Métodos Experimentais em Ciências Mecânicas

Tamanho: px
Começar a partir da página:

Download "Métodos Experimentais em Ciências Mecânicas"

Transcrição

1 Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira

2 Pertencem ao grupo de ferramentas estatísticas que permitem caracterizar um conjunto de dados sob ponto de vista da tendência central ou da dispersão dos dados estudados Medidas de Dispersão Amplitude, Faixa, ou Range Variância Desvio Padrão Coeficiente de Variação Distância Interquartílica Medidas de Tendência Central Médias Aritmética Harmônica Geométrica Quadrática Ponderada Aparada (Trimmed) Mediana Moda Quartis Medidas de Assimetria e Curtose

3 Medidas de Tendência Central Como o próprio nome já diz, medidas de tendência central são aquelas cujo valor tende a localizar-se no centro de uma série de dados. Freqüentemente, quando se analisa os valores de uma variável em uma amostra, constata-se que os dados não se distribuem uniformemente, havendo concentração em alguns pontos, notadamente próximos ao centro da distribuição. Qual a posição que melhor representa o centro destes dados?

4 Medidas de Tendência Central e de Dispersão Valor Esperado Expectância - Momento Se x(t) ou x k = Resultados de uma medição E [( ) ] 1 n T x a = ( x( t) a) T 0 n dt = 1 K K k = 0 ( x a) k n

5 Medidas Resumo Medidas de Tendência Central Média Aritmética A Média Aritmética é o Valor Que Define o ponto de equilíbrio dos Dados de uma Distribuição.

6 Medidas de Tendência Central Média Aritmética Cálculo exato: (da população) Estimativa: (da amostra) µ = = Lim T Lim N 1 T 1 N T 0 x ( t) N k = 1 dt x k m = = = 1 T 1 N K T 0 k = 1 x ( t) N k = 1 x k dt x k f k

7 Medidas Resumo Medidas de Tendência Central Média Geométrica Média geométrica é a média dos elementos amostrais em relação à multiplicação. Sua estimativa é realizada por meio da seguinte expressão: N m N g = k = 1 x k Exercício: Aplicar a função log na expressão acima e análisar resultado

8 Medidas Resumo Medidas de Tendência Central Mediana A mediana é um número que caracteriza as observações de uma determinada variável de tal forma que a sua posição, em um grupo de dados ordenados, separe a metade inferior da amostra, população ou distribuição de probabilidade, da metade superior. Esta medida também é conhecida como média posicional! =

9 Medidas Resumo Medidas de Tendência Central Mediana Estimadores da Mediana Dados não Agrupados Dados Agrupados Md Pos = N +1 2 N = l + c 2 s i Onde: Pos = 4 l si - Limite Inferior da Classe Mediana c Intervalo de Classe N - Tamanho da Amostra f Md - freqüência absoluta da classe mediana F ant - freqüência acumulada anterior à classe mediana f F Md ant = Pos = 4,

10 Medidas Resumo Medidas de Tendência Central Média Aparada Uma média aparada, trimmed, não é mais do que uma mistura entre os conceitos de média e mediana por forma a combinar as qualidades de ambas. Podendo ser entendida também como uma média que é calculada excluindo uma certa proporção de observações em cada extremo da amostra.

11 Medidas de Tendência Central Moda A moda é o valor que detém o maior número de observações, ou seja, o valor ou valores mais freqüentes. A moda não é necessariamente única, ao contrário da média ou da mediana. É especialmente útil quando os valores ou observações não são numéricos, uma vez que a média e a mediana podem não ser bem definidas Não Possui Moda Possui Moda Igual a 4

12 Medidas de Tendência Central Moda Estimadores da Moda Dados não Agrupados Dados Agrupados Moda de King Mo = xi pos Mok = ls + c i ant + = ponto médio da classe de maior freqüência f ( f f ) post Onde: l si = limite inferior da classe modal onde se localiza a moda c - intervalo de classe f mo - freqüência da classe modal f ant - freqüência anterior à classe modal f post - freqüência posterior à classe modal

13 Medidas de Tendência Central Moda Estimadores da Moda Dados não Agrupados Dados Agrupados Moda de Czuber Mo = xi mo ant Moc = ls + c i 2 fmo ant + = ponto médio da classe de maior freqüência f f ( f f ) Onde: l si = limite inferior da classe modal onde se localiza a moda c - intervalo de classe f mo - freqüência da classe modal f ant - freqüência anterior à classe modal f post - freqüência posterior à classe modal post

14 Média, Mediana, Moda Aplicação A média permite explicar muito bem o comportamento de resultados experimentais, A mediana também permite explicar muito bem o comportamento de resultados experimentais de fenômenos com eventos extremos, Idade dos Pessoal da Turma A moda é apropriada para representar o comportamento de dados ao nível nominal Média = 25,2 Mediana = 24 Moda = 20 24

