Cálculo A. José Carlos de Souza Junior.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cálculo A. José Carlos de Souza Junior."

Transcrição

1 Cálculo A José Carlos de Souza Junior Universidade Federal de Alfenas - Instituto de Ciências Exatas Abril

2 O que é o GeoGebra? GeoGebra é um software matemático que reúne geometria, álgebra e cálculo. Ele foi desenvolvido por Markus Hohenwarter da Universidade de Salzburg para educação matemática nas escolas. Por um lado, o GeoGebra é um sistema de geometria dinâmica que permite realizar construções tanto com pontos, vetores, segmentos, retas, seções cônicas como funções que podem se modificar posteriormente de forma dinâmica. Por outro lado, equações e coordenadas podem estar interligadas diretamente através do GeoGebra. Assim, o software tem a capacidade de trabalhar com variáveis vinculadas a números, vetores e pontos; permite achar derivadas e integrais de funções e oferece comandos, como raízes e extremos.

3 Objetivo da aula. Esta aula tem como objetivo introduzir algumas regras básicas para operar o programa GeoGebra e como usar os seus recursos gráficos, esperando que isto contribua para um melhor aproveitamento dos conceitos teóricos da disciplina de Cálculo A.

4 Janela CAS Iniciaremos nossa atividade estudando os recursos de computação simbólica do GeoGebra. Inicie o programa e, então, no menu principal, escolha o item Exibir Janela CAS, conforme figura a seguir:

5 Janela CAS

6 Janela CAS O GeoGebra ficará então com três janelas principais: a Janela de Álgebra, a Janela CAS e a Janela de Visualização. Feche então a Janela de Visualização clicando no pequeno no canto superior direito da janela.

7 Janela CAS O GeoGebra ficará então com três janelas principais: a Janela de Álgebra, a Janela CAS e a Janela de Visualização. Feche então a Janela de Visualização clicando no pequeno no canto superior direito da janela.

8 Janela CAS

9 Janela CAS A interface gráfica ficará então assim:

10 Janela CAS Tipicamente, para usar a Janela CAS do GeoGebra, você deve digitar comandos (que em breve aprenderemos) em uma linha numerada e, então pressionar a tecla ENTER para que o programa interprete o seu comando. Por exemplo, se você quer somar 2 com 2, basta digitar na linha de número 1 e, então, pressionar a tecla ENTER para obter a resposta 4.

11 Janela CAS O comando a seguir calcula

12 Janela CAS Na tabela a seguir temos os símbolos do GeoGebra para operações aritméticas.

13 Produtos notáveis Certamente você já deve ter visto os produtos notáveis (a + b) 2 = a 2 + 2ab + b 2 e (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3. Use o GeoGebra para ver os produtos notáveis para (a + b) 4, (a + b) 5 e (a + b) 10.

14 Fatoração O comando Fatorar[...] pode ser usado para fatorar polinômios. Por exemplo, o comando: Fatorar[3 x x 3 3 x 1] devolverá a expressão algébrica: (3x 2 x 1)(x + 1) 2.

15 Fatoração Note que o GeoGebra procura simplificar fatores comuns em funções racionais, isto é, ele devolve uma expressão na forma numerador/denominador, onde o numerador e o denominador são polinômios relativamente primos com coeficientes inteiros.

16 Fatoração Se você definir uma função através do campo de Entrada, a simplificação não é automática. Será preciso usar o comando Simplificar[...], na Janela CAS, para obtê-la.

17 Fatoração Para o GeoGebra CAS, (x 2 1)/(x 1) e x + 1 são expressões iguais. Elas são realmente iguais? Mais precisamente, se f (x) = x 2 1 x 1 e g(x) = x + 1, então as funções f e g são iguais? Resposta: Não! Note que D(f ) = R {1} R = D(g). Logo a função f é diferente da função g!

18 Fatoração Para o GeoGebra CAS, (x 2 1)/(x 1) e x + 1 são expressões iguais. Elas são realmente iguais? Mais precisamente, se f (x) = x 2 1 x 1 e g(x) = x + 1, então as funções f e g são iguais? Resposta: Não! Note que D(f ) = R {1} R = D(g). Logo a função f é diferente da função g!

