Åaxwell Mariano de Barros

Tamanho: px
Começar a partir da página:

Download "Åaxwell Mariano de Barros"

Transcrição

1 Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÍÒ Ú Ö Ö Ð Ó Å Ö Ò Ó ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹ ¼½ ÐÙÐÓ Î ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ËÓ ÄÙ ¹ ÅA ¾¼½½

2 ËÙÑ Ö Ó 1 Vetores no Espaço Reta Orientada Álgebra de Vetores Soma de Vetores Produto de Número Real por Vetores Soma de Pontos com Vetores Exercícios Referências Bibliográficas 11

3 ÆÇÌ Ë ÍÄ ¹ ¼½ ÐÙÐÓ Î ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Î ØÓÖ ÒÓ Ô Ó Ë Ç ½º½ Ê Ø ÇÖ ÒØ Seja r uma reta no espaço. Iremos dizer que r está orientada se nela escolhermos um sentido de percurso, que chamaremos de positivo. O sentido contrário ao escolhido é chamado de negativo. Se A e B são dois pontos de r, dizemos que A está à esquerda de B (ou B está à direita de A) se o sentido de percuso de A para B é o positivo. A B Sejam r uma reta orientada, A e B pontos de r. A união do conjunto formado pelos pontos A e B com o conjunto dos pontos de r que estão entre eles é chamado de um segmento de reta orientado, com extremos A e B. Se A está à esquerda de B, dizemos que A é a origem do segmento e B seu extremo. Um segmento com origem no ponto A e extremo no pontob será denotado por[a,b]. SeA=B, dizemos que[a,b] é o segmento nulo. Obsserve que se A B, então[a,b] [B,A]. Sejam [A,B] e [C,D] dois segmentos orientados no espaço. Dizemos que:

4 Vetores no Espaço 3 1. [A,B] e[c,d] são colineares se são segmentos contidos em uma mesma reta; 2. Se[A,B] e[c,d] não são segmentos nulos, então[a,b] e[c,d] tem a mesma direção ou são paralelos se são colineares ou estão contidos em retas paralelas; 3. [A,B] e [C,D] têm o mesmo comprimento se os segmentos geométricos AB e CD têm comprimentos iguais. Sejam[A,B] e[c,d] segmentos orientados paralelos. Suponha que[a,b] e[c,d] estão em retas paralelas distintas. Neste caso, iremos dizer que eles têm o mesmo sentido se os segmentos geométricos AC e BD tem interseção vazia. Caso contrário, dizemos que [A, B] e[b, C] possuem sentidos contrários (ver figura abaixo). D C B B A A C Mesmo sentido D Sentido Contrário Suponha que [A,B] e [C,D] são paralelos e colineares e seja r a reta que contém [A,B] e [C,D]. Para sabermos se [A,B] e [C,D] têm mesmo sentido ou sentidos contrários, procedemos da seguinte maneira: escolhemos uma reta s paralela a reta r e tomamos [E,F] tal que tenha a mesmo sentido de [C,D], como definido anteriormente. Se [A,B] e [E,F] têm o mesmo sentido (respectivamente, sentidos contrários), dizemos que [A, B] e [C, D] têm o mesmo sentido (respectivamente, sentidos contrários). Dois segmentos orientados [A, B] e [C, D] são ditos equipolentes se [A, B] e [C, D] têm a mesma direção, mesmo comprimento e mesmo sentido. Usaremos a notação [A,B] [C,D] para indicar que [A,B] e [C,D] são segmentos orientados, equipolentes. Observação Note que, dado um segmento orientado [A,B] e um ponto C no espaço, podemos construir um segmento orientado[c,d] tal que [A,B] [C,D]. De fato, ser é a reta tal que