15 Média, Mediana, Moda Aplicação A média permite explicar muito bem o comportamento de resultados experimentais, A mediana também permite explicar muito bem o comportamento de resultados experimentais de fenômenos com eventos extremos, Idade dos Pessoal da Turma Média = 23,3 Mediana = 24 Moda = 20 A moda é apropriada para representar o comportamento de dados ao nível nominal

16 Média, Mediana, Moda Aplicação A média permite explicar muito bem o comportamento de resultados experimentais, A mediana também permite explicar muito bem o comportamento de resultados experimentais de fenômenos com eventos extremos, Numeração dos calçados do Pessoal da Turma Média = 38,2??? Mediana = 35,5 Moda = 39 A moda é apropriada para representar o comportamento de dados ao nível nominal

17 Medidas Resumo Medidas Separatrizes Quartis Um quartil é qualquer um dos três valores que divide o conjunto ordenado de dados em quatro partes iguais, e assim cada parte representa 1/4 da amostra ou população. 1o quartil = quartil inferior = é o valor aos 25% da amostra ordenada 2 o quartil = mediana = é o valor até ao qual se encontra 50% da amostra ordenada 3 o quartil = quartil superior = valor a partir do qual se encontram 25% dos valores mais elevados

18 Medidas Resumo Medidas Separatrizes Quartis Um quartil é qualquer um dos três valores que divide o conjunto ordenado de dados em quatro partes iguais, e assim cada parte representa 1/4 da amostra ou população. Mediana = Q 2/4 = 37, ,5 = Q 3/4 = 40 Q 1/4 =

19 Medidas Resumo Medidas Separatrizes Decil e Percentil O Decil é responsável por dividir o conjunto em dez partes iguais. Já o Percentil (ou centil), é a Medida que dividirá o conjunto em cem partes iguais Medidas Separatrizes Mediana Quartil Decil Percentil! ! ! Md! ! ! ! ! Q1 Q2 Q3!---!---!---!---!---!---!---!---!---!---! D1 D2 D3 D4 D5 D6 D7 D8 D9!---!---!---!---!---!---!---!---!---!---! C10 C20 C30 C40 C50 C60 C70 C80 C90

20 Medidas de Dispersão Variação ou dispersão é o grau com que os dados numéricos tendem a se espalhar em torno de um valor médio. Ou seja, medidas de dispersão são indicadores do grau de variabilidade demonstrada pelos indivíduos em torno das medidas de tendência central.

21 Medidas Resumo Medidas de Dispersão - Amplitude É a Diferença entre o maior valor e o menor valor observado na Amostra Min. Amplitude = Max. Min. = 30 Max Amplitude =30

22 Medidas de Dispersão Usando o Conceito de Expectância E E 0 [( x a) ] = ( x( t) a) 2 1 = T 1 T K k = k x 0 K 2 dt ( x ˆ) a = 0 E[(x-a) 2 ] é o Desvio Médio Quadrático a = ^x E[(x-a) 2 ] é a Variância. [( x xˆ ) r ] Momento central do ordem r 2

23 Medidas de Dispersão Desvio Padrão Cálculo exato: (da população) Estimativa: (da amostra) σ n i= 1 = lim n ( x i µ ) n x 2 s = n i= 1 ( x i n 1 xˆ) x i i-ésima indicação xˆ média Amostral (Base da Estimativa: "n" indicações) n número de medições repetitivas efetuadas µ x Média Populacional 2

24 Medidas de Dispersão Desvio Padrão Desvio Padrão: É um valor que quantifica a dispersão dos eventos de uma determinada população, ou seja, a média das diferenças entre o valor de cada evento e a média central. A vantagem que apresenta sobre a variância é de permitir uma interpretação direta da variação do conjunto de dados, pois o desvio padrão é expresso na mesma unidade que a variável Apesar de ser a medida de dispersão mais usada, tal medida não tem uma interpretação intuitivamente óbvia.

25 Medidas de Dispersão Desvio Padrão Desiqualdade de Chebyshev: Para qualquer conjunto de dados e qualquer constante h > 1, no mínimo 1 (1/ h 2 ) dos dados estarão situados dentro de um intervalo formado por h desvios padrões abaixo e acima da média. Espécime Dimensão Espécime Dimensão h 1,5 Percentual 55,6% Lim Inf. 83,05 Lim. Sup. 110,55 Espécime Dimensão Espécime Dimensão Percentual de dados no interior do intervalo: 80%

26 Medidas de Dispersão Coeficiente de Variação O coeficiente de variação de Pearson, cv, é uma medida relativa de variabilidade. É independente da unidade de medida utilizada. Estimador: cv(%) = 100 s Karl Pearson D mˆ