19 Fatoração Para o GeoGebra CAS, (x 2 1)/(x 1) e x + 1 são expressões iguais. Elas são realmente iguais? Mais precisamente, se f (x) = x 2 1 x 1 e g(x) = x + 1, então as funções f e g são iguais? Resposta: Não! Note que D(f ) = R {1} R = D(g). Logo a função f é diferente da função g!

20 Fatoração Para o GeoGebra CAS, (x 2 1)/(x 1) e x + 1 são expressões iguais. Elas são realmente iguais? Mais precisamente, se f (x) = x 2 1 x 1 e g(x) = x + 1, então as funções f e g são iguais? Resposta: Não! Note que D(f ) = R {1} R = D(g). Logo a função f é diferente da função g!

21 Definindo funções com o GeoGebra. O GeoGebra já possui um grande número de funções pré-definidas, mas muitas vezes precisaremos definir nossas próprias funções. Por exemplo, para definir a função que a cada número associa o seu quadrado, digitamos no Campo de Entrada: f (x) = x 2 e depois apertamos a tecla (ENTER).

22 Definindo funções com o GeoGebra. Agora podemos calcular o valor dessa função em pontos específicos. Por exemplo, digite no Campo de Entrada: f (1), depois f (2), etc.

23 Função definida em um intervalo fechado Para definir uma função num intervalo [a, b], deve-se utilizar o comando: função[f (x), a, b] Exemplo: função[x 2, 0, 2]

24 Função definida em um intervalo fechado Exemplo: função[sin(x), 0, 2 Pi]

25 Função definida em um intervalo ilimitado É possível definir funções cujos domínios são intervalos não limitados: g(x) = Se[x > 0, cos(x)]

26 Funções definidas em partes O comando Se[ ] também pode ser usado para definir funções definidas por partes. Por exemplo, define a função f (x) = Se[x > 0, sin(1/x), 0] { ( sen 1 ) f (x) = x, se x > 0, 0, se x 0.

27 Funções definidas em partes

28 Limite por ɛ e δ Nas notas de aula, para mostrar que lim (x 2 +1) = 5, vimos que x 2 dado ɛ > 0, basta tomar δ = min{ ɛ 5, 1}, que teremos a condição: 0 < x 2 < δ f (x) 5 < ɛ. Vamos visualizar essa condição: Acesse o site: Clique sobre a Atividade de Laboratório.

29 Limite por ɛ e δ

30 Limite por ɛ e δ Por exemplo, para ɛ = 2, temos δ = min{1, ɛ 5 } = ɛ 5.

31 Limite por ɛ e δ Já para ɛ = 6, temos δ = min{1, ɛ 5 } = 1.

32 Calculando Limite com o GeoGebra Vamos calcular o seguinte limite, usando o GeoGebra. lim x π 4 sen(x) cos(x). 1 tg(x) Para tanto, abra um novo arquivo e exiba a janela CAS.

33 Calculando Limite com o GeoGebra Na Janela CAS, digite: f (x) := (sin(x) cos(x))/(1 tan(x))

34 Calculando Limite com o GeoGebra Em seguida, digite na Janela CAS: Limite[f (x), Pi/4]

35 Calculando Limite com o GeoGebra Abra um novo arquivo e defina a função f (x) = x x, digitando na janela CAS: f (x) := abs(x)/x

36 Calculando Limite com o GeoGebra Agora, digitando na janela CAS: Limite[f (x), 0] observamos que o limite não existe.

37 Calculando Limite com o GeoGebra Podemos calcular o limite lateral CAS o seguinte comando: LimiteInferior[f (x), 0] x lim, digitando na janela x 0 x

38 Calculando Limite com o GeoGebra Para o limite lateral x lim, digitamos na janela CAS o se- x 0 + x guinte comando: LimiteSuperior[f (x), 0]

39 Calculando Limite com o GeoGebra Para calcular o limite x + 1 lim x x 2 + 3, primeiramente, defina a função na janela CAS, digitando f (x) := (x + 1)/(x 2 + 3)

40 Calculando Limite com o GeoGebra Em seguida, digite o comando: Limite[f (x), ]

41 Calculando Limite com o GeoGebra

42 Encontrando Assíntotas com o GeoGebra O GeoGebra também nos ajuda a encontrar assíntotas. exemplo, na janela CAS defina a função: Por f (x) := 1/((x 3)(x + 4)).

