Universidade Federal do Rio de Janeiro UFRJ Departamento de Engenharia Elétrica Formulário de Teoria Eletromagnética I

Tamanho: px
Começar a partir da página:

Download "Universidade Federal do Rio de Janeiro UFRJ Departamento de Engenharia Elétrica Formulário de Teoria Eletromagnética I"

Transcrição

1 Universidade Federal do io de Janeiro UFJ Departamento de Engenharia Elétrica Formulário de Teoria Eletromagnética I Prof. ntonio Lopes de oua, Ph.D. - Distância entre dois pontos (,, ) e (,, ): d = ( - ) + ( - ) + ( - ) NLIE VETOIL - Vetor dirigido do ponto (,, ) para o ponto (,, ): ( - )a + ( - )a + ( - )a 3- Vetor unitário e módulo de um vetor: a a a a a 4- Produto escalar entre dois vetores epressos em coordenadas cartesianas: a a a e a a a. cos onde é o ângulo entre os dois vetores 5- Produto vetorial entre dois vetores a N a a a e a a a sin a N onde a N é o vetor unitário normal ao plano formado pelos vetores e cujo sentido é dado pela regra do parafuso da mão direita (o sentido de movimento de um parafuso girado com a mão direita). a a a 6- Elementos diferenciais de ume dv = ddd (cartesianas) dv = ddd (cilíndricas) dv = r sindrdd (esféricas) ELETOTÁTIC 7- Lei de Coulomb QQ F a (N), onde 8,854 F/ m, é a distância entre as cargas e a N é o vetor 4 unitário dirigido da carga provoca a força para a carga sobre a qual age a força. lei de Coulomb descreve forças de interação mútua, ou seja, a força que a primeira carga provoca sobre a segunda é igual e contrária àquela que a segunda provoca sobre a primeira.

2 8- Campo elétrico da carga pontual Q E a (V/m), onde Q é a carga fonte do campo elétrico e os outros elementos da equação se 4 encontram definidos na fórmula Campo elétrico de um sistema de N cargas pontuais N Q E a m (V/m), ou seja, o campo total é a soma dos campos provocados por cada carga m 4 m do sistema, agindo isoladamente. - Campo da linha infinita de cargas L E a (V/m), onde L é a densidade linear de cargas na linha infinita, é a menor distância da linha ao ponto onde se quer E, e ponto onde se quer o campo elétrico. a é o vetor unitário atuando ao longo de e apontando da linha para o - Campo da folha infinita de cargas E an (V/m), onde C/m é a densidade superficial de cargas presente na folha infinita e vetor unitário normal à folha e apontando da folha para o ponto onde se quer o campo elétrico. - Distribuições de carga Q LdL (carga linear) L Q d (carga superficial) Q vdv (carga umétrica) v 3- Equação das linhas de campo dado E E a E a E E d d a N é o 4- Fluo elétrico D d, (C), onde D é o vetor densidade de fluo elétrico medido em C/m. D E, onde é a permissividade do vácuo ou espaço livre e dada por: 9 8,854 ( F/ m) Lei de Gauss: o fluo elétrico através de uma superfície fechada é igual à carga total envida pela mesma superfície. total D d Q

3 6- Divergente D D D D (cartesianas) ( D ) D D D (cilíndricas) ( r D D r ) ( D sin ) D r r r sin r sin (esféricas) 7- Primeira equação de Mawell D v onde v é a densidade umétrica de cargas 8- Trabalho realiado para mover uma carga entre dois pontos dentro de um campo elétrico final W Q E dl, onde dlé o vetor deslocamento elementar definido abaio para os três sistemas de inicial coordenadas: dl da da da (cartesianas) dl da da da (cilíndricas) dl drar rda r sinda (esféricas) 9- Diferença de potencial (ddp) entre dois pontos e V V V E dl (V), ou seja, a diferença de potencial entre os pontos e é a medida do trabalho realiado para mover uma carga unitária e positiva de até dentro do campo elétrico em questão. - Diferença de potencial no campo de uma carga pontual Q V V ( ) (V), onde Q é a carga fonte do campo potencial presente na região e e 4 são as menores distâncias entre a carga fonte Q e os pontos e, respectivamente. - Diferença de potencial no campo de uma linha infinita de cargas L V V ln (V), onde L é a densidade linear de cargas presente na linha infinita, e são as menores distâncias entre a linha e os pontos e respectivamente, e onde ln indica logaritmo natural. - Campo potencial absoluto de uma carga pontual Q V C (V), onde é a menor distância entre a carga fonte Q e o ponto onde se quer o 4 potencial absoluto e C é uma constante cujo valor depende da localiação do ero de referência para potencias. Para o caso em que o ero de referência é localiado no infinito o valor de C é ero.