27 Medidas de Dispersão Coeficiente de Variação Por ser uma medida relativizada, o coeficiente de variação tem, portanto, aplicações na pesquisa para comparar a precisão de diferentes experimentos, quando a unidade de medição é diferente. Dicas para tomada de decisão: Baixa dispersão: cv 15% Média dispersão: cv 15-30% Alta dispersão: cv 30% Karl Pearson D

28 Medidas de Dispersão Coeficiente de Variação Aplicação: Comparação de dispersão de resultado de experimentos realizados com unidades de medição diferentes Tipo de Lâmpada Horas de Uso Até Falhar Incandecente (1) Fluorecente (2) Medidas Resumo Lampada (1) (2) Média Desvio Padrão C.V. 10.3% 4.5%

29 Medidas de Dispersão Distância Interquartílica É a diferença entre o 3º e o 1º quartis, Q 3 - Q 1. Ou seja, no intervalo interquartílico concentra-se metade das observações mais centrais. 50%

30 Medidas de Assimetria e Curtose As medidas de assimetria e curtose complementam as medidas de posição e de dispersão no sentido de proporcionar uma descrição e compreensão mais completa das distribuições de freqüências. Ampliando o conceito de Momento Estatístico: São medidas de caráter mais geral e dão origem às demais medidas descritivas, como as de tendência central, dispersão, assimetria e curtose. Conforme a potência considerada tem-se a ordem ou o grau do momento calculado.

31 Medidas de Assimetria e Curtose - Momentos Momentos Simples ou Centrados na Origem, M r m r = = 1 N i= 1 Nclas N i= 1 c r i x r i f i N = tamanho da amostra, x = observação amostral, c = centro da classe da distribuição de freqüências de x f = freqüência relativa Nclas = número de Classes da distribuição de freqüências de x

32 Medidas de Assimetria e Curtose - Momentos Momentos ou Centrados na Média, M r M r = = 1 N i= 1 Nclas N i= 1 ( x xˆ ) ( c xˆ ) c = centro da classe da distribuição de freqüências de x i i r r f i N = tamanho da amostra, x i = i-ésima observação amostral, f = freqüência relativa m 2 = Variância Nclas = número de Classes da distribuição de freqüências de x r é um número inteiro positivo que define a ordem do momento

33 Medidas de Assimetria e Curtose - Momentos Momentos Abstratos, α r α r = M s r r s = Desvio Padrão

34 Medida de Assimetria Coeficiente de Assimetria O coeficiente de assimetria quantifica o grau de desvio, afastamento da simetria ou grau de deformação de uma distribuição de freqüências. Estimadores: Coeficiente de Assimetria de Pearson x Mo As = ˆ s Se As < 0 a curva será assimétrica negativa Se As > 0 a curva será assimétrica positiva Se As = 0 a curva será simétrica Coeficiente Momento de Assimetria α 3 = M s 3 3 Se α 3 < 0,2 a curva será simétrica Se 0,2 < α 3 < 1,0 a curva será assimétrica fraca Se α 3 > 1,0 a curva será assimetria forte.

35 Medida de Assimetria Coeficiente de Assimetria Assimetria positiva Quase simetria Assimetria negativa Coef.ass. >0 Coef.ass. ~ 0 Coef.ass. <0

36 Medidas de Curtose ou de Achatamento Mostram até que ponto uma distribuição é a mais aguda ou a mais achatada do que uma curva normal, de altura média. Classificação: Mesocúrtica: É considerada a curva padrão. Leptocúrtica: É uma curva mais alta do que a normal. Apresenta o topo relativamente alto, significando que os valores se acham mais agrupados em torno da moda. Curva Platicúrtica: É uma curva mais baixa do que a normal. Apresenta o topo achatado, significando que várias classes apresentam freqüências quase iguais.

37 Medidas de Curtose ou de Achatamento Mostram até que ponto uma distribuição é a mais aguda ou a mais achatada do que uma curva normal, de altura média. Estimadores: Coeficiente de Curtose K = Q3 Q1 2 P ( P ) K > distribuição Platicúrtica; - K = distribuição Mesocúrtica; - K < distribuição Leptocúrtica; Coeficiente Momento de Curtose α 4 = M s α 4 < 3 distribuição Platicúrtica; - α 4 = 3 distribuição Mesocúrtica; - α 4 > 3 distribuição Leptocúrtica;

38 Medidas de Assimetria e de Achatamento Atenção Numa amostra é quase impossível observar simetria e curtose puras. Por isso os coeficientes de assimetria e de curtose assumem valores quase sempre diferentes de zero, 0,263 e 3. Para termos uma ideia se a assimetria ou curtose é relevante devemos comparar o valor dos coeficientes com o erro associado. Se o coeficiente não exceder 2 ou 3 vezes o erro, o seu valor não será muito relevante, especialmente quando queremos extrapolar para a população.