43 Encontrando Assíntotas com o GeoGebra Na janela CAS, digite: Assíntota[f (x)]

44 Zeros de funções polinomiais com o GeoGebra Abra um novo arquivo, exiba a Janela de Visualização e feche a Janela CAS. No Campo de Entrada digite: f (x) := x 3 3x 2 + 1

45 Zeros de funções polinomiais com o GeoGebra No campo de Entrada, digite: N = Raiz[f (x)].

46 Zeros de funções com o GeoGebra Quando a função não for polinomial, precisamos dar um chute inicial. Por exemplo, em nossa aula, vimos que a equação cos(x) = x tem pelo menos uma solução no intervalo [0, 2]. Abra um novo arquivo, e defina a função diferença f (x) := cos(x) x. Na janela de Entrada, digite N = Raiz[f (x), 1].

47 Zeros de funções com o GeoGebra

Matemática Prof. José Carlos de Souza Junior

Matemática Prof. José Carlos de Souza Junior Informática Aplicada à Educação Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 01 ATIVIDADE 01 Iniciaremos nossa disciplina estudando os recursos de

Leia mais

TECNOLOGIAS NO ENSINO DE MATEMÁTICA. Profª. Andréa Cardoso MATEMÁTICA-LICENCIATURA

TECNOLOGIAS NO ENSINO DE MATEMÁTICA. Profª. Andréa Cardoso MATEMÁTICA-LICENCIATURA TECNOLOGIAS NO ENSINO DE MATEMÁTICA Profª. Andréa Cardoso MATEMÁTICA-LICENCIATURA COMPUTAÇÃO ALGÉBRICA É uma área da computação. Operações com matrizes Fatora ção Trata do desenvolvimento de operações

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c

Leia mais

Informática no Ensino da Matemática

Informática no Ensino da Matemática Informática no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista de Exercícios 3 ATIVIDADE 1 (a) Sejam u =(a b)/(a + b), v =(b c)/(b + c) ew =(c a)/(c + a). Mostre

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior jc

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior  jc Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 10 Reproduza as seguintes figuras no SuperLogo: ATIVIDADE 01 ATIVIDADE 02 Reproduza

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 04 ATIVIDADE 01 Outro grande recurso do GeoGebra é o de resolver simbolicamente

Leia mais

Novas Tecnologias no Ensino da Matemática

Novas Tecnologias no Ensino da Matemática UFF Novas Tecnologias no Ensino da Matemática 1 Novas Tecnologias no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista 9 Prezado aluno, A partir desta lista vamos

Leia mais

Novas Tecnologias no Ensino da Matemática

Novas Tecnologias no Ensino da Matemática UFF Novas Tecnologias no Ensino da Matemática 1 Novas Tecnologias no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista 8 Prezado aluno, A partir desta lista vamos

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

GeoGebra Quickstart Um rápido guia de referência sobre o GeoGebra

GeoGebra Quickstart Um rápido guia de referência sobre o GeoGebra GeoGebra Quickstart Um rápido guia de referência sobre o GeoGebra Geometria dinâmica, álgebra e cálculo formam juntos o GeoGebra, um software educativo premiado freqüentemente, que combina geometria e

Leia mais

Sumário. Educação Matemática: Oficinas Didáticas com GeoGebra 2012

Sumário. Educação Matemática: Oficinas Didáticas com GeoGebra 2012 Sumário A Interface do GeoGebra...2 O menu do GeoGebra...3 Ferramentas de construção...4 LIÇÃO 1: Polígonos e ângulos...7 LIÇÃO 2: Retas perpendiculares e paralelas...11 LIÇÃO 3: Construindo gráficos...18

Leia mais

RELATÓRIO Data: 18/08/2016 e 19/08/2016. Apresentar o software GeoGebra 3D e suas potencialidades aos estudantes do terceiro ano do Ensino Médio