5 Vetores no Espaço 4 [A,B] r, tomamos a reta s que passa por C, paralela a retar. Em s, escolhemos um ponto D tal que [A,B] e [C,D] têm mesmo comprimento e mesmo sentido. Proposição Sejam [A, B],[C, D] e [E, F] segmentos orientados. Vale as seguintes propriedades: 1. [A,B] [A,B]. 2. Se [A,B] [C,D] então [C,D] [A,B]. 3. Se [A,B] [C,D] e [C,D] [E,F], então [A,B] [E,F]. Seja[A, B] um segmento orientado. O conjunto formado por todos os segmentos orientados que são equipolentes a [A,B] é chamado de classe de equipolencia de [A,B]. Neste caso, dizemos que o seguimento [A,B] é um representante da classe. Observação Se C AB é a classe de equipolencia do segmento [A,B], segue do item 1 da proposição que o segmento[a,b] pertence ac AB. 2. Sejam C AB é a classe de equipolencia do segmento [A,B] e C CD é a classe de equipolencia do segmento [C,D]. Se [A,B] [C,D], ou seja, se [C,D] C AB, então, pelo item 2 da proposição 1.1.1, temos que [A,B] C CD. Além disso, se [E,F] C AB, pelo item 3 da proposição 1.1.1, temos que [E,F] C CD e se [E,F] C CD, então [E,F] C AB. Portanto, temos que, se [A,B] [C,D] então a classe de equipolencia de AB é igual a classe de equipolencia de [C,D]. Isso sgnifica que, qualquer elemento de C AB é um representante da classe de equipolencia de [A,B] Uma classe de equipolencia de um segmento orientado [A,B], o seja, o conjunto C AB, será chamado de um VETOR. Usaremos a notação AB para indicar o vetor cujo representante é o segmento orientado [A,B]. Quando não quisermos nos referir a um dos representantes, representaremos um vetor, usando letras latinas minúscula com uma seta, como por exemplo, v, u, etc. O conjunto de todos os vetores no espaço será denotado porv 3. Com consequência da observação 1.1.1, temos o seguinte resultado:

6 Vetores no Espaço 5 Proposição Dados um vetor qualquer v e um ponto A arbitariamente, existe um único segmento orientado [A,B] que representa o vetor v, isto é, se [A,C] é outro representante de v, entãoc = B. Ë Ç ½º¾ ýð Ö Î ØÓÖ Chamaremos de vetor nulo, e representaremos por 0, a classe de equivalencia do segmento nulo. Se[A,B] é um representante de um vetor v, chamaremos de vetor oposto de v ao vetor cujo representante é o segmento[b,a]. O oposto do vetor v será indicado por v, ou seja AB = BA. Sejam v e u dois vetores. 1. Dizemos que v e u são paralelos se um representante de v é paralelo a um (e portanto a todos) represetante de u. 2. Se v e u são não nulos e paralelos, dizemos que eles têm o mesmo sentido se um representante de v tem o mesmo sentido de um representante de u. Dizemos que v e u tem sentidos contrários se um representante de v e um representante de u tem sentidos contrários. Por convenção, iremos dizer que o vetor nulo é paralelo a qualquer vetor. Dado um vetor v, a norma (módulo ou comprimento) de v é o comprimento de um dos seus representantes, e será indicada por v. Se v =1, dizemos que v é um vetor unitário. Como consequência das definições anteriores, temos que v = u se, e somente se, v e u possuem a mesma direção, mesmo sentido e mesma norma. ½º¾º½ ËÓÑ Î ØÓÖ Em V 3, definimos uma operação, chamada de adição, que a cada par de vetores v e u associa um outro vetor, denotado por v + u, chamado soma de v com v da seguinte maneira:

7 Vetores no Espaço 6 Escolha um representante qualquer de v, digamos [A,B] ( v = AB) Escolha um representante de u que tenha origem no pontob, digamos[b,c] ( u = BC) O vetor v + u será o que tem [A,C] com representante, ou seja, AB + BC = AC. u = BC = DC v = AB = DC v u v B u v C v + u = u + v = AC A u D Observe que a soma u + v independe da escolha do representante [A,B] do vetor u. De fato, se escolhermos um outro representante de u, digamos [ Ã, B] e portanto, outro representante de v, [ B, C], teriamos [A,B] [Ã, B] e [B,C] [ B, C] e portanto, [A,C] [Ã, C]. A soma de u com o oposto de v é chamada de diferença entre u e v e é indicada por u v, isto é, u v = u +( v ). Proposição Se u, v e w são vetores quaisquer, então valem as seguintes propriedades: 1. ( u + v )+ w = u +( v + w). 2. u + v = v + u. 3. u + 0 = 0 + u = u. 4. u +( u) = 0. Além disso, o oposto de u é o único vetor que satisfaz essa relação. Demonstração. Sejam u = AB, v = BC e w = CD. Então, 1. Então, ( u + v )+ w =( AB + BC)+ CD = AC + CD = AD e u +( v + w) = AB+( BC + CD) = AB+ BD = AD, o que prova que ( u + v )+ w = u +( v + w).