39 Estatística Descritiva Tipos de Gráficos Gráfico de Caixa Boxplot Exemplo - Para ilustrar o uso do gráfico de caixa, consideremos os dados apresentados na tabela abaixo, que representam leituras de durezas obtidas por tipos diferentes de tratamento térmico realizados durante a fabricação de uma determinada peça. 300 Dureza Brinell, HB [Mpa] (1) (2) (3) 220,2 214,9 203,3 235,0 225,6 204,9 238,3 226,7 216,7 253,8 227,8 219,5 254,9 241,8 222,8 259,0 244,6 224,5 266,7 246,2 270,0 Visualização dos Dados Dureza Brinell, HB [MPa] Tratamento Térmico

40 Estatística Descritiva Tipos de Gráficos Gráfico de Caixa Boxplot T1 Exemplo Estatísticas descritivas Mean 95% Confidence Interval for Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Descriptives Lower Bound Upper Bound Statistic Std. Error 24,6843, , , , ,3800 2,631 1, ,02 26,67 4,65 2,4000 -,586,794 -,594 1,587 T2 Mean 95% Confidence Interval for Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Descriptives Lower Bound Upper Bound Statistic Std. Error 23,2514, , , , ,7800 1,389 1, ,49 24,62 3,13 1,9000 -,138,794-1,435 1,587 T3 Mean 95% Confidence Interval for Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Descriptives Lower Bound Upper Bound Statistic Std. Error 22,3100, , , , ,9500 4,965 2, ,33 27,00 6,67 1,9600 1,879,794 4,262 1,587 O que conseguimos Extrair do Gráfico e das Medidas Resumo?

41 Estatística Descritiva Tipos de Gráficos Gráfico de Caixa Boxplot Exemplo Nova Representação Gráfica Dureza Brinell, HB [MPa] 240 Dureza Brinell, HB [MPa] N = A B C 220 Tratamento Térmico 200 T1 T2 T3 Tratamento Térmico O que conseguimos Extrair do Gráfico?

42 Estatística Descritiva Tipos de Gráficos Gráfico de Caixa Boxplot Exemplo Nova Representação Gráfica + Outliers ou Dados Discrepantes ou Dados espúrios Condição de Assimetria Máximo da Amostra, mas não mais do que Q 1 + k (Q 3 -Q 1 ) 3 o Quartil 2 o Quartil - Mediana Valor Típico de k = 1,5 1 o Quartil Mínimo da Amostra, mas não menos do que Q 1 - k (Q 3 -Q 1 )

43 Estatística Descritiva Tipos de Gráficos Gráfico de Caixa Boxplot Exemplo Nova Representação Gráfica Assimetria positiva Simetria Assimetria negativa Boxplot (Diagrama de Caixa) ou Box-whiskers (Diagrama de Bigode) São gráficos que apresentam os valores centrais dos dados e alguma informação a respeito da amplitude deles.

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE

ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE 1 Medidas de síntese TERCEIRA maneira de resumir um conjunto de dados referente a uma variável quantitativa. Separatrizes Locação x % x % x % x % Dispersão Forma

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 4 - Medidas de dispersão Departamento de Economia Universidade Federal de Pelotas (UFPel) Abril de 2014 Amplitude total Amplitude total: AT = X max X min. É a única medida de dispersão que não tem

Leia mais

Medidas Estatísticas NILO FERNANDES VARELA

Medidas Estatísticas NILO FERNANDES VARELA Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar

Leia mais

Unidade II ESTATÍSTICA. Prof. Celso Guidugli

Unidade II ESTATÍSTICA. Prof. Celso Guidugli Unidade II ESTATÍSTICA Prof. Celso Guidugli Medidas ou parâmetros estatísticos Valores que permitem uma imagem sintetizada do comportamento de uma amostra. Dividem-se em dois grandes grupos: medidas de

Leia mais

Medidas Estatísticas de Posição

Medidas Estatísticas de Posição Medidas Estatísticas de Posição 1 - Medidas de Tendência Central Denição medida de tendência central é um único valor que representa ou tipica um conjunto de valores. Nunca pode ser menor que o menor valor

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

Distribuição de Frequências

Distribuição de Frequências Distribuição de Frequências ENG09004 2014/2 Prof. Alexandre Pedott pedott@producao.ufrgs.br 2.1. Distribuições de Frequência Na análise de conjuntos de dados é costume dividi-los em classes ou categorias

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

Plano da Apresentação. Medidas de localização central. Medidas de localização central. Média. Média. Exemplo nota média em Metodologias