RELATÓRIO Data: 18/08/2016 e 19/08/2016. Apresentar o software GeoGebra 3D e suas potencialidades aos estudantes do terceiro ano do Ensino Médio RELATÓRIO Data: 18/08/2016 e 19/08/2016 Objetivo(s) Objetivo Geral: 1 Apresentar o software GeoGebra 3D e suas potencialidades aos estudantes do terceiro ano do Ensino Médio Objetivos Específicos: Incentivar

Leia mais

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina

Leia mais

UNIVERSIDADE FEDERAL RURAL DA AMAZONIA ICIBE INSTITUTO CIBER ESPACIAL PROFº JOÃO SANTANNA

UNIVERSIDADE FEDERAL RURAL DA AMAZONIA ICIBE INSTITUTO CIBER ESPACIAL PROFº JOÃO SANTANNA UNIVERSIDADE FEDERAL RURAL DA AMAZONIA ICIBE INSTITUTO CIBER ESPACIAL PROFº JOÃO SANTANNA INTRODUÇÃO AO MAPLE Maple é um sistema de álgebra computacional comercial de uso genérico. Constitui um ambiente

Leia mais

Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como

Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites

Leia mais

Maxima : um completo programa de Computação Algébrica

Maxima : um completo programa de Computação Algébrica Maxima : um completo programa de Computação Algébrica Lenimar Nunes de Andrade UFPB João Pessoa 3 de abril de 011 1 Introdução Maxima é um programa que executa cálculos numéricos e simbólicos, em desenvolvimento

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

PLANILHA, CÉLULAS E CONTEÚDO

PLANILHA, CÉLULAS E CONTEÚDO 43 Nesse texto apresentamos a Janela Planilha do GeoGebra e alguns de seus recursos para trabalhar em conjunto com as janelas de Álgebra e de Visualização. PLANILHA, CÉLULAS E CONTEÚDO Para abrir a planilha

Leia mais

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática Introdução ao GeoGebra software livre 0 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS Curso de Matemática Primeiros Passos Com o Software Livre GeoGebra Março de 2010 Prof. Ilydio Pereira de Sá Introdução ao

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

AULA 4. Atividade Complementar 10: Sistemas lineares 2x2 e sua interpretação geométrica 31

AULA 4. Atividade Complementar 10: Sistemas lineares 2x2 e sua interpretação geométrica 31 AULA 4 Atividade Complementar 10: Sistemas lineares 2x2 e sua interpretação geométrica 31 Conteúdos Estruturantes: Números e Álgebra / Geometrias Conteúdo Básico: Sistemas lineares / Geometria espacial

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

AS RELAÇÕES ENTRE PROGRESSÃO ARITMÉTICA E A FUNÇÃO AFIM COM O APLICATIVO GEOGEBRA

AS RELAÇÕES ENTRE PROGRESSÃO ARITMÉTICA E A FUNÇÃO AFIM COM O APLICATIVO GEOGEBRA AS RELAÇÕES ENTRE PROGRESSÃO ARITMÉTICA E A FUNÇÃO AFIM COM O APLICATIVO GEOGEBRA Matheus de Lucas Pereira Dos Santos 1 Breno Araújo da Silva 2 1. Introdução Este trabalho é fruto das atividades realizadas

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA PIBID-UFBA SUBPROJETO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DA BAHIA PIBID-UFBA SUBPROJETO DE MATEMÁTICA UNIVERSIDADE FEDERAL DA BAHIA PIBID-UFBA SUBPROJETO DE MATEMÁTICA THAIS DE BARROS SILVANY DE ANDRADE FELIPE CARLO DE FREITAS PINTO MARIANA SILVA TAVARES ORIENTADORA: PROFª ELIANA PRATES SOARES UFBA Salvador

Leia mais

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório.

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. 72 Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. Seguem os passos dessa construção. Construa um controle deslizante

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório.

Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. 59 Neste texto abordamos como construir um dado com a possibilidade de ser planificado e, além disso, ser lançado em um sorteio aleatório. Seguem os passos dessa construção. Construa um controle deslizante

Leia mais

Explorando alguns conteúdos de Geometria Espacial com o GeoGebra 3D

Explorando alguns conteúdos de Geometria Espacial com o GeoGebra 3D Explorando alguns conteúdos de Geometria Espacial com o GeoGebra 3D Profa. Dra. Flávia Souza Machado da Silva Profa. Dra. Ermínia de Lourdes Campello Fanti Profa. Dra. Évelin Meneguesso Barbaresco Departamento

Leia mais

1 - Como abrir o programa KmPlot

1 - Como abrir o programa KmPlot O que é o KmPlot? O KmPlot é um software livre, que é ofertado pelo governo federal para as escolas da rede pública, com o intuito de auxiliar os professores de matemática no ensino de funções. O KmPlot

Leia mais

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA COMPUTADOR NA SALA DE AULA Estudo das cônicas com Geometria Dinâmica José Carlos de Souza Jr. Andréa Cardoso Unifal MG COMPUTADOR NA SALA DE AULA A exploração de softwares de Geometria Dinâmica nos permite

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

Novas Tecnologias no Ensino da Matemática

Novas Tecnologias no Ensino da Matemática UFF Novas Tecnologias no Ensino da Matemática 1 Novas Tecnologias no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista 10 ATIVIDADE 1 O wxmaxima possui várias

Leia mais

, cosh (x) = ex + e x. , tanh (x) = ex e x 2

, cosh (x) = ex + e x. , tanh (x) = ex e x 2 Exercícios Adicionais 1. Podemos definir as funções seno, cosseno e tangente hiperbólicos como: sinh (x) = ex e x, cosh (x) = ex + e x, tanh (x) = ex e x e x + e x Escreva três funções no Scilab que implementem

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

Aula 5 - Parte 1: Funções. Exercícios Resolvidos

Aula 5 - Parte 1: Funções. Exercícios Resolvidos Aula 5 - Parte : Funções Exercícios Resolvidos Construção de Funções: a) O valor pago por usuário que acessou a internet por x horas em uma lan house é dado pela função y(x) = a +, 5x, em que a é o custo

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

O USO DO SOFTWARE GEOGEBRA EM CÁLCULO

O USO DO SOFTWARE GEOGEBRA EM CÁLCULO O USO DO SOFTWARE GEOGEBRA EM CÁLCULO ANÁLISE GRÁFICA DE DERIVADA E INTEGRAL Eduardo Álvaro Dias da Trindade Instituto Federal de Educação Ciência e Tecnologia do Pará - IFPA eduardoadt87@hotmail.com Emanuel

Leia mais

O campo demarcado em vermelho indica a fórmula que foi inserida na célula A1.

O campo demarcado em vermelho indica a fórmula que foi inserida na célula A1. Este conteúdo faz parte da série: Excel Fórmulas Básicas Ver 10 posts dessa série O Excel possui diversas funções para realizar das operações simples até as mais complexas. Uma das funções essenciais no

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL

Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas

Leia mais

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas

MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas MAT146 - Cálculo I - Derivada de funções polinomiais, regras de derivação e derivada de funções trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos que uma função

Leia mais

Nesse texto abordamos a construção de polígonos com a utilização do mouse e por meio da digitação de comandos na Entrada.

Nesse texto abordamos a construção de polígonos com a utilização do mouse e por meio da digitação de comandos na Entrada. 12 Nesse texto abordamos a construção de polígonos com a utilização do mouse e por meio da digitação de comandos na Entrada. POLÍGONOS A ferramenta Polígono possibilita construir polígonos a partir de

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 02 ATIVIDADE 01 Para poupar esforço de digitação, você pode usar o tradicional

Leia mais

Sumário VII. Introdução à Computação Álgebrica com Maple - Lenimar Andrade

Sumário VII. Introdução à Computação Álgebrica com Maple - Lenimar Andrade Sumário Prefácio XIII 1 Introdução ao Maple 1 1.1 Introdução.............................. 1 1.2 O menu principal.......................... 4 1.3 A barra de ferramentas....................... 5 1.4 Usando

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PAMPA - UNIPAMPA - BAGÉ PROGRAMA INSTITUCIONAL DE INICIAÇÃO À DOCÊNCIA SUBPROJETO DE MATEMÁTICA PIBID Atividade nº 2 Oficina de Geometria Analítica com uso