4 3- Gradiente V V V V = a a a (cartesianas) V V V V = a a a (cilíndricas) V V V V = ar a a r r r sin (esféricas) 4- elação entre V e E E V 5- Energia armaenada no campo elétrico de um sistema de N cargas pontuais N W Q V m m (J) m 6- Energia armaenada no campo elétrico de uma distribuição contínua de cargas WE vvdv ( D.E)dv (J), onde é a densidade umétrica de cargas presente no ume v. 7- Corrente I J. d (), onde J é o vetor densidade de corrente, medido em mpères por metro quadrado (/m ) e a superfície através da qual se quer medir o fluo de corrente. 8- Densidade de corrente de convecção J U, onde é uma densidade umétrica de cargas movendo-se com vetor velocidade U. 9- Equação da continuidade. J t 3- Condutores metálicos J E onde J é a densidade de corrente de condução, é a condutividade e E é o campo elétrico aplicado ao meio., onde e e e é a densidade umétrica eletrônica e e é a mobilidade do elétron. 3- esistência de objetos condutores E. dl V ( ) I E. d 3- Condições de fronteira condutor espaço-livre Dt Et Dn En s (caso a fronteira seja condutor-dielétrico basta substituir por E D no interior do condutor. )

5 33- Materiais dielétricos P E e (C/m ) e, onde P é o vetor polariação, e é a susceptibilidade elétrica do material e E é o campo elétrico aplicado.. P, onde b é a densidade de cargas de polariação. b D E P ou D E, onde 34- Condições de fronteira dielétrico-dielétrico Et Et En n E Dt Dt Dn Dn 35- Capacitância Q C, onde Q é o módulo da carga em um dos condutores do sistema e V é a diferença de potencial V entre os condutores. 35- Equação de Laplace: V descreve as distribuições de potenciais eletrostáticos em regiões livres de cargas (eceto as cargas fontes do campo V). 36- Equação de Poisson: V V descreve as distribuições de potenciais eletrostáticos em regiões com cargas ( V ) e permissividade ( ). 37- Laplaciano V V V V (Cartesianas) V V V V ( ) (Cilíndricas) V V V V ( r ) (sin ) (Esféricas) r r r r sin r sin 38- Lei de iot-avart: 36 MGNETOTÁTIC 9-8,854 IdL a dh 4 corrente ao ponto onde se quer o campo magnético e corrente para o ponto onde se quer H. F/m -7 4 H/m), onde IdLé um elemento diferencial de corrente, é distância do elemento diferencial de a é o vetor unitário apontando do elemento diferencial de

6 39- Lei de iot-avart: IdL a a) campo magnético de distribuições filamentares de corrente: H (/m) 4 ( K a )d b) campo magnético de distribuições superficiais de corrente: H (/m) 4 ( J a )dv c) campo magnético de distribuições umétricas de correntes: H (/m) 4 onde I dl = K d = J dv onde I é a intensidade de corrente, K é o vetor densidade superficial de corrente (corrente em superfícies), medido em /m, e J é o vetor densidade de corrente (corrente em umes), medido em /m. 4- Campo magnético do filamento infinito de corrente: I H a H (/m), onde I é a corrente convencional fluindo no filamento e é a menor distância do ponto onde se quer o campo magnético até filamento. O unitário do campo, a H, é normal ao plano formado por I e e tem o sentido determinado pela regra da mão direita (o dedo polegar da mão direita aponta no sentido do fluo da corrente convencional e os quatro dedos restantes enlaçam o condutor indicando o sentido do campo magnético, como na figura abaio). (regra da mão direita para o sentido do campo magnético) 4- Campo magnético do filamento finito I H (sin sin ) ah, onde é a menor distância entre a reta que contém o filamento finito (a 4 reta suporte) e o ponto onde se quer o campo magnético. O ângulo é formado entre e a reta que une o ponto onde se quer o campo magnético ao ponto por onde a corrente entra no filamento. O ângulo é formado entre e a reta que une o ponto onde se quer o campo magnético ao ponto por onde a corrente sai do filamento. Filamento finito eta suporte do filamento I Ponto P O sinal do ângulo é positivo quando o sentido de crescimento dele (ele cresce sempre a partir de ) coincidir com o da corrente. Na figura acima é negativo e é positivo. direção de H é normal ao plano formado entre e I. O sentido é obtido pela regra da mão direita (o dedo polegar apontando o sentido da corrente e as

7 etremidades dos outros dedos quatro tocando o ponto onde se quer H, o ponto P). Na figura acima H seria normal do plano do papel e apontaria para baio, entrando no plano do papel no ponto P. 4- Lei Circuital de mpère H.dL I, ou seja, a circulação do campo magnético é igual à corrente contínua envida no percurso da mesma circulação. O vetor dl é tomado sobre o percurso de integração. O sentido da circulação é orientado positivamente com o sentido da corrente através da regra da mão direita (o dedo polegar indica o sentido positivo da corrente convencional e os quatro dedos restantes indicam o sentido positivo da circulação). 43- Campo magnético do cabo coaial Corrente I saindo do plano do papel a b c Corrente I entrando no plano do papel I 43.) para <a H 43.) para a<<b a 43.3) para b<<c (I c ) 43.4) para >c H ( c b ) H H I 44- Campo magnético da folha infinita percorrida por uma densidade de corrente K ( / m) H K a N, onde K é o vetor densidade superficial de corrente e a N é o vetor unitário normal à folha e dirigido dela para o ponto onde se quer calcular o campo magnético. 44 Campo de um solenoide infinitamente longo, com seção reta circular de raio a, com eio de simetria coincidindo com o eio e percorrido por uma densidade superficial de corrente uniforme na direção aimutal K K aa 44. olenoide ideal: H K aa parar a e H para r a NI 44. solenoide de N espiras com comprimento d : H a Z para pontos próimos ao eio de d simetria e distantes das etremidades. 45 otacional Definição geral da componente do rotacional na direção N H. dl ( H) N lim N N