Plano da Apresentação. Medidas de localização central. Medidas de localização central. Média. Média. Exemplo nota média em Metodologias Metodologia de Diagnóstico e Elaboração de Relatório FASHT Plano da Apresentação Mediana Moda Outras médias: a média geométrica Profª Cesaltina Pires cpires@uevora.pt Metodologias de Diagnóstico Profª

Leia mais

22/02/2014. AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação. Medidas Estatísticas. Medidas Estatísticas

22/02/2014. AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação. Medidas Estatísticas. Medidas Estatísticas Universidade Estadual de Goiás Unidade Universitária de Ciências Socioeconômicas e Humanas de Anápolis AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação Prof. Elisabete

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

ESTATÍSTICA DESCRITIVA

ESTATÍSTICA DESCRITIVA ESTATÍSTICA DESCRITIVA O principal objectivo da ESTATÍSTICA DESCRITIVA é a redução de dados. A importância de que se revestem os métodos que visam exprimir a informação relevante contida numa grande massa

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Padronização. Momentos. Coeficiente de Assimetria

Padronização. Momentos. Coeficiente de Assimetria Padronização Seja X 1,..., X n uma amostra de uma variável com com média e desvio-padrão S. Então a variável Z, definida como, tem as seguintes propriedades: a) b) ( ) c) é uma variável adimensional. Dizemos

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

ESTATÍSTICA DESCRITIVA APLICADA NA SAÚDE. Hospital Universitário Prof. Edgard Santos UFBA Unidade de Planejamento Julho de 2016

ESTATÍSTICA DESCRITIVA APLICADA NA SAÚDE. Hospital Universitário Prof. Edgard Santos UFBA Unidade de Planejamento Julho de 2016 ESTATÍSTICA DESCRITIVA APLICADA NA SAÚDE Hospital Universitário Prof. Edgard Santos UFBA Unidade de Planejamento Julho de 2016 AGENDA: DEFINIÇÃO; VARIÁVEIS (CONSTRUÇÃO DE UM BANCO DE DADOS); ORGANIZAÇÃO

Leia mais

APONTAMENTOS DE SPSS

APONTAMENTOS DE SPSS Instituto de Ciências Biomédicas de Abel Salazar APONTAMENTOS DE SPSS Rui Magalhães 2010-1 - - 2 - Menu DATA Opção SPLIT FILE Permite dividir, de uma forma virtual, o ficheiro em diferentes ficheiros com

Leia mais

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão Prof. Dr. Guanis de Barros Vilela Junior Relembrando!!! Não é uma CIÊNCIA EXATA!!! É UMA CIÊNCIA PROBABILÍSTICA!!!!!!! Serve

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL. Estatística Descritiva

GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL. Estatística Descritiva GERÊNCIA DE ENSINO E PESQUISA - GEP SETOR DE GESTÃO DA PESQUISA E INOVAÇÃO TECNOLOGICA ESTATÍSTICA ALICADA NO EXCEL Estatística Descritiva A análise descritiva consiste basicamente na organização e descrição

Leia mais

Número: Dois. Lista de Exercícios Estatística

Número: Dois. Lista de Exercícios Estatística Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação Ciências Contábeis Q1.

Leia mais

Exploração e Transformação de dados

Exploração e Transformação de dados Exploração e Transformação de dados A DISTRIBUIÇÃO NORMAL Normal 99% 95% 68% Z-score -3,29-2,58-1,96 1,96 2,58 3,29 Normal A distribuição normal corresponde a um modelo teórico ou ideal obtido a partir

Leia mais

Comprovação Estatística de Medidas Elétricas

Comprovação Estatística de Medidas Elétricas Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Métodos e Técnicas de Laboratório em Eletrônica Comprovação Estatística de Medidas Elétricas Florianópolis,

Leia mais

Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula

Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula 1. SOMATÓRIO 1.1 Índices ou notação por índices O símbolo Xi (lê-se X índice

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

Introdução à Estatística Aplicada à Climatologia. Parte I Estatística Descritiva

Introdução à Estatística Aplicada à Climatologia. Parte I Estatística Descritiva Universidade de São Paulo Disciplina: Climatologia I ACA 06 Introdução à Estatística Aplicada à Climatologia Parte I Estatística Descritiva Projeto PAE Bolsista: Michelle S. Reboita São Paulo, 005. Sumário

Leia mais

Considere os portfolios X, Y e Z, abaixo, caracterizados pelas respectivas distribuições de probabilidades:

Considere os portfolios X, Y e Z, abaixo, caracterizados pelas respectivas distribuições de probabilidades: Fundação Getulio Vargas Curso de Graduação Disciplina: Estatística Professor: Moisés Balassiano 1. Investidores geralmente constroem portfolios, ou carteiras, contendo diversas aplicações financeiras.