Leia mais

Ensinar o conceito de derivada com o Geogebra

Ensinar o conceito de derivada com o Geogebra Ensinar o conceito de derivada com o Geogebra Versão 1.0, Dezembro de 2009 Objectivo Esta actividade é orientada para o professor que pretenda criar actividades para os alunos sobre a primeira derivada

Leia mais

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO 1 UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO NOTAS DE AULA DA DISCIPLINA DE CÁLCULO 1 MATERIAL EM CONSTRUÇÃO

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

Softwares Para o Ensino da Matemática

Softwares Para o Ensino da Matemática Softwares Para o Ensino da Matemática Funções Winplot: É um software gratuito que permite plotar gráfico de funções de uma ou duas variáveis. Além disto é possível plotar o gráfico da derivada e representar

Leia mais

Minicurso GEOGEBRA Barra de Menu Barra de Ferramentas Janela Algébrica: Janela de entrada de dados

Minicurso GEOGEBRA Barra de Menu Barra de Ferramentas Janela Algébrica: Janela de entrada de dados UNIVERSIDADE FEDERAL DA PARAÍBA PRÓREITORIA DE GRADUAÇÃO PROJETO PIBID/LICENCIATURA MATEMÁTICA Prof. Antônio Joaquim Rodrigues Feitosa. Minicurso GEOGEBRA Introdução: Neste minicurso apresentaremos as

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Diferencial e Integral I Faculdade de Engenaria, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Definição e propriedades; Obtendo limites; Limites laterais. 1) Introdução

Leia mais

Modelos Matemáticos: Uma Lista de Funções Essenciais

Modelos Matemáticos: Uma Lista de Funções Essenciais Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como

Leia mais

ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA

ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA Juracélio Ferreira Lopes Instituto Federal de Minas Gerais Ouro Preto Juracelio.lopes@ifmg.edu.br Wladimir Seixas Universidade

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites www.cursoeduardochaves.com Cálculo I ª Lista de Eercícios Limites Calcule os ites: a (4 7 +5 b + 5 c ( 5 ++4 d + 5 4 e 5 + 4 + ++ f 6 4 Resp. : a b 0 c /8 d / e 9 5 f Calcule os ites abaio: a 4 b + c +5

Leia mais

Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática

Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA III Semana Acadêmica de Matemática Algumas Possibilidades do Uso do GeoGebra nas Aulas de Matemática Profª Lahis Braga Souza Profª Thais Sena de Lanna Profª Cristiane Neves

Leia mais

O limite de uma função

O limite de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

MONÔMIOS E POLINÔMIOS

MONÔMIOS E POLINÔMIOS MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma

Leia mais

MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO DE CÁLCULO I

MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO DE CÁLCULO I Universidade dos Vales do Jequitinhonha e Mucuri UFVJM Instituto de Ciência, Engenharia e Tecnologia ICET Grupo de Estudos em Software Livre no Ensino GESE MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

Geometria Analítica Plana

Geometria Analítica Plana Softwares Para o Ensino da Matemática Geometria Analítica Plana Nome do programa: EUKLID Descrição: Software de geometria dinâmica e construções em régua e compasso para criação de figuras geométricas.

Leia mais

Material do Professor. Tema: Roteiro de construção para a atividade Porcentagem

Material do Professor. Tema: Roteiro de construção para a atividade Porcentagem 1 Material do Professor Tema: Roteiro de construção para a atividade Porcentagem Objetivo: Dar suporte ao professor para fazer as construções necessárias à atividade Porcentagem ATIVIDADE 1: Construção

Leia mais

10 AULA. Funções de Varias Variáveis Reais a Valores LIVRO

10 AULA. Funções de Varias Variáveis Reais a Valores LIVRO 1 LIVRO Funções de Varias Variáveis Reais a Valores Reais META Estudar o domínio, o gráfico e as curvas de níveis de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de domínio

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica

12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica Aula Data Aula Detalhes 1 Qua 3 fev Introdução Apresentação e avisos 2 Sex 5 fev Revisão Resumo dos pré-requisitos Qua 10 fev Feriado Carnaval 3 Sex 12 fev Soma de Riemann Área, soma superior e inferior