8 45.- otacional em cartesianas H H H ( )a ( H H )a ( H H )a otacional em cilíndricas H H ( H ) H H H H ( )a r ( )a ( )a Onde é a coordenada radial em cilíndricas, ou seja, a menor distância do eio a um ponto do espaço otacional em esféricas ( H sin) H H ( rh ) ( rh ) H )a r r H ( )a r ( ( ) a rsin r sin r r r onde r é a coordenada radial em esféricas, ou seja, a menor distância da origem a um ponto no espaço. 46 Teorema de tokes H. dl ( H). percurso da circulação. d, onde a integral de superfície é tomada sobre a superfície limitada pelo 47- Densidade de Fluo Magnético H (Wb/m ), onde 7 4. (Henr/ m) é a permeabilidade do espaço livre e é a permeabilidade relativa do meio. e o meio for o espaço livre 48- Fluo Magnético. d (Wb) 49- Lei de Gauss do magnetismo. d (o fluo magnético total através de uma superfície fechado é nulo) 5- Equações de Mawell para campos estacionários na forma pontual E (a circulação do campo eletrostático é nula) H J (lei de mpère na forma pontual). D (lei de Gauss na forma pontual note que representa densidade de carga). (forma pontual da Lei de Gauss para o magnetismo) 5- Equações de Mawell para campos estacionários na forma integral E. dl H. dl I D. d Q vdv, onde v representa densidade umétrica de cargas.

9 . d 5- Potencial Escalar Magnético V m H - V m, J, ou seja, essa relação somente é válida em regiões onde não eista fluo de corrente. O potencial magnético é medido em mpère. Vm H. dl (onde o percurso não pode fechar em torno de correntes) É possível definir uma diferença de potencial magnético Vm entre dois pontos e desde que o percurso de integração não seja fechado em torno de correntes. e o percurso fechar em torno de correntes a função potencial magnético escalar passa a ser multi-avaliada. 53- Potencial Vetor Magnético, onde é o potencial vetor magnético medido em (Wb/m). O Potencial Vetor Magnético aponta sempre no sentido da corrente que cria o campo. partir da Lei de iot-avart e da definição de potencial vetor é possível mostrar que: IdL para correntes filamentares 4 Kd para correntes superficiais 4 Jdv para correntes umétricas 4 O potencial vetor magnético pode ser visualiado como uma fotografia fora de foco das distribuições de corrente. 54- Força sobre uma carga Q em movimento dentro de um campo elétrico E. F Q E 55- Força sobre uma carga Q em movimento com velocidade U dentro de um campo magnético. F (Q U ) 56- Equação de Lorent: força sobre uma carga Q em movimento com velocidade U dentro de um campo elétrico E e magnético F (Q E U ) 57- Força provocada por um campo magnético estacionário sobre um fluo filamentar de corrente de intensidade I () F IdL 58- Força provocada por um campo magnético estacionário sobre um fluo superficial de corrente K (/m) F ( K )d 59- Força provocada por um campo magnético estacionário sobre um fluo umétrico de corrente J (/m ) F ( J )dv 6- Força e torque sobre percursos fechados de corrente

10 força total eercida por um campo magnético uniforme sobre um circuito fechado de corrente é nula. O torque não é nulo e é dado por: T m, onde m I é o vetor momento de dipolo magnético. Ele representa uma pequena espira na qual flui corrente convencional de intensidade I (). O vetor tem módulo igual à área da espira e aponta orientado com o fluo da corrente convencional de acordo com a regra da mão direita como mostra a figura a seguir. m Vetor momento de dipolo magnético Corrente convencional I Área Mão Direita O torque tem como finalidade o alinhamento entre os campos magnético do dipolo e o aplicado eternamente. 6-Magnetiação n v M lim mi (/m) v v i M. dl I b, onde I b representa correntes de magnetiação. M m H, onde m é a susceptibilidade magnética do material. m M J b, onde J b é a densidade de correntes de magnetiação. Ib Jb. d 6- elações gerais entre e H H, onde ( H M) e M H m 63- Condições de Fronteiras Magnéticas m Componentes Normais : N N, H N HN, MN m HN MN m Componentes Tangenciais: H t H t K onde K é o módulo do vetor densidade de corrente que poderia eistir na fronteira entre os dois meios. Caso não eista corrente na fronteira as componentes tangenciais de H são contínuas. Uma relação vetorial mais geral para o caso da eistência de correntes nas fronteiras seria: H H ) a K, onde a N é o vetor unitário normal à fronteira e dirigido do meio para o meio. ( N t t K m D v e Mt Mt mk m