Leia mais

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo PROGRAMA e Metas Curriculares Matemática A Estatística António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo O tema da Estatística nos Cursos Científico-Humanísticos de

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo Estatística Básica Professora conteudista: Maria Ester Domingues de Oliveira Revisor: Francisco Roberto Crisóstomo Sumário Estatística Básica Unidade I 1 CICLO SEMPRE CRESCENTE...2 2 ESTATÍSTICA: CIÊNCIA

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Roraima. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Roraima (1991, 2000 e 2010)

Roraima. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Roraima (1991, 2000 e 2010) Roraima Em, no estado de Roraima (RR), moravam 4,5 mil habitantes, onde uma parcela ainda discreta (3,5%, 15,6 mil) tinha 65 ou mais anos de idade. O estado era composto de 15 municípios, dos quais sete

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

AT = Maior valor Menor valor

AT = Maior valor Menor valor UNIVERSIDADE FEDERAL DA PARAÍBA TABELAS E GRÁFICOS Departamento de Estatística Luiz Medeiros DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente interesse resumir as informações

Leia mais

DISCIPLINA: ESTATÍSTICA I (CÓD. ENEC60015) PERÍODO: 3º PERÍODO

DISCIPLINA: ESTATÍSTICA I (CÓD. ENEC60015) PERÍODO: 3º PERÍODO PLANO DE AULA DISCIPLINA: ESTATÍSTICA I (CÓD. ENEC60015) PERÍODO: 3º PERÍODO TOTAL DE SEMANAS: 20 SEMANAS TOTAL DE ENCONTROS: 40 AULAS Aulas Conteúdos/ Matéria Tipo de aula Textos, filmes e outros materiais

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

Espírito Santo. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Espírito Santo (1991, 2000 e 2010)

Espírito Santo. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Espírito Santo (1991, 2000 e 2010) Espírito Santo Em, no estado do Espírito Santo (ES), moravam 3,5 milhões de pessoas, onde parcela relevante (7,1%, 249, mil) tinha 65 ou mais anos de idade. O estado era composto de 78 municípios, dos

Leia mais

Mato Grosso do Sul. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Mato Grosso do Sul (1991, 2000 e 2010)

Mato Grosso do Sul. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Mato Grosso do Sul (1991, 2000 e 2010) Mato Grosso do Sul Em 21, no estado de Mato Grosso do Sul (MS), moravam 2,5 milhões de pessoas, onde parcela relevante (6,6%, 162,2 mil) tinha 65 ou mais anos de idade. O estado era composto de 78 municípios,

Leia mais

Paraíba. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Paraíba (1991, 2000 e 2010)

Paraíba. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Paraíba (1991, 2000 e 2010) Paraíba Em, no estado da Paraíba (PB), moravam 3,8 milhões de pessoas, onde uma grande parcela (8,5%, 321,2 mil habitantes) tinha 65 ou mais anos de idade. O estado era composto de 223 municípios, dos

Leia mais

Distribuição de Freqüência

Distribuição de Freqüência Distribuição de Freqüência Representação do conjunto de dados Distribuições de freqüência Freqüência relativa Freqüência acumulada Representação Gráfica Histogramas Organização dos dados Os métodos utilizados

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Plano Curricular de Matemática 6ºAno - 2º Ciclo

Plano Curricular de Matemática 6ºAno - 2º Ciclo Plano Curricular de Matemática 6ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Geometria Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental

Leia mais

ESTATÍSTICA E. Prof Paulo Renato A. Firmino. Aulas

ESTATÍSTICA E. Prof Paulo Renato A. Firmino. Aulas ESTATÍSTICA E Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 05-06 Descritiva Medidas de Posição Mediana: É o valor que se localiza no centro de uma amostra ordenada Se o número de observações (n)

Leia mais

Fundação Escola de Sociologia e Política de São Paulo Faculdade de Biblioteconomia e Ciência da Informação PLANO DE ENSINO (2015)

Fundação Escola de Sociologia e Política de São Paulo Faculdade de Biblioteconomia e Ciência da Informação PLANO DE ENSINO (2015) Fundação Escola de Sociologia e Política de São Paulo Faculdade de Biblioteconomia e Ciência da Informação PLANO DE ENSINO (2015) I. IDENTIFICAÇÃO DISCIPLINA ESTATÍSTICA APLICADA CARGA HORÁRIA 46 CURSO

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Livro Texto recomendado para a Disciplina

Livro Texto recomendado para a Disciplina Livro Texto recomendado para a Disciplina FREUND, John E. Estatística aplicada: economia, administração e contabilidade. Porto Alegre: Bookman, 2006. 11ª Edição, 536 p. (com CD) ISBN: 8573075317 Biblioteca:

