COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA"

Transcrição

1 ESUDO DA CONDUÇÃO DE CALOR OBJEIVOS - Deerminar a disribuição de emperaura em um meio - Calcular o fluo de calor usando a Lei de Fourier Aplicações: - Conhecer a ineridade esruural de um meio em aluns ponos e em deerminados momenos: epansão érmica, esresse érmico, epansões e defleões. - Oimizar a espessura de um maerial isolane - Compaibilidade enre maérias, revesimenos especiais ou adesivos usados com o maerial COMO CONHECER A DISRIBUIÇÃO DE EMPERAURA 1. Formulação maemáica do problema: - definir um volume de conrole - aplicar o balanço de eneria - idenificar os processos de ransmissão de calor no volume de conrole - inroduzir as euações das aas de calor - ober uma euação diferencial. Solução eral da euação diferencial 3. Aplicação das condições de conorno 4. Solução do problema: disribuição de emperaura 1

2 A especificação da emperaura reuer a definição de um sisema de coordenadas a) Reanulares (,y,z) b) Cilíndricas (r,z,) c) Esféricas (r,,) A emperaura em um pono no empo é epressa como: (,y,z,) ou (r,z,, ) ou (r,,,) - ridimensional e ransiene () ou (r) unidimensional e permanene 1. FORMULAÇÃO MAEMÁICA DO PROBLEMA 1) Definir um volume de conrole ) Idenificar os processos de ransferência de eneria no volume de conrole 3) Aplicar um Balanço de Eneria no volume de conrole

3 aa de calor ue enra no V.C. - aa de calor ue sai do V.C. aa de + eração = de calor no V.C. aa de variação da uanidade de eneria no V.C. Fenômenos de superfície Fenômenos de volume e s de / d Calor ue enra ou sai do volume de conrole: por condução Geração de calor: ransformação de eneria mecânica, elérica, uímica ou nuclear em calor, no volume de conrole aa de variação da uanidade de eneria no volume de conrole, ou eneria acumulada: função da variação da eneria inerna, cinéica ou poencial 3

4 Euação da condução de calor unidimensional A- Parede plana elemeno de volume, + Para um elemeno de espessura : E elem,elem (1) onde: E elem,elem E E Subsiuindo: V elem mc p ( A ) Ac p ( ) ( A ) A c p () 4

5 A área A=y z para superfície plana é consane Dividindo por A e aplicando o limie uando 0 e 0, resula em: A (, c p (3) 1 ) Para sisemas sem eração e reime esacionário: d = 0 d indica ue a aa de condução de calor não é função de subsiuindo a E. da condução (Lei de Fourier) na E (3) ( ka ) k( A A 1 ) (, ) c p (4) Como a área A para parede plana é consane, a euação do calor, ou euação da difusão unidimensional é: k c p (, ) (5) 5

6 6 Casos: 1) Conduividade érmica, k, consane 1 k onde c p k é a difusividade érmica do maerial (m /s ou f /h) Esa propriedade do maerial é associada à propaação do calor no meio durane as variações de emperaura e empo. ) Reime ransiene, k consane e sem eração de calor 1 3) Reime permanene e k consane 0 k = + d d 4) Reime permanene, k consane e sem eração de calor 0 d d

7 Euação da condução de calor para um cilindro lono (unidimensional) r r+r elemeno de volume, r Elemeno: Camada fina de espessura r e área A=rL r rr Ar c p Ar rk r r r 1 ( r, ) c p 1) k consane: r r r r k 1 ( 1 r, ) 1 ) reime permanene: r 0 r r r k 3) reime ransiene sem eração: 1 ( r r r r 1 r, ) 1 d d 4) reime permanene sem eração: r 0 r dr dr 7

8 Euação da condução de calor para uma esfera (unidimensional) r+r r elemeno de volume, r Elemeno: Fina camada esférica de espessura r e área A=4r r 1 ( r, ) r k c p r r 1) k consane: 1 ( r r r r k 1 r, ) 1 ) reime permanene com eração: r 0 r r r k 3) reime ransiene sem eração: r 1 ( r 1 r, ) r r 1 d d 4) reime permanene sem eração: r 0 r dr dr 8