Leia mais

GEOGEBRA GUIA RÁPIDO. Na janela inicial temos a barra de ferramentas:

GEOGEBRA GUIA RÁPIDO. Na janela inicial temos a barra de ferramentas: GeoGebra: Guia Rápido GEOGEBRA GUIA RÁPIDO O GeoGebra é um programa educativo de Geometria Dinâmica que permite construir, de modo simples e rápido, pontos, segmentos de reta, retas, polígonos, circunferências,

Leia mais

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível:

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível: Exercícios Operações com frações. Determine o valor das seguintes expressões, simplificando sempre que possível: 7 c 6 8 6 d b a 8 : 8 7 0 f 8 7 h g e : 6 8 : 6 7 l k j i n m Equações de º Grau Resolva

Leia mais

CÍRCULO DADO O DIÂMETRO

CÍRCULO DADO O DIÂMETRO 52 O GeoGebra oferece em sua instalação padrão um conjunto de ferramentas acessíveis por meio da Barra de Ferramentas e um conjunto com comandos que permitem construir objetos, realizar transformações,

Leia mais

Máximos e mínimos em intervalos fechados

Máximos e mínimos em intervalos fechados Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir

Leia mais

Aprender a utilizar o aplicativo Gnuplot para fazer gráficos

Aprender a utilizar o aplicativo Gnuplot para fazer gráficos Capitulo 11. GRÁFICOS COM GNUPLOT (versão 5.03) OBJETIVOS DO CAPÍTULO Aprender a utilizar o aplicativo Gnuplot para fazer gráficos Aprender a utilizar o aplicativo Gnuplot interativamente com um programa

Leia mais

PROGRAMA DO CURSO USO DO SOFTWARE GEOGEBRA COMO AUXÍLIO NA CONSTRUÇÃO DE GRÁFICOS EM DUAS E TRÊS DIMENSÕES

PROGRAMA DO CURSO USO DO SOFTWARE GEOGEBRA COMO AUXÍLIO NA CONSTRUÇÃO DE GRÁFICOS EM DUAS E TRÊS DIMENSÕES PROGRAMA DO CURSO USO DO SOFTWARE GEOGEBRA COMO AUXÍLIO NA CONSTRUÇÃO DE GRÁFICOS EM DUAS E TRÊS DIMENSÕES Público alvo: Acadêmicos do curso de Engenharia da UTFPR Campus Ponta Grossa. Carga horária: o

Leia mais

Processamento Simbólico Polinómios e Equações Gráficos

Processamento Simbólico Polinómios e Equações Gráficos Matlab Processamento Simbólico Polinómios e Equações Gráficos Matlab Eercício. Iniciar o programa Matlab. Há duas formas: Fazer duplo-clique sobre o atalho, eistente no ambiente de trabalho do Windows

Leia mais

Scilab. Introdução ao Scilab. Como obter ajuda

Scilab. Introdução ao Scilab. Como obter ajuda Scilab Scilab é uma linguagem de programação associada a uma rica coleção de algoritmos numéricos cobrindo muitos aspectos dos problemas de computação científica. Do ponto de vista do software, Scilab

Leia mais

DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 ATIVIDADES ESTRATÉGIAS. Atividades de diagnóstico. Atividades de revisão e recuperação.

DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 ATIVIDADES ESTRATÉGIAS. Atividades de diagnóstico. Atividades de revisão e recuperação. Escola Secundária Dr. Solano de Abreu Abrantes ENSINO BÁSICO DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 CONTEÚDOS PROGRAMÁTICOS METAS DE APRENDIZAGEM ATIVIDADES ESTRATÉGIAS INSTRUMENTOS DE AVALIAÇÃO

Leia mais

Limites infinitos e limites no infinito Aula 15

Limites infinitos e limites no infinito Aula 15 Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014

Leia mais

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12

CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12 Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que

Leia mais

04 Fórmulas Matemáticas

04 Fórmulas Matemáticas HEWLETT-PACKARD 04 Fórmulas Matemáticas [Digite o subtítulo do documento] Prof. Rodrigo [Digite aqui o resumo do documento. Em geral, o resumo é uma breve descrição do conteúdo do documento. Digite aqui

Leia mais