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL II

MEDIDAS DE TENDÊNCIA CENTRAL II MEDIDAS DE TENDÊNCIA CENTRAL II 8. MÉDIA, MEDIANA E MODA 8. Mediana 8 7 A mediana divide um conjunto de dados pré-ordenados em duas porções iguais, ou seja, duas partes de 50% cada. Nesta divisão, 50%

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

Stela Adami Vayego - DEST/UFPR 1

Stela Adami Vayego - DEST/UFPR 1 Aula 03 Análise Exploratória dos Dados (Medidas Descritivas de Variáveis Quantitativas) Parte 1 Medidas de Tendência Central Stela Adami Vayego - DEST/UFPR 1 Medidas de Tendência Central dos Dados Para

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO Luiz Fernando Stringhini 1 Na tentativa de mostrar as possibilidades de uso das ferramentas da estatística dentro da contabilidade,

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

Ficha de Trabalho nº 11 Matemática 7º ano Maio / 2011 INTRODUÇÃO AO ESTUDO DA ESTATÍSTICA

Ficha de Trabalho nº 11 Matemática 7º ano Maio / 2011 INTRODUÇÃO AO ESTUDO DA ESTATÍSTICA Ficha de Trabalho nº 11 Matemática 7º ano Maio / 2011 INTRODUÇÃO AO ESTUDO DA ESTATÍSTICA Recorda: A Estatística é um ramo da Matemática que nos ajuda a recolher, organizar e interpretar dados para tirar

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados Estatística descritiva Também designada Análise exploratória de dados ou Análise preliminar de dados 1 Estatística descritiva vs inferencial Estatística Descritiva: conjunto de métodos estatísticos que

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Aula 1 Assimetria e Curtose

Aula 1 Assimetria e Curtose 2º Bimestre 1 Estatística e Probabilidade Aula 1 Assimetria e Curtose Professor Luciano Nóbrega Medidas de assimetria As medidas de assimetria e curtose (esta última veremos na próxima aula) são as que

Leia mais

Suplemento Roteiro 2. GEX 132 Laboratório de Física I

Suplemento Roteiro 2. GEX 132 Laboratório de Física I Suplemento Roteiro 2 GEX 132 Laboratório de Física I Título: Gráficos em Papel Milimetrado Objetivos: Gráficos são utilizados com o intuito de representar a dependência entre duas ou mais grandezas (físicas,

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro)

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Números e operações - Números

Leia mais

Avaliação do Sistema de Avaliação de Alunos da Disciplina de Pediatria I 3:1 Parte

Avaliação do Sistema de Avaliação de Alunos da Disciplina de Pediatria I 3:1 Parte Acta Pediam. Port., 2001; N. 6; Vol. 32: 399-406 EDUCAÇÃO MÉDICA PEDIÁTRICA Avaliação do Sistema de Avaliação de Alunos da Disciplina de Pediatria I 3:1 Parte LEONOR LEVY * Professora Auxiliar da Faculdade

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO. CURSO Licenciatura em Matemática MATRIZ 674

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO. CURSO Licenciatura em Matemática MATRIZ 674 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Licenciatura em Matemática MATRIZ 674 FUNDAMENTAÇÃO LEGAL Resolução nº. 117/10-COEPP DISCIPLINA/UNIDADE

Leia mais

Estatística Lousã, 07 de Março de 2008

Estatística Lousã, 07 de Março de 2008 Estatística Lousã, 07 de Março de 08 A estatística é um ramo da Matemática que nos ajuda a recolher, organizar e interpretar dados para tirar conclusões e fazer previsões. Recolha, organização e representação

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

Tópico 6. Distribuição Normal

Tópico 6. Distribuição Normal Tópico 6 Distribuição Normal Distribuição Normal Existe uma importante diferença entre dados que são normalmente distribuídos e a curva normal em si Distribuição Normal Muitas variáveis apresentam distribuição

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Estatística. Professora: Eliana Carvalho Estatística e Probabilidade 1

Estatística. Professora: Eliana Carvalho Estatística e Probabilidade 1 Estatística Fonte bibliográfica: FARIAS, Alberto Alves Introdução a Estatística MEYER, Paul L. Probabilidade: Aplicações à Estatística MONTGOMERY, Douglas C; Estatística aplicada e probabilidade para engenheiros.

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações.

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações. Análise descritiva de Dados 4. Medidas resumos para variáveis quantitativas 4.1. Medidas de Posição: Considere uma amostra com n observações: x 1, x,..., x n. a) Média: (ou média aritmética) é representada

Leia mais

ASSUNTO PLANIFICAÇÃO ANUAL 6º ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS

ASSUNTO PLANIFICAÇÃO ANUAL 6º ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 6º ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais índice MENSAGEM DO AUTOR 11 AGRADECIMENTOS 13 Capítulo 1 Introdução Importância da estatística 17 O que é a Estatística? Escalas de medida Escala de medida qualitativa Escalas Nominais Escalas Ordinais

Leia mais

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO.