9 9 EQUAÇÃO GERAL DA CONDUÇÃO DE CALOR EQUAÇÃO DA DIFUSÃO DE CALOR Aplicações: - Fluo de calor nas proimidades de um cano onde ou 3 paredes se enconram - aa de calor ransferida aravés das paredes de um cilindro curo de parede espessa - aa de calor perdida por um ubo enerrado 1) Coordenadas caresianas Euação de Fourier-Bio 1 k z y ),y,z, ( 1) Reime permanene Euação de Poisson 0 k z y ) Reime ransiene e sem eração Euação da Difusão 1 z y ),y,z, ( Elemeno de volume ΔΔyΔz

10 10 3) Reime Permanene e sem eração Euação de Laplace 0 z y ) Coordenadas cilíndricas Áreas perpendiculares a r: (d z r d ), z: (dr r d ), : (d r d z ) Para k consane: 1 k r 1 z r r r r 1 ),z, r, ( Componenes: r radial z aial - circunferencial

11 3) Coordenadas esféricas Componenes: r radial - circunferencial - anular Áreas perpendiculares a: r: rsen.d.r.d r sen.d. d : rsen.d. dr e : r.d.dr Comprimenos : r : rsen. Para k consane 1 ) ( r,,, r sen r r r r sen r sen k Euação eral para ualuer sisema de coordenadas: k 1 - Laplaciano da emperaura 11

12 Eemplos: Deermine a euação diferencial ue descreve a variação de emperaura para cada um dos eemplos abaio, lisando as considerações feias: 1. Considere uma panela de aço com áua colocada em cima de um foão elérico. O fundo da panela possui 0,4 cm de espessura e 18 cm de diâmero. Uma boca do foão consome 800 W de poência durane o cozimeno e 80 % do calor erado é ransferido uniformemene para a panela. Assumir ue a conduividade érmica é consane.. A resisência de um auecedor de kw usado para ferver áua é um fio com conduividade érmica de k=15 W/mK, diâmero de 0,4 cm e comprimeno de 50 cm. Supor ue a variação da conduividade érmica do fio em função da emperaura é desprezível. 3. Uma esfera meálica de raio r é auecida em um forno aé a emperaura de 600 ºF, reirada do forno e deiada para resfriar em emperaura ambiene =75ºF por convecção e radiação. A conduividade érmica do maerial ue compõe a esfera varia linearmene com a emperaura. Considerar ue a esfera é resfriada uniformemene por oda a superfície eerna. 4. Um peueno linoe meálico de formao cilíndrico de raio R e alura h é auecido em forno aé 600 F, reirado do forno e deiado para resfriar a emperaura ambiene de 65 F por convecção e radiação. Assumindo ue o linoe é resfriado uniformemene por oda sua superfície eerna e ue a variação da conduividade érmica do maerial em função da emperaura é desprezível, obenha a euação diferencial ue descreve a variação de emperaura do linoe durane o processo de resfriameno. 1

13 Condições de conorno e iniciais - A solução da euação da euação diferencial passa por um processo de ineração ue envolve consanes. - A solução só vai ser única uando forem especificadas as condições eisenes nas froneiras do sisema com o meio. As epressões maemáicas desas condições são chamadas de condições de conorno. Eemplo: Considere a variação de emperaura na espessura de uma parede de ijolos de uma casa durane o inverno. A emperaura em ualuer pono da parede depende: das condições nas duas superfícies da parede (=0 e =L), ais como a emperaura do ar denro da casa, a velocidade e a direção do veno e a incidência de eneria solar na superfície eerna. Duas condições de conorno devem ser fornecidas para cada direção do sisema de coordenadas, na ual a ransferência de calor é sinificaiva. Condição inicial: Epressão maemáica da disribuição inicial da emperaura no meio. 13

14 A emperaura em ualuer pono em um deerminado momeno depende da condição no início do processo de condução de calor (=0). Uma só condição inicial deve ser especificada (primeira ordem em relação ao empo). ipos de condição de conorno: - 1ª espécie: emperaura especificada = 0 (0,) = 1 = L (L,) = - ª espécie: Fluo de calor conhecido = 0 " o = _ (0, ) k = L _ (L, ) k = " L 14

15 Casos especiais: - froneira isolada = 0 = L " _ (0, ) (0, ) o = 0 = k ou = 0 (L,)= - simeria érmica Imposa pelas condições érmicas nas superfícies Disribuição de emperaura em uma meade da placa é a mesma na oura meade (em relação ao plano cenral =L/). Não há fluo de calor no plano cenral (superfície isolada). plano cenral Disribuição de emperaura (simérica em relação ao plano cenral) (L /,) = L/ = 0 15

16 - 3ª espécie: roca de calor por convecção na superfície Condição mais comum enconrada na práica. Baseada no balanço de eneria na superfície. Condução de calor na superfície em uma direção escolhida = Convecção na superfície na mesma direção _ (0, ) _ 1 = 0 k = h ( (0,)) (L, ) = L = h ((L, ) ) 1 k - roca de calor por radiação na superfície _ (0, ) = 0 k = ( (0, ) ) _ (L, ) 1 4 _ viz = L k = ((L, ) 4) 4 _ 4 viz - Condições de conorno eneralizadas 16

17 Eemplos: Epresse as condições de conorno e inicial para cada caso: 1. Considere uma panela de alumínio com áua para cozimeno em um foão elérico. O fundo da panela possui espessura de 0,3 cm e diâmero de 0 cm. A boca do foão elérico consome 800 W de poência durane o cozimeno e 90% do calor erado é ransferido para panela. Durane a operação em reime permanene, a emperaura da superfície inerna da panela é 110ºC.. Vapor flui aravés de uma ubulação a uma emperaura média de 00 C. Os raios inerno e eerno são 8 e 8,5 cm, respecivamene, e a superfície eerna da ubulação esá bem isolada. Se o coeficiene de ransferência de calor convecivo na superfície inerna da ubulação é de 65 W/m² C, epresse as condições de conorno nas superfícies inerna e eerna da ubulação durane os períodos ransiene. 17

18 3. Uma bola meálica de raio ro é auecida em um forno aé alcançar 600 F, sendo enão reirada do forno e colocada para resfriar à emperaura ambiene de 78 F. A conduividade érmica da bola é de 8,3 Bu/(hf F) e o coeficiene convecivo médio na superfície eerna é de 4,5 Bu/(hf² F). A emissividade da superfície eerna é de 0,6 e a emperaura média da vizinhança é 55 R. Considerando ue a bola é resfriada uniformemene a parir de sua superfície eerna, epresse as condições inicial e de conorno para o processo de resfriameno. c.c.: =0 =L 18

QUESTÃO 60 DA CODESP

QUESTÃO 60 DA CODESP UEÃO 60 D CODE - 0 êmpera é um ipo de raameno érmico uilizado para aumenar a dureza de peças de aço respeio da êmpera, é correo afirmar: ) a êmpera modifica de maneira uniforme a dureza da peça, independenemene

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna.

GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. GEAÇÃO DE CALO UNIFOME EM SÓLIDOS Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. Se manifesta como um aumento da temperatura do meio. Exemplos:

Leia mais

Ondas Eletromagnéticas

Ondas Eletromagnéticas Ondas leromagnéicas Alguns Teoremas: Usando mais : podemos mosrar que : As duas úlimas equações mosram que variações espaciais ou emporais do campo elérico (magnéico) implicam em variações espaciais

Leia mais

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados.

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados. Condução de Calor Lei de Fourier A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados Considerações sobre a lei de Fourier q x = ka T x Fazendo Δx 0 q taxa de calor [J/s] ou

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

são as resistências térmicas de superfície à superfície para cada seção (a, b,, n), determinadas pela expressão 4; são as áreas de cada seção

são as resistências térmicas de superfície à superfície para cada seção (a, b,, n), determinadas pela expressão 4; são as áreas de cada seção ABNT NBR 5220-2 - Desempenho érmico de edificações - Pare 2: Méodos de cálculo da ransmiância érmica, da capacidade érmica, do araso érmico e do faor solar de elemenos e componenes de edificações Esabelece

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário CONDUÇÃO DE CALOR APLICADO AO ESUDO DE CONCEIOS MAEMÁICOS DO ENSINO MÉDIO Douglas Gonçalves Moçato*** Luiz Roberto Walesko***. Introdução. Conceitos de transmissão de calor. Convecção. Radiação.3 Condução

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Aula 3 Equação diferencial de condução de calor Condições iniciais e condições de fronteira; Geração de Calor num Sólido;

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá

PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS. Prof. Alexandre Augusto Pescador Sardá PROJETO DE ENGRENAGENS - CILÍNDRICAS DE DENTES RETOS E HELICOIDAIS Prof. Alexandre Auguso Pescador Sardá INTRODUÇÃO Falha por flexão dos denes: ocorrerá quando quando a ensão significaiva nos denes igualar-se

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3083 e LOM3213 Fenômenos de Transporte Prof. Luiz T. F. Eleno Lista de exercícios 2 1. Considere uma parede aquecida por convecção de um

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase ROEIRO DE CÁLCULO Ese roeiro de cálculo se aplica ao projeo de rocadores de calor casco e ubos, sem mudança de fase . Deerminar qual fluido passa pelo ubo e qual passa pelo casco. Diferença de emperauras

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar

Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar Condução de calor em regime transiente Condições variam com o tempo ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar ) Passa-se algum tempo antes

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Exemplos de fontes emissoras de ondas eletromagnéticas

Exemplos de fontes emissoras de ondas eletromagnéticas emplos de fones emissoras de ondas eleromagnéicas Luz visível emiida por um filameno de lâmpada incandescene missoras de rádio e TV Osciladores de micro-ondas Aparelhos de raios X Diferem enre si, apenas

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

Equilíbrio térmico. diatérmica. adiabática. (A e B estão em contacto térmico)

Equilíbrio térmico. diatérmica. adiabática. (A e B estão em contacto térmico) Equilíbrio érmico Parede adiabáica exs: asbeso (amiano), felro, polisereno, paredes de uma garrafa ermo. Parede diaérmica ex: folha fina de meal. adiabáica A Todos os valores de, Y são possíveis B Todos

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Tecnologia alternativa para construção de habitação de interesse social com painéis pré-fabricados de concreto armado

Tecnologia alternativa para construção de habitação de interesse social com painéis pré-fabricados de concreto armado Tecnologia alernaiva para consrução de habiação de ineresse social com painéis pré-fabricados de concreo armado Eleandro Cao Thaís L. Provenzano Fernando Barh 3 Programa de Pós-graduação em Arquieura e

Leia mais

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO RANSFERÊNCIA DE CALOR POR CONVECÇÃO ransferência de energia entre uma superfície e um fluido em movimento sobre essa superfície Fluido em movimento, u, s > A convecção inclui a transferência de energia

Leia mais

Capítulo 8: Transferência de calor por condução

Capítulo 8: Transferência de calor por condução Capítulo 8: ransferência de calor por condução Condução de calor em regime transiente Condução de calor em regime transiente Até o momento só foi analisada a transferência de calor por condução em regime

Leia mais

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade Incereza- Padrão Repeiividade! A incereza padrão corresponde ao desvio-padrão (esimaiva do desvio-padrão da população) e deve ser associado a ela o número de graus de liberdade (reflee o grau de segurança

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO PROF.: KAIO DUTRA Convecção Térmica O modo de transferência de calor por convecção é composto por dois mecanismos. Além da transferência

Leia mais

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap.

Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap. Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap. 17 17.65) Suponha que a barra da figura seja feita de cobre, tenha 45,0

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º Ano 1 Aula Prática 4 Regime transiente 2 Problema -10.1 Placas de latão de 20 mm de espessura são aquecidas durante 15 minutos

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Figuras do Livro Introdução à Análise Complexa, Séries de Fourier e Equações Diferenciais

Figuras do Livro Introdução à Análise Complexa, Séries de Fourier e Equações Diferenciais Figuras do Livro Inrodução à Análise Complea, Séries de Fourier e Equações Diferenciais Pedro Marins Girão Deparameno de Maemáica Insiuo Superior Técnico Julho de 04 Capíulo Números compleos iiz θ = π

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

projecto de postos de transformação

projecto de postos de transformação ARTGO TÉCNCO 17 Henrique Ribeiro da Silva Dep. de Engenharia Elecroécnica (DEE) do nsiuo Superior de Engenharia do Poro (SEP) projeco de posos de ransformação {.ª Pare - Cálculo dos Conduores} Apesar de

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Aula 6 de FT II. Prof. Gerônimo

Aula 6 de FT II. Prof. Gerônimo Aula 6 de FT II Prof. Gerônimo Transferência de calor em superfícies estendidas Superfície estendida é comumente usado para descrever um caso especial importante envolvendo a transferência de calor por

Leia mais

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas

apresentado: B 10cm 5 cm , (x, y, z) em cm Pede-se: onde elas 1) Para a peça primáica indeformada da figura abaio foi admiido o campo de deformaçõe apreenado: 5 cm 1cm A B 1cm C ij a b b c,a, (,, ) em cm Para ajuar o modelo, ainda na configuração inicial indeformadaa

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Métodos de Modelagem Numérica

Métodos de Modelagem Numérica Disciplina: Méodos de Modelagem Numérica Enilson Palmeira Cavalcani enilson@dca.ucg.edu.br Universidade Federal de Campina Grande Cenro de Tecnologia e Recursos Naurais Unidade Acadêmica de Ciências Amoséricas

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 11 FUNDAMENTOS DE TRANSFERÊNCIA DE CALOR PROF.: KAIO DUTRA Transferência de Calor Transferência de calor (ou calor) é a energia em trânsito devido a uma diferença de temperatura.

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Estruturas Metálicas - Compressão

Estruturas Metálicas - Compressão www.mealica.com.r www.cosipa.com.r www.usiminas.com.r sruuras Meálicas - Compressão Marcio Varela lemenos Comprimidos se ópico se aplica a arras prismáicas sumeidas à orça aial de compressão. Para que

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

Transmissão de calor

Transmissão de calor UNIVESIDADE EDUADO MONDLANE Faculdade de Engenharia Transmissão de calor 3º Ano 1 Aula 6 Aula Prática- Condução em regime permanente Problema -6.1 (I) Uma janela tem dois vidros de 5 mm de espessura e

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Lista de Exercícios para P2

Lista de Exercícios para P2 ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

Condução multidirecional: a equação de difusão de calor

Condução multidirecional: a equação de difusão de calor Condução multidirecional: a equação de difusão de calor Problema motivador 01: Para a alteração de propriedades de ligas metálicas, metais nobres podem ser adicionados na forma de pellets (pequenas esferas)

Leia mais

SIMULAÇÃO NUMÉRICA DO AQUECIMENTO DE CILINDRO DE LAMINAÇÃO

SIMULAÇÃO NUMÉRICA DO AQUECIMENTO DE CILINDRO DE LAMINAÇÃO VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NAIONAL CONGRESS OF MECHANICAL ENGINEERING 8 a de agoso de Campina Grande Paraíba - Brasil Augus 8, Campina Grande Paraíba Brazil SIMULAÇÃO NUMÉRICA DO AQUECIMENO

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

dipolar eléctrico de um cristal ferromagnético)

dipolar eléctrico de um cristal ferromagnético) Insrumenação Opoelecrónica 55 Tipos de foodeecores Deecores érmicos: Foodeecores Absorvem radiação luminosa e converem a energia elecromagnéica em energia érmica. O resulado desa conversão é um aumeno

Leia mais

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações. .. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Camada limite de velocidade As partículas de fluido em contato com a superfície têm velocidade nula. Essas partículas atuam no retardamento do movimento das partículas da camada de fluido adjacente superior

Leia mais

Redes de Computadores I

Redes de Computadores I Redes de Compuadores I - Ruido, Teorema da Amosragem e Capacidade Máxima de um Canal por Helcio Wagner da Silva. p.1/23 Rerospeciva Sinais perdem sua energia ao longo de seu percurso. Dá-se o nome de aenuação

Leia mais

Exercícios e exemplos de sala de aula Parte 3

Exercícios e exemplos de sala de aula Parte 3 Introdução à transferência de calor PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 3 1- Uma placa de alumínio, com 4mm de espessura,

Leia mais

Transmissão de Calor e Permutadores

Transmissão de Calor e Permutadores CONCURSO PETROBRAS ENGENHEIRO(A) DE PROCESSAMENTO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PROCESSAMENTO QUÍMICO(A) DE PETRÓLEO JÚNIOR Transmissão de Calor e Permutadores Questões Resolvidas QUESTÕES RETIRADAS

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico Correne Elérica Movimeno de uma Carga Ponual denro de um Campo Elérico Uma carga elérica denro de um campo elérico esá sujeia a uma força igual a qe. Se nenhuma oura força aua sobre essa carga (considerar

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

defi departamento de física

defi departamento de física defi departamento de física aboratórios de Física www.defi.isep.ipp.pt Condutividade térmica Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida, 431

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre 1, sala 637 Mecanismos de Transferência de Calor Calor Calor pode

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos EM-54 : aula Capítulo 06 Escoamento Eterno Efeitos Viscosos e érmicos 6.6 Coeficiente de ransferência de Calor por Convecção; 6.7 ransferência de Calor por Convecção Forçada; 6.8 ransferência de Calor

Leia mais