11 64- Circuitos Magnéticos L (e/wb), elutância de um material linear, homogêneo e isotrópico de comprimento L, área de seção reta e permeabilidade. V m, onde é o fluo magnético fluindo no circuito magnético. Essa fórmula somente pode ser aplicada para calcular quedas de potencial magnético em meios lineares, homogêneos e isotrópicos, nos quais é constante. Em materiais não lineares V m é calculada a partir da equação: Vm H. dl, que, para casos em que supomos o campo magnético uniforme na seção reta do circuito magnético, pode ser calculada como V m HL, onde L é o comprimento da seção e H deve ser obtido a partir da curva de magnetiação (curva -H) do material. fonte que alimenta um circuito magnético (o conjunto de N espiras percorrido por corrente I) pode ser representada como: NI V m fonte 65- Energia potencial armaenada em um campo magnético estacionário em que está linearmente relacionado com H WH.H dv 66 Indutância e Indutância Mútua N uto Indutância: L (Henr/m), onde o produto N é o enlace de fluo e I a corrente que gera o enlace de I fluo. N Indutância mútua entre os circuitos e : M, onde é o fluo produido por I que enve o I caminho da corrente filamentar I e N é o número de espiras do circuito M M M 67- Lei de Farada d fem N (ts) dt 36 CMPO VINTE NO TEMPO 9-8,854 F/m -7 4 H/m) 68- Força eletromotri fem E. dl, onde E é um campo não conservativo, ou seja, não é um campo elétrico originário de separação de cargas eletrostáticas. 69- Força eletromotri Transformadora

12 fem E. dl ( ). d (V), onde é um campo magnético variando no tempo enlaçando um t percurso condutor estacionário. 7- Força eletromotri Geradora fem E. dl ( U ). dl (V), onde U é a velocidade com que um percurso condutor se move dentro do campo magnético uniforme. 7 Densidade de Corrente de Deslocamento D J d (/m ), onde D é uma densidade de fluo elétrico variando com o tempo. t I J. d () d d 7 Equações de Mawell na forma Integral E - (forma pontual da Lei de Farada) t D H J (lei de mpère par campos dinâmicos) t. D v (lei de Gauss na forma pontual onde v representa densidade umétrica de carga variando no tempo).. (forma pontual da Lei de Gauss para o magnetismo) 73 Equações de Mawell para campos dinâmicos na forma Integral E. dl ( ). d t D H. dl I t D. d Q dv, onde representa densidade umétrica de cargas variando no tempo. d

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62

Sumário. 1 Introdução Álgebra Vetorial Cálculo Vetorial 62 Sumário 1 Introdução 18 1-1 Linha do Tempo Histórico 19 1-1.1 Eletromagnetismo na Era Clássica 19 1-1.2 Eletromagnetismo na Era Moderna 20 1-2 Dimensões, Unidades e Notação 21 1-3 A Natureza do Eletromagnetismo

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVESIDADE FEDEAL DE CAMPINA GANDE CENTO DE ENGENHAIA ELÉTICA E INFOMÁTICA NOTAS DE AULA DE ELETOMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TANSPAÊNCIAS - 1. Estágio

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Prof. Dr. R.M.O Galvão e Prof. Dr. L.R.W. Abramo. Prova 2 - Diurno

Prof. Dr. R.M.O Galvão e Prof. Dr. L.R.W. Abramo. Prova 2 - Diurno Eletromagnetismo I - 2 Semestre 2015 Prof. Dr. R.M.O Galvão e Prof. Dr. L.R.W. Abramo Prova 2 - Diurno 1 Um exemplo simplista de um motor elétrico está esquematiado na figura abaixo. Um trilho metálico

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

CAP 03 CÁLCULO VETORIAL

CAP 03 CÁLCULO VETORIAL CAP 03 CÁLCULO VETORIAL Estudaremos integração e diferenciação de vetores. COMPRIMENTO, ÁREA E VOLUME DIFERENICIAI Os elementos diferenciais de comprimento, área e volume são úteis em cálculo vetorial.

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Eletromagnetismo II - Eletrostática Fluxo Magnético e LGM (Capítulo 7 Páginas 207a 209) Princípio da Superposição

Leia mais

Eletromagnetismo I - Eletrostática

Eletromagnetismo I - Eletrostática - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico Campos conservativos

Leia mais

Cronograma de 2017/1 de Física III-A

Cronograma de 2017/1 de Física III-A Cronograma de 2017/1 de Física III-A Mês Seg Ter Qua Qui Sex Sab 6 7 8 9 10 11 1 - Cap 21 2 - Cap 21 13 14 15 16 17 18 Março 20 21 22 3 - Cap 21 23 24 4 - Cap 22 25 Atividade 1 5 - Cap 22 6 - Cap 23 27

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Eletromagnetismo I - Eletrostática e campo magnético estacionário de correntes contínuas (Capítulo 7 Páginas

Leia mais

Capítulo 2 Leis essenciais de eletromagnetismo Equações de Maxwell Lei de Faraday Lei de Biot Savart

Capítulo 2 Leis essenciais de eletromagnetismo Equações de Maxwell Lei de Faraday Lei de Biot Savart Eletrotecnia Aplicada 10 013 Capítulo Leis essenciais de eletromagnetismo Equações de Maxwell Lei de Faraday Lei de Biot Savart Lei de Ampére. Nomenclatura Vetor campo elétrico (V/m) volts/metro ou (N/C),

Leia mais

Prefácio... i Prólogo... iii Constantes Físicas... vi

Prefácio... i Prólogo... iii Constantes Físicas... vi Índice Prefácio... i Prólogo... iii Constantes Físicas... vi 1 - Introdução Matemática 1.1 - Sistemas de Coordenadas... 1 1.2 - Operadores Diferenciais 1.2.1 - Operador gradiente... 6 1.2.2 - Operador

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 4 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais escalar e vetorial magnéticos (Capítulo 7 Páginas 210 a 216) Potencial Escalar Vm Potencial Vetorial

Leia mais

Lecture notes. Prof. Cristiano. Fonte de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202

Lecture notes. Prof. Cristiano. Fonte de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 Eletricidade e Magnetismo IGC Fontes de Campo Magnético Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Fonte de Campo Magnético Imã ImãemC Fio de corrente Espira de corrente Solenóide de corrente

Leia mais

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart Física III-A - 2019/1 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,

Leia mais

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO

EQUAÇÕES DE MAXWELL, POTENCIAL MAGNÉTICO E EQUAÇÕES DE CAMPO 99 15 EQUAÇÕES DE MAXWELL, POTENCIAL MANÉTICO E EQUAÇÕES DE CAMPO 15.1 - AS QUATRO EQUAÇÕES DE MAXWELL PARA CAMPOS ELÉTRICOS E MANÉTICOS ESTACIONÁRIOS Como pudemos observar em todo o desenvolvimento deste

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Física III-A /2 Lista 8: Indução Eletromagnética

Física III-A /2 Lista 8: Indução Eletromagnética Física III-A - 2018/2 Lista 8: Indução Eletromagnética 1. (F) Um fio condutor retilíneo e infinito transporta uma corrente estacionária de intensidade I. Uma espira condutora quadrada é posicionada de

Leia mais

FÍSICA 3 FCI0105/2016

FÍSICA 3 FCI0105/2016 FÍSICA 3 FCI0105/2016 SUMÁRIO DO PROGRAMA 1. Cargas, força & campo elétrico 1.1. Carga elétrica, tipos de força e eletrização 1.2. Cargas da matéria: o átomo, quantização e conservação 1.3. Condutores,

Leia mais

Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart

Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart Física III-A - 2018/2 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,

Leia mais

Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética

Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética Eletromagnetismo Motor Eletroimã Eletroimã Fechadura eletromagnética Motor elétrico Ressonância Magnética Representação de um vetor perpendicular a um plano 1 Campo Eletromagnético Regra da mão direita:

Leia mais

Leis de Biot-Savart e de Ampère

Leis de Biot-Savart e de Ampère Leis de Biot-Savart e de Ampère 1 Vimos que uma carga elétrica cria um campo elétrico e que este campo exerce força sobre uma outra carga. Também vimos que um campo magnético exerce força sobre uma carga

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Corrente e Eq. da Continuidade (Capítulo 5 Páginas 109 a 113) Densidade de corrente Elétrica Equação da Continuidade Forma Integral Equação da Continuidade Forma

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

Física 3 - EMB5043. Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017

Física 3 - EMB5043. Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017 Física 3 - EMB5043 Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017 1. A figura 1 mostra dois fios. O fio de baixo conduz uma corrente i 1 = 0,40 A e inclui

Leia mais

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Problema Licenciatura em Engenharia e Arquitetura Naval Mestrado Integrado

Leia mais

Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame)

Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame) º Teste: Problemas 3, 4 e 5. Exame: Problemas,, 3, 4 e 5. Duração do teste: :3h; Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges A lei de Gauss Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Fluxo de um campo

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart Física III-A - 2018/1 Lista 7: Leis de Ampère e Biot-Savart Prof. Marcos Menezes 1. Considere mais uma vez o modelo clássico para o átomo de Hidrogênio discutido anteriormente. Supondo que podemos considerar

Leia mais

Lista de Exercícios 7 Lei de Ampère

Lista de Exercícios 7 Lei de Ampère Lista de Exercícios 7 Lei de Ampère E8.1 Exercícios E8.1 Um fio de material supercondutor de raio igual a 10 µm transporta uma corrente de 100 A. Calcule o campo magnético na superfície do fio. R.,0 T.

Leia mais

Fluxo do campo elétrico

Fluxo do campo elétrico Fluxo do campo elétrico Definição: - É uma grandeza escalar que caracteriza uma medida do número de linhas de campo que atravessam uma determinada superfície. a) Linhas de um campo uniforme em magnitude

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Física Geral III Aula exploratória- 08 UNICAMP IFGW F328 1S2014 1 Pontos essenciais Campo magnético causa uma força sobre uma carga em movimento Força perpendicular a: Campo magnético Velocidade

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia Eletrostática (Capítulo 4 Páginas 00 a 04) Energia potencial de um grupo de cargas pontuais. Energia de uma distribuição contínua de carga. Densidade de energia no campo

Leia mais

LEI DE AMPÈRE. Aula # 15

LEI DE AMPÈRE. Aula # 15 LEI DE AMPÈRE Aula # 15 BIOT-SAVART Carga em movimento gera campo magnético Campo magnético produzido por um elemento de corrente em um ponto r d B = ( µ0 ) id l r r 3 = ( µ0 ) idlsin(θ) r 2 µ 0 = 10 7

Leia mais

superfície que envolve a distribuição de cargas superfície gaussiana

superfície que envolve a distribuição de cargas superfície gaussiana Para a determinação do campo elétrico produzido por um corpo, é possível considerar um elemento de carga dq e assim calcular o campo infinitesimal de gerado. A partir desse princípio, o campo total em

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

Magnetismo e movimento de cargas. Fontes de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202

Magnetismo e movimento de cargas. Fontes de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 Eletricidade e Magnetismo - IME Fontes de Campo Magnético Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Magnetismo e movimento de cargas Primeira evidência de relação entre magnetismo

Leia mais

POTENCIAL ELÉTRICO. Prof. Bruno Farias

POTENCIAL ELÉTRICO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar

Leia mais

Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V.

Questão 04- A diferença de potencial entre as placas de um capacitor de placas paralelas de 40μF carregado é de 40V. COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 3º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica

Leia mais

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi 2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi Disciplina de Eletromagnetismo 1 COMPETÊNCIAS Conhecer as leis fundamentais do

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Campo Magnética. Prof. Fábio de Oliveira Borges

Campo Magnética. Prof. Fábio de Oliveira Borges Campo Magnética Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Campo magnético

Leia mais

Campo Elétrico. Campo elétrico de uma carga puntiforme: O campo elétrico em cargas com dimensões desprezíveis em relação à distância.

Campo Elétrico. Campo elétrico de uma carga puntiforme: O campo elétrico em cargas com dimensões desprezíveis em relação à distância. Campo Elétrico Campo elétrico: O campo elétrico desempenha o papel de transmissor de interações entre cargas elétrica, ou seja, é o campo estabelecido em todos os pontos do espaço sob a influência de uma

Leia mais

2 Diferença de Potencial e Potencial Eletrostático

2 Diferença de Potencial e Potencial Eletrostático Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 3 - Potencial Eletrostático Prof. Elvis Soares Nesse capítulo, estudaremos o potencial eletrostático criado por cargas

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas

Leia mais

Aula 21 - Lei de Biot e Savart

Aula 21 - Lei de Biot e Savart Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 1-, 1-7 S. 9-, 9-, 9-4, 9-6 T. 5- Aula 1 - Lei de Biot

Leia mais

Teorema de Gauss p/ o campo magnético Em 1819 Oersted observou que uma bússola próxima a um condutor que transporta corrente sofre uma deflexão na

Teorema de Gauss p/ o campo magnético Em 1819 Oersted observou que uma bússola próxima a um condutor que transporta corrente sofre uma deflexão na Principais leis do campo magnético O campo magnético, assim como o campo elétrico possui importantes propriedades que estão relacionadas com o fluxo através de uma superfície fechada e a circulação de

Leia mais

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação

2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação 2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação ão: Geração de Corrente Alternada do professor Clóvis Antônio

Leia mais

Física III Escola Politécnica GABARITO DA P1 31 de março de 2016

Física III Escola Politécnica GABARITO DA P1 31 de março de 2016 Física III - 43303 Escola olitécnica - 06 GABARITO DA 3 de março de 06 Questão Quatro cargas puntiformes são colocadas nos vértices,, 3 e 4 de um retângulo, de acordo com a figura abaio. O retângulo tem

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

Capacitores e Indutores (Aula 7) Prof. Daniel Dotta

Capacitores e Indutores (Aula 7) Prof. Daniel Dotta Capacitores e Indutores (Aula 7) Prof. Daniel Dotta 1 Sumário Capacitor Indutor 2 Capacitor Componente passivo de circuito. Consiste de duas superfícies condutoras separadas por um material não condutor

Leia mais

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho.