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. - Que é Amostragem Aleatória Simples. - Métodos para a

Leia mais

ESTATÍSTICA DESCRITIVA:

ESTATÍSTICA DESCRITIVA: UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário de Sinop(CUS) ESTATÍSTICA DESCRITIVA: Medidas de forma: Assimetria e Curtose Profº Evaldo Martins Pires SINOP -MT TEMAS TRABALHADOS ATÉ AGORA Aula

Leia mais

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana:

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana: Medidas de Tendência Central. Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências que essa pesquisa revela. Assim, se a pesquisa envolve muitos dados,

Leia mais

Matemática 3º Ciclo. Planificação Anual 7.º ano. N.º de aulas. Objectivos 1.º PERÍODO. Ano Lectivo 2009/2010. Apresentação 1. Teste Diagnóstico 2

Matemática 3º Ciclo. Planificação Anual 7.º ano. N.º de aulas. Objectivos 1.º PERÍODO. Ano Lectivo 2009/2010. Apresentação 1. Teste Diagnóstico 2 i Temas Sub-temas Objectivos 1.º PERÍODO Apresentação 1 Teste Diagnóstico 2 Múltiplos e divisores. Critérios de divisibilidade. Obter números, a partir de outros, por composição e decomposição; Números

Leia mais

Medida de Tendência Central

Medida de Tendência Central Medida de Tendência Central um valor no centro ou no meio de um conjunto de dados 1 Definições Média (Média Aritmética) o número obtido somando-se todos os valores de um conjunto de dados, dividindo-se

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência Tabelas e Diagramas de Freqüência Probabilidade e Estatística I Antonio Roque Aula 2 O primeiro passo na análise e interpretação dos dados de uma amostra consiste na descrição (apresentação) dos dados

Leia mais

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 03. Física Geral e Experimental III 2012/1

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 03. Física Geral e Experimental III 2012/1 Diretoria de Ciências Exatas Laboratório de Física Roteiro 03 Física Geral e Experimental III 2012/1 Experimento: Dilatação Térmica de um Líquido 1. Dilatação Térmica de um Líquido Nesta tarefa será abordado

Leia mais

Exemplo Falhas em Tecidos

Exemplo Falhas em Tecidos Exemplo Falhas em Tecidos Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2016 G. A. Paula (IME-USP) Falhas em Tecidos 2 o Semestre 2016 1 / 27 Rolos de Tecido

Leia mais

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE Número de classes a considerar (k): a) Tabela de Truman L. Kelley n 5 10 25 50 100 200 500 1000 k 2 4 6 8 10 12 15 15 b) k=5 para n 25 e para n >25.

Leia mais

Gestão da Qualidade. Aula 8. Prof. Pablo

Gestão da Qualidade. Aula 8. Prof. Pablo Gestão da Qualidade Aula 8 Prof. Pablo Proposito da Aula 1. Folha de Verificação 2. Carta de Controle Folha de Verificação Folha de Verificação A Folha de Verificação é uma ferramenta utilizada no controle

Leia mais

À caraterística de um indivíduo ou objeto à qual se pode atribuir um número ou uma categoria,

À caraterística de um indivíduo ou objeto à qual se pode atribuir um número ou uma categoria, MATEMÁTICA 3º CICLO FICHA Organização e Tratamento de Dados 11 População e amostra. Variável estatística. Organização e tratamento de dados Nome: N.ª: Ano: Turma: Data: / / 20 Para a realização desta ficha

Leia mais

MATEMÁTICA 6º ANO A/B. Números e cálculo. Geometria

MATEMÁTICA 6º ANO A/B. Números e cálculo. Geometria 1. COMPETÊNCIAS ESSENCIAIS MATEMÁTICA 6º ANO A/B COMPETÊNCIAS GERAIS Cger1. Mobilizar saberes culturais, científicos e tecnológicos para compreender a realidade e para abordar situações e problemas do

Leia mais

Aula 7 Medidas de Tendência Central 2ª parte

Aula 7 Medidas de Tendência Central 2ª parte 1 Estatística e Probabilidade Aula 7 Medidas de Tendência Central 2ª parte Professor Luciano Nóbrega Medidas de posição Resumo Média aritmética ( x ) É a razão entre o somatório dos valores das variáveis

Leia mais

Avaliação de Sistemas de Medição

Avaliação de Sistemas de Medição Monitoramento de um processo: medição de uma característica da qualidade X por meio de um sistema de medição. Sistema de medição ideal: produz somente resultados corretos, ou seja, que coincidem com o

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais