/2006 Referência: capítulos 7, 8 e 10 do livro de H. Moysés Nussenzveig, Curso de Física Básica 2 Fluidos. Oscilações e Ondas. Calor. 4 ed.

Leia mais

Lista de Exercícios para P1

Lista de Exercícios para P1 ENG 1012 Fenômenos de Transporte II - 2015.2 Lista de Exercícios para P1 Problema 1. Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e placa de gesso, como

Leia mais

Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica

Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica Termodinâmica: estuda a energia térmica. Cap 18 (8 a edição) Temperatura, Calor e Primeira lei da termodinâmica O que é temperatura: mede o grau de agitação das moléculas. Um pedaço de metal a 10 o C e

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia ransmissão de calor 3º ano 4. ransmissão de Calor em Regime ransiente Introdução Sistemas Concentrados Condução de Calor em regime ransiente com Efeitos

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

25/Mar/2015 Aula /Mar/2015 Aula 9

25/Mar/2015 Aula /Mar/2015 Aula 9 20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia

Leia mais

GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna.

GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. GEAÇÃO DE CALO UNIFOME EM SÓLIDOS Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. Se manifesta como um aumento da temperatura do meio. Exemplos:

Leia mais

Lista de Exercícios para P2

Lista de Exercícios para P2 ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Cap 03: Dilatação térmica de sólidos e líquidos

Cap 03: Dilatação térmica de sólidos e líquidos Cap 03: Dilatação térmica de sólidos e líquidos A mudança nas dimensões dos corpos, quando sofrem variações de temperatura, é um fenômeno que pode ser facilmente observado em situações do cotidiano. Quando

Leia mais

Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap.

Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap. Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap. 17 17.65) Suponha que a barra da figura seja feita de cobre, tenha 45,0

Leia mais

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor

sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor A Equação de Calor Uma das EDP s clássica da FísicaF sica- Matemática tica e a equação diferencial parcial que descreve o fluxo de calor em um corpo sólido. s E uma aplicação mais recente é a que descreve

Leia mais

CAPÍTULO 5: CONDUÇÃO DE ENERGIA

CAPÍTULO 5: CONDUÇÃO DE ENERGIA Tabela 5.1 - Condutividade térmica de alguns materiais CAPÍTULO 5: CONDUÇÃO DE ENERGIA 5.1 CONDUTIVIDADE TÉRMICA Além da transferência de energia por radiação, uma outra forma de calor (transferência de

Leia mais

Exercícios e exemplos de sala de aula Parte 3

Exercícios e exemplos de sala de aula Parte 3 Introdução à transferência de calor PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 3 1- Uma placa de alumínio, com 4mm de espessura,

Leia mais

CONDUÇÃO TÉRMICA. Condução é o processo de propagação de calor no qual a energia térmica passa de partícula para partícula de um meio.

CONDUÇÃO TÉRMICA. Condução é o processo de propagação de calor no qual a energia térmica passa de partícula para partícula de um meio. PROPAGAÇÃO DE CALOR CONDUÇÃO TÉRMICA Condução é o processo de propagação de calor no qual a energia térmica passa de partícula para partícula de um meio. FLUXO DE CALOR (Φ) LEI DE FOURIER Q t (θ 1 > θ

Leia mais

TRANSMISSÃO DE CALOR

TRANSMISSÃO DE CALOR AULA 14 1- INTRODUÇÃO TRANSMISSÃO DE CALOR Neste capítulo estudaremos os três processos de transmissão de calor e a dilatação térmica nos sólidos e nos líquidos.. 2- CONDUÇÃO Condução é o processo de transmissão

Leia mais

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário CONDUÇÃO DE CALOR APLICADO AO ESUDO DE CONCEIOS MAEMÁICOS DO ENSINO MÉDIO Douglas Gonçalves Moçato*** Luiz Roberto Walesko***. Introdução. Conceitos de transmissão de calor. Convecção. Radiação.3 Condução

Leia mais

Mecânica dos Fluidos. Aula 7 Flutuação e Empuxo. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 7 Flutuação e Empuxo. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 7 Flutuação e Empuxo Tópicos Abordados Nesta Aula Flutuação e Empuxo. Solução de Exercícios. Definição de Empuxo Quando se mergulha um corpo em um líquido, seu peso aparente diminui, chegando às vezes

Leia mais

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores

ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores ELETROMAGNETISMO - LISTA 2 - SOLUÇÃO Distribuições Contínuas de Carga, Lei de Gauss e Capacitores Data para entrega: 19 de abril 1. Distribuições não uniformes de carga Considere o problema da figura abaixo,

Leia mais

Lista de exercícios Caps. 4 e 5 TM-114 Transferência de Calor e Massa (Turma B) 2008/1

Lista de exercícios Caps. 4 e 5 TM-114 Transferência de Calor e Massa (Turma B) 2008/1 Lista de exercícios Caps. 4 e 5 TM-114 Transferência de Calor e Massa (Turma B) 2008/1 1. (Incropera et al., 6 ed., 4.2) Uma placa retangular bidimensional está sujeita às condições de contorno especificadas.

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Temperatura Lucy V. C. Assali Física II 2016 - IO Temperatura Não confiável Por exemplo: metal e papel tirados do congelador, sentimos o metal mais frio, mas é só porque ele é um melhor condutor

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre 1, sala 637 Mecanismos de Transferência de Calor Calor Calor pode

Leia mais

Fisica 1 A B. k = 1/4πε 0 = 9, N.m 2 /C Um automóvel faz o percurso Recife-Gravatá a uma velocidade média de 50 km/h.

Fisica 1 A B. k = 1/4πε 0 = 9, N.m 2 /C Um automóvel faz o percurso Recife-Gravatá a uma velocidade média de 50 km/h. Fisica 1 Valores de algumas constantes físicas celeração da gravidade: 10 m/s 2 Densidade da água: 1,0 g/cm 3 Calor específico da água: 1,0 cal/g C Carga do elétron: 1,6 x 10-19 C Velocidade da luz no

Leia mais

Mecanismos de transferência de calor

Mecanismos de transferência de calor Mecanismos de transferência de calor Condução Potência calor: Q cond A T 1 T x : condutibilidde térmica; A: área de transferência x: espessura ao longo da condução T 1 T : diferença de temperatura ifusividade

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Camada limite de velocidade As partículas de fluido em contato com a superfície têm velocidade nula. Essas partículas atuam no retardamento do movimento das partículas da camada de fluido adjacente superior

Leia mais

TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS

TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS GOPE CAT. : ÁREA DE ATIVIDADE: SERVIÇO: TÍTULO : TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO de 9 METODOLOGIA DE CÁLCULO DO COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR REV. ÍNDICE DE REVISÕES DESCRIÇÃO

Leia mais

Experimento B 4 : Pêndulo de Torção

Experimento B 4 : Pêndulo de Torção Experimento B : Pêndulo de Torção Objetivos Determinar a constante de torção de um fio. Verificar a relação entre o momento de inércia e o período de oscilação. Verificar a dependência do momento de inércia

Leia mais

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa.

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa. lista_1-conceitos_iniciais_em_termologia Questão 1 Os cálculos dos pesquisadores sugerem que a temperatura média dessa estrela é de T i = 2.700 C. Considere uma estrela como um corpo homogêneo de massa

Leia mais

Aula 01. Me. Leandro B. Holanda, 1. Definições e conceitos fundamentais. Calor

Aula 01. Me. Leandro B. Holanda,   1. Definições e conceitos fundamentais. Calor Aula 01 1. Definições e conceitos fundamentais Calor Se um bloco de cobre quente for colocado num béquer de água fria o bloco de cobre se resfria e a água se aquece até que o cobre e a água atinjam a mesma

Leia mais

Resolução de Curso Básico de Física de H. Moysés Nussenzveig Capítulo 07 - Vol. 2

Resolução de Curso Básico de Física de H. Moysés Nussenzveig Capítulo 07 - Vol. 2 HTTP://WWW.COMSIZO.COM.BR/ Resolução de Curso Básico de Física de H. Moysés Nussenzveig Capítulo 7 - Vol. Engenharia Física 9 Universidade Federal de São Carlos /1/9 1 Uma esfera oca de alumínio tem um

Leia mais

Propagação da incerteza de medição ou incerteza combinada

Propagação da incerteza de medição ou incerteza combinada UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ENGENHARIA MECÂNICA ENG0308 - MEDIÇÕES TÉRMICAS Energia e Fenômenos de Transporte Prof. Paulo S. Schneider pss@mecanica.ufrgs.br Medições Térmicas - Engenharia

Leia mais

Propriedades Físicas da Matéria

Propriedades Físicas da Matéria Propriedades Físicas da Matéria Condutividade Térmica k Massa Específica ρ Calor Específico a Pressão Constante cp Difusividade Térmica α Viscosidade Cinemática (ν) ou Dinâmica (μ) Coeficiente de Expansão

Leia mais

Transferência de Calor Condução e Convecção de Calor

Transferência de Calor Condução e Convecção de Calor Transferência de Calor Condução e Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 O calor transferido por convecção, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado

Leia mais

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE MECÂNICA Instalações Térmicas 2º Teste 120 minutos 11 de Outubro de 2013

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE MECÂNICA Instalações Térmicas 2º Teste 120 minutos 11 de Outubro de 2013 º Teste 10 minutos 11 de Outubro de 013 Pergunta 1 (1,5 valores) Como é movida a carga nos fornos de impulso? A carga forma uma camada continua de material que é depositada numa fornalha refractaria ou

Leia mais

CALORIMETRIA E TERMOLOGIA

CALORIMETRIA E TERMOLOGIA CALORIMETRIA E TERMOLOGIA CALORIMETRIA Calor É a transferência de energia de um corpo para outro, decorrente da diferença de temperatura entre eles. quente Fluxo de calor frio BTU = British Thermal Unit

Leia mais

Conservação de Energia

Conservação de Energia Conservação de Energia Formulações Alternativas Base temporal: CONSERVAÇÃO DE ENERGIA (Primeira Lei da Termodinâmica) Uma ferramenta importante na análise do fenómeno de transferência de calor, constituindo

Leia mais

Volume III. Curso Técnico Módulo 2 INSTITUTO FEDERAL DE SANTA CATARINA ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR

Volume III. Curso Técnico Módulo 2 INSTITUTO FEDERAL DE SANTA CATARINA ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR METODOLOGIA PARA O CÁLCULO DA ESPESSURA DE ISOLANTE NECESSÁRIA A UMA APLICAÇÃO Volume III Curso

Leia mais

Corrente elétrica. GRANDE revolução tecnológica. Definição de corrente Controle do movimento de cargas

Corrente elétrica. GRANDE revolução tecnológica. Definição de corrente Controle do movimento de cargas Definição de corrente Controle do movimento de cargas corrente elétrica{ GANDE revolução tecnológica fi eletrotécnica, eletrônica e microeletrônica (diversidade de aplicações!!) Ex. motores elétricos,

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Introdução e Modos de Transferência Prof. Universidade Federal do Pampa BA000200 Campus Bagé 08 de maio de 2017 Transferência de Calor: Introdução 1 / 29 Introdução à Transferência

Leia mais

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção natural Convecção forçada Convecção natural A transmissão de calor por convecção natural ocorre sempre quando um corpo é

Leia mais

Capítulo 9: Transferência de calor por radiação térmica

Capítulo 9: Transferência de calor por radiação térmica Capítulo 9: Transferência de calor por radiação térmica Radiação térmica Propriedades básicas da radiação Transferência de calor por radiação entre duas superfícies paralelas infinitas Radiação térmica

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55

Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55 SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte II 1 Algumas palavras introdutórias 2 Senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 4 Das Verdades científicas 6 Tese

Leia mais

Convecção Forçada Externa

Convecção Forçada Externa Convecção Forçada Externa Força de arrasto e sustentação Arrasto: força que o escoamento exerce na sua própria direção. Corpos submetidos a escoamento de fluidos são classificados: Região separada: Uma

Leia mais

Experiência 9 Transferência de Calor

Experiência 9 Transferência de Calor Roteiro de Física Experimental II 39 Experiência 9 Transferência de Calor OBJETIVO O objetivo desta aula é estudar os processos de transferência de calor entre dois corpos, na situação em que nenhum deles

Leia mais

1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X?

1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X? BC0303: Fenômenos Térmicos - 1 a Lista de Exercícios Termômetros, Temperatura e Escalas de Temperatura 1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X.

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Corrente Elétrica Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-0116/ Corrente elétrica

Leia mais

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016 Lei de Gauss Ignez Caracelli ignez@ufscar.br Quem foi Gauss? Um dos maiores matemáticos de todos os tempos Um professor mandou ue somassem todos os números de um a cem. Para sua surpresa, em poucos instantes

Leia mais

CIRCUITOS COM CAPACITORES

CIRCUITOS COM CAPACITORES CIRCUITOS COM CAPACITORES 1. (Ufpr 13) Considerando que todos os capacitores da associação mostrada na figura abaixo têm uma capacitância igual a C, determine a capacitância do capacitor equivalente entre

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Estado estacionário condução + convecção

Estado estacionário condução + convecção Universidade de São Paulo Escola de Engenharia de orena Departamento de Engenharia de Materiais Estado estacionário condução + convecção Prof. uiz T. F. Eleno Escola de Engenharia de orena da Universidade

Leia mais

EP34D Fenômenos de Transporte

EP34D Fenômenos de Transporte EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Introdução à Transferência de Calor 2 Introdução à Transferência de Calor O que é Transferência de Calor? Transferência de

Leia mais

1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA.

1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA. 1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA. (a) Se o feixe estiver dirigido perpendicularmente a uma superfície

Leia mais

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos EM-54 : aula Capítulo 06 Escoamento Eterno Efeitos Viscosos e érmicos 6.6 Coeficiente de ransferência de Calor por Convecção; 6.7 ransferência de Calor por Convecção Forçada; 6.8 ransferência de Calor

Leia mais

Curso engenharia de Energia

Curso engenharia de Energia UNIVERSIDADE FEDERAL DA GRANDE DOURADOS - UFGD FACULDADE DE ENGENHARIA Curso engenharia de Energia Prof. Dr. Omar Seye omarseye@ufgd.edu.br Disciplina: COMBUSTÃO E COMBUSTÍVEIS Introdução: Leis da Conservação

Leia mais

SISTEMA DE UNIDADES A ESTRUTURA DO SISTEMA INTERNACIONAL

SISTEMA DE UNIDADES A ESTRUTURA DO SISTEMA INTERNACIONAL SISTEMA DE UNIDADES INTRODUÇÃO: Um sistema de unidades é caracterizado por um conjunto de unidades e regras que as definam. O sistema internacional de unidades (S.I) possui sete unidades de base e, todas

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E. alternativa B

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E. alternativa B Questão 46 No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 LABORATÓRIOS DE ENGENHARIA QUÍMICA I 2009/2010 1. Objectivo Determinação do coeficiente de convecção natural e

Leia mais

Controle de Processos Aula: Balanços de massa e de energia

Controle de Processos Aula: Balanços de massa e de energia 107484 Controle de Processos Aula: Balanços de massa e de energia Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)

Leia mais

EXERCÍCIOS FÍSICA 10. e problemas Exames Testes intermédios Professor Luís Gonçalves

EXERCÍCIOS FÍSICA 10. e problemas Exames Testes intermédios Professor Luís Gonçalves FÍSICA 10 EXERCÍCIOS e problemas Exames 2006 2007 2008 2009 2010 2011 Testes intermédios 2008 2009 2010 2011 Escola Técnica Liceal Salesiana do Estoril Professor Luís Gonçalves 2 3 Unidade 1 Do Sol ao

Leia mais

Fenômenos de transporte AULA 5. Transporte de Calor. Professor Alberto Dresch Webler

Fenômenos de transporte AULA 5. Transporte de Calor. Professor Alberto Dresch Webler Fenômenos Resistências de dos Transporte Materiais - Aula 5 Fenômenos de transporte AULA 5 Transporte de Calor Professor Alberto Dresch Webler Veremos Transporte de calor Condução, Convecção, Radiação.

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

Fisica do Calor ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01. Introdução

Fisica do Calor ( ) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01. Introdução Fisica do Calor (4300159) Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP A01 Introdução Data Programa do curso agosto 9 agosto 12 agosto 16 agosto 19 agosto 23 agosto 26 Temperatura

Leia mais

Transferência de Calor: Origens Físicas F Equações de Taxas de Transferência

Transferência de Calor: Origens Físicas F Equações de Taxas de Transferência Transferência de Calor: Origens Físicas F e Euações de Taxas de Transferência Transferência de Calor e Energia Térmica O ue é a transferência de calor? A transferência de calor éo trânsito de energia térmica

Leia mais

Capacitância e Dielétricos

Capacitância e Dielétricos Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em

Leia mais

O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos:

O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: Capítulo 2 Modelos O termo modelo é utilizado freqüentemente como sinônimo de edo quando referida a aplicações. A seguir, apresentaremos alguns modelos: 2.1 Molas Considere uma mola, de massa desprezível,

Leia mais

Os diferentes processos de transferência de calor são referidos como mecanismos de transferência de calor.

Os diferentes processos de transferência de calor são referidos como mecanismos de transferência de calor. REGIME PERMANENTE (estáveis) (Steady State) Quando a temperatura de um ponto não varia com o tempo o regime é considerado permanente. Se em um lado de uma placa a temperatura é sempre 80 C e no outro 200

Leia mais

DETERMINAÇÃO DO CALOR ESPECÍFICO DO ALUMÍNIO

DETERMINAÇÃO DO CALOR ESPECÍFICO DO ALUMÍNIO DETERMINAÇÃO DO CALOR ESPECÍFICO DO ALUMÍNIO INTRODUÇÃO Equação de resfriamento de Newton Quando dois objetos, com temperaturas diferentes, são colocados em contato térmico, há transferência de calor do

Leia mais

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 02. Física Geral e Experimental III 2012/1

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 02. Física Geral e Experimental III 2012/1 Diretoria de Ciências Exatas aboratório de Física Roteiro Física Geral e Experimental III 1/1 Experimento: Dilatação érmica de Sólidos 1. Dilatação érmica de um Sólido Nesta tarefa serão abordados os seguintes

Leia mais

CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES

CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES CALORIMETRIA - EXERCÍCIOS E TESTES DE VESTIBULARES 1. (UFV-96) Ao derramarmos éter sobre a pele, sentimos uma sensação de resfriamento em conseqüência de: a. o éter penetrar nos poros, congelando imediatamente

Leia mais