Potencial Elétrico. Energia. Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Eletricidade e Magnetismo - IME Potencial Elétrico Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Energia Energia pode ser vista como trabalho armazenado, ou capacidade de realizar trabalho. Equipamentos

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l Eletromagnetismo I Prof. Ricardo Galvão - Semestre 015 Preparo: Diego Oliveira Aula 7 Trabalho realizado em um campo eletrostático Suponhamos que numa região do espaço exista um campo elétrico E. Qual

Leia mais

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III Eercícios teórico-práticos FILIPE SANTOS MOREIRA Física 3 (EQ) Eercícios TP Índice Índice i Derivadas e integrais

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011 Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,

Leia mais

F = 1/4πɛ 0 q 1.q 2 /r 2. F = G m 1.m 2 /r 2 ENERGIA POTENCIAL 04/05/2015. Bacharelado em Engenharia Civil. Física III

F = 1/4πɛ 0 q 1.q 2 /r 2. F = G m 1.m 2 /r 2 ENERGIA POTENCIAL 04/05/2015. Bacharelado em Engenharia Civil. Física III ENERGIA POTENCIAL Bacharelado em Engenharia Civil Física III Prof a.: D rd. Mariana de Faria Gardingo Diniz A energia potencial é a energia que está relacionada a um corpo em função da posição que ele

Leia mais

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada. Docente:... nome n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Instruções e recomendações Não desagrafar! Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

Leia mais

Magnetismo. Propriedades Magnéticas Campo Magnético Vetor Indução Magnética

Magnetismo. Propriedades Magnéticas Campo Magnético Vetor Indução Magnética Magnetismo Propriedades Magnéticas Campo Magnético Vetor Indução Magnética Orientação Geográfica Norte Geográfico N Sul Geográfico S Atração e Repulsão S N N S N S S N N S N S Inseparabilidade N S N S

Leia mais

Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas

Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas 1. Na Fig.1, em (a) e (b), as porções retilíneas dos fios são supostas muito longas e a porção semicircular tem raio R. A corrente tem intensidade

Leia mais

Lista de exercícios 8 Campos magnéticos produzidos por corrente

Lista de exercícios 8 Campos magnéticos produzidos por corrente Lista de exercícios 8 Campos magnéticos produzidos por corrente 1. Em um certo local das Filipinas o campo magnético da Terra tem um modulo de 39 µt, é horizontal e aponta exatamente para o norte. Suponha

Leia mais

Prova 3 - FCM0114 (Eletromagnetismo I)

Prova 3 - FCM0114 (Eletromagnetismo I) Prova 3 - FM011 (Eletromagnetismo I) 6 de junho de 015 1. Um barra que se estende infinitamente nas direções x e y e possui espessura l na direção apresenta uma magnetiação uniforme M. O vetor M forma

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

Primeira Prova 2. semestre de /10/2013 TURMA PROF.

Primeira Prova 2. semestre de /10/2013 TURMA PROF. D Física Teórica II Primeira Prova 2. semestre de 2013 19/10/2013 ALUNO TURMA PROF. ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine todas as folhas das questões antes de começar a prova. 2 - Os professores

Leia mais

Física 3. Resumo e Exercícios P1

Física 3. Resumo e Exercícios P1 Física 3 Resumo e Exercícios P1 Resuminho Teórico e Fórmulas Parte 1 Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv

Leia mais

Aula 17 - Campo Magnético

Aula 17 - Campo Magnético Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Física Física III Prof. Dr. Ricardo Lui Viana Referências bibliográficas: H. 30-1, 30-, 34-4 S. 8-3, 8-4 T. 4-1, 6-1 Aula 17 - Campo

Leia mais

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016

Lei de Gauss. Quem foi Gauss? Um dos maiores matemáticos de todos os tempos. Ignez Caracelli 11/17/2016 Lei de Gauss Ignez Caracelli ignez@ufscar.br Quem foi Gauss? Um dos maiores matemáticos de todos os tempos Um professor mandou ue somassem todos os números de um a cem. Para sua surpresa, em poucos instantes

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Potenciais retardados e dipolo de Hertz (Introdução) (Capítulo 11 Páginas 395a 400) (Capítulo 14 Páginas 511

Leia mais

Cálculo III-A Módulo 14

Cálculo III-A Módulo 14 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Módulo 4 Aula 25 Teorema de tokes Objetivo Estudar um teorema famoso que generalia

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /2 Prova da área I UFRGS - INSTITUTO DE MATEMÁTIA Departamento de Matemática Pura e Aplicada MAT068 - Turma - 07/ Prova da área I -6 7 8 Total Nome: artão: Regras Gerais: Não é permitido o uso de calculadoras, telefones

Leia mais

Física III-A /1 Lista 3: Potencial Elétrico

Física III-A /1 Lista 3: Potencial Elétrico Física III-A - 2018/1 Lista 3: Potencial Elétrico Prof. Marcos Menezes 1. Qual é a diferença de potencial necessária para acelerar um elétron do repouso até uma velocidade igual a 40% da velocidade da

Leia mais

Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci

Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci Livros-Teto sugeridos para o curso: Reit-Milford e Griffiths Vamos inicialmente relembrar

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz!

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETROSTÁTICA DISCIPLINA: FÍSICA ASSUNTO: CAMPO ELÉTRICO, POTENCIAL ELÉTRICO,

Leia mais

2.2. Eletromagnetismo Professora Paula Melo Silva

2.2. Eletromagnetismo Professora Paula Melo Silva 2.2. Eletromagnetismo Professora Paula Melo Silva CARGA Propriedade elétrica das partículas atómicas que compõem a matéria. A carga elementar corresponde ao módulo do valor da carga elétrica apresentado

Leia mais

Campo Magnético. não existe campo elétrico. Se ao entrar em movimento aparece uma força na partícula existe campo magnético!

Campo Magnético. não existe campo elétrico. Se ao entrar em movimento aparece uma força na partícula existe campo magnético! Força Magnética Campo Magnético Vimos: campo elétrico + carga elétrica força elétrica Considere-se uma região onde uma partícula com carga q em repouso não sinta força não existe campo elétrico. Se ao

Leia mais

CAMPOS MAGNÉTICOS DEVIDO À CORRENTES

CAMPOS MAGNÉTICOS DEVIDO À CORRENTES Cálculo do campo magnético devido a uma corrente Considere um fio de forma arbitrária transportando uma corrente i. Qual o campo magnético db em um ponto P devido a um elemento de fio ds? Para fazer esse

Leia mais

Física 3. Resumo e Exercícios P2

Física 3. Resumo e Exercícios P2 Física 3 Resumo e Exercícios P2 Resumo Teórico Parte 1 Corrente Elétrica Definição: i = dq dt Convenção: Sentido das cargas positivas Corrente Média: I = Q = n. v. A t Onde: n: densidade de partículas

Leia mais

DISCIPLINA: Física SÉRIE: 3º. ALUNO(a): L2 2º Bim. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

DISCIPLINA: Física SÉRIE: 3º. ALUNO(a): L2 2º Bim. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: GOIÂNIA, / 06 / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): L2 2º Bim No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

(a) Determine o fluxo magnético através da área limitada pela espira menor em função de x 1. Na espira menor, determine. (b) a fem induzida e

(a) Determine o fluxo magnético através da área limitada pela espira menor em função de x 1. Na espira menor, determine. (b) a fem induzida e 1. A Figura 1 mostra duas espiras de fio paralelas tendo um eixo comum. A espira menor de (raio r) está acima da espira maior (de raio R) a uma distância x R. Conseqüentemente, o campo magnético devido

Leia mais

Eletromagnetismo. Histórico

Eletromagnetismo. Histórico Eletromagnetismo Histórico Desde a antiguidade quando os fenômenos elétricos e magnéticos foram descobertos, se acreditava que o magnetismo e a eletricidade eram fenômenos distintos sem nenhuma relação

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A /1 Data: 05/07/2018 V 2B 2 R 2

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A /1 Data: 05/07/2018 V 2B 2 R 2 Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A - 2018/1 Data: 05/07/2018 Seção 1 - Multipla escolha (12 0, 7 + 2 0, 8= 10 pontos) 1. (0, 7 ponto)uma

Leia mais

Energia potencial elétrica

Energia potencial elétrica Energia potencial elétrica Foi descoberto empiricamente que a força elétrica é uma força conservativa, portanto é possível associar a ela uma energia potencial. Quando uma força eletrostática age sobre

Leia mais

Eletrodinâmica Clássica II

Eletrodinâmica Clássica II Eletrodinâmica Clássica II Introdução e Recapitulação Prof. Ricardo Luiz Viana Curso de Pós-Graduação em Física, Universidade Federal do Paraná Curitiba, Paraná, Brasil Ementa Recapitulação - Equações

Leia mais

Campos Magnéticos Produzidos por Correntes

Campos Magnéticos Produzidos por Correntes Cap. 29 Campos Magnéticos Produzidos por Correntes Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Campos Magnéticos Produzidos por Correntes 1 Campos Magnéticos Produzidos por Correntes Campos

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Lei de Biot-avart e campo magnético estacionário de correntes contínuas (Capítulo 7 Páginas 119 a 123) Princípio da uperposição na Magnetostática Densidade de Fluxo Magnético

Leia mais

CAMPO MAGNÉTICO EM CONDUTORES

CAMPO MAGNÉTICO EM CONDUTORES CAMPO MAGNÉTICO EM CONDUTORES Introdução A existência do magnetismo foi observada há cerca de 2500 anos quando certo tipo de pedra (magnetita) atraía fragmentos de ferro, que são conhecidos como ímãs permanentes.

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS

Leia mais

Campos Magnéticos produzidos por Correntes

Campos Magnéticos produzidos por Correntes Cap. 29 Campos Magnéticos produzidos por Correntes Copyright 29-1 Campo Magnético produzido por uma Corrente O módulo do campo db produzido no ponto P a uma distância r por um elemento de corrente i ds

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Propriedades dos Condutores e Condições de Contorno (Capítulo 5 Páginas 119 a 123) Conceito de Condutor Elétrico

Leia mais