8 Vetores no Espaço 7 2. Temos que u + v = AB+ BC = AC. Por outro lado, podemos escolher [A,E] [B,C] e [E,C] [A,B]. Logo v = AE e de u = EC e portanto, v + u = AE+ EC = AC. 3. Note que 0 = BB. Assim u + 0 = AB + BB = AB = u. De maneira análoga, prova-se que 0 + u = u. 4. Como u = AB, então u = BA. Assim sendo temos u +( u)= AB + BA= AA= 0. Suponha agora que v é tal u + v = 0. Então, u + v = u +( u). Portanto, somando u e usando o item 1, teremos: ( u + u)+ v = ( u + u)+( u) (1.2.1) Agora, usando o fato de u + u = 0 e que 0 + u = u, segue de (1.2.1) que v = u, o que prova a unicidade do oposto. ½º¾º¾ ÈÖÓ ÙØÓ Æ Ñ ÖÓ Ê Ð ÔÓÖ Î ØÓÖ Iremos definir agora uma operação, chamada de multiplicação de número real por vetores que, para cada número real α e cada vetor u, associa um vetor, denotado por α u, chamado produto de α por u, da seguinte maneira: Se α = 0 ou u = 0, entãoα u = 0. Se α 0 ou u 0, então: 1. α u é paralelo a u 2. Se α > 0, α u tem o mesmo sentido de u e se α < 0, α u tem sentido contrário ao de u.

9 Vetores no Espaço 8 3. α u = α u, onde α indica o valor absoluto deα. v u 2 u 2 u 3 v 5 v É comum chamar os números reais de escalar. Assim sendo, a multiplicação de número real por vetores também é chamada de multiplicação de escalar por vetores. As seguintes propriedades são verdadeiras: Proposição Sejam u e v vetores. Dadosαeβ números reais, valem as seguintes iguadades: 1. α( u + v ) = α u +α u. 2. (α+β) u = α u +β u u = u. 4. α(β u) = (αβ) u =β(β u). Proposição Sejam u e v vetores não nulos. Suponha que existe um número realαtal que u = α v. Então α = u v. Proposição Sejam u e v vetores não nulos. Então u e v são paralelos se, e somente se, existe um número real α tal que u = α v. Demonstração. Por definição, se u = α v para algum α, então u e v são paralelos. Suponha agora que u e v são paralelos. Inialmente vamos considerar que os vetores u e v têm o mesmo sentido. Seja α = u v. Vamos mostrar que u = α v. Como α > 0, α v e v são paralelos e têm o mesmo sentido. Como, por hipótese, u e v, são paralelos e mesmo sentido, segue que u eα v são paralelos e têm o mesmo sentido. Por outro lado α v = α v = u v v = u,

10 Vetores no Espaço 9 ou seja, u e α v são paralelos, têm o mesmo sentido e mesmo comprimento, isto é, u = α v. No caso em que u e v são paralelos e sentido contrários, tomamos α = u v. Os detalhes da prova, para esse caso, fica como exercício. ½º¾º ËÓÑ ÈÓÒØÓ ÓÑ Î ØÓÖ Dado um ponto A e um vetor u, definimos a soma de A com u, e denotamos por A+ u, como sendo o ponto B, tal que AB = u. Assim, A+ u = B se, e somente se, [A,B] é um representante de u com origem no ponto A. Como no caso de soma de vetores, usaremos a notação A u para indicar a soma de A com o oposto de u, isto é, A u = A+( u). Proposição Sejam u, v vetores e P 1,P 2 pontos. Então, 1. (P 1 + u)+ v = P 1 +( u + v ). 2. Se P 1 = u = P 1 + v, então u = v. 3. Se P 1 + u = P 2 + u, então P 1 = P (P 1 u)+ u = P 1. Demonstração. 1. Sejam A=P 1 + u eb =A+ v. Então, por definição, u = P 1 A e v = AB. Logo, (P 1 + u)+ v =A+ AB = B e P 1 +( u + v ) = P 1 + P 1 B = B. 2. Seja A = P 1 + u. Então, por hipótese, A = P 1 + u = P 1 + v. Logo, por definição, u = P1 A= v. 3. Se P 1 + u = P 2 + u então, pelo item 1. temos que (P 1 + u) v = (P 2 + u) v P 1 +( u v ) = P 2 +( u v ) P = P P 1 = P 2

11 Vetores no Espaço 10 A prova desse item é deixada como exercício. ½º¾º Ü Ö Ó 1. Prove a proposição Prove a proposição Prove o itém 3 da proposição Prove que as diagonais de um paralelograma têm o mesmo ponto médio. 5. Seja α um número real não nulo. Se u e v são vetores tais que u =α v, prove que v = 1 α u. 6. Seja α um número real e u um vetor. Prove que vale as seguintes regras de sinais: (a) ( α) u = (α u). (b) α( u)= (α u). (c) ( α)( u) = α u 7. Sejam P um ponto, u e v vetores. Prove que(p u)+ v = P ( u v ). 8. No triângulo ABC sejam P 1, P 2 e P 3 os pontos médios dos lados AB, BC e CA respectivamente (ver figura abaixo). Escreva BP 3, AP 2 e CP 1 em função dos vetores CA e CB. C A P 3 P 1 P 2 B

12 Ê Ö Ò Ð Ó Ö [1] Camargo, I. de. e Boulos, P., Geometria Analítica: um tratamento vetorial, São Paulo, Prentice Hall, [2] Lima, E.L., Coordenadas no Plano, Coleção do Professor de Matemática, Rio de Janeiro, SBM, [3] Lima, E.L., Coordenadas no Espaço, Rio de Janeiro, SBM, [4] Reis, G.L. dos. e outros, Geometria Analítica, 2.ed.,Rio de Janeiro, LTC, [5] Santos, N.M. dos., Vetores e matrizes, Rio de Janeiro, LTC,1979.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,

Leia mais

Aula 3 Vetores no espaço

Aula 3 Vetores no espaço MÓDULO 1 - AULA 3 Aula 3 Vetores no espaço Objetivos Ampliar a noção de vetor para o espaço. Rever as operações com vetores e sua representação em relação a um sistema ortogonal de coordenadas cartesianas.

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Operações Envolvendo Vetores. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Operações Envolvendo Vetores Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Adição de vetores Na aula anterior

Leia mais

Notas de Aula de SLC602 - Geometria Analítica. Wagner Vieira Leite Nunes Departamento de Matemática ICMC - USP

Notas de Aula de SLC602 - Geometria Analítica. Wagner Vieira Leite Nunes Departamento de Matemática ICMC - USP Notas de Aula de SLC60 - Geometria Analítica Wagner Vieira Leite Nunes Departamento de Matemática ICMC - USP julho de 017 Sumário 1 Introdução 5 Vetores no plano e no espaço 7.1 Introdução.................................................

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................

Leia mais

Geometria Analítica. Cleide Martins. Turmas E1 e E3. DMat - UFPE Cleide Martins (DMat - UFPE ) VETORES Turmas E1 e E3 1 / 22

Geometria Analítica. Cleide Martins. Turmas E1 e E3. DMat - UFPE Cleide Martins (DMat - UFPE ) VETORES Turmas E1 e E3 1 / 22 Geometria Analítica Cleide Martins DMat - UFPE - 2017.1 Turmas E1 e E3 Cleide Martins (DMat - UFPE - 2017.1) VETORES Turmas E1 e E3 1 / 22 Objetivos 1 Entender a denição de VETOR 2 Aprender a somar dois

Leia mais

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido):

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido): G3X1 - Geometria nalítica e Álgebra Linear 3 Vetores 3.1 Introdução efinição (Segmento orientado): Um segmento orientado é um par ordenado (,) de pontos do espaço. é a origem e é a etremidade do segmento

Leia mais

2. SEGMENTOS ORIENTADOS

2. SEGMENTOS ORIENTADOS FFCLRP-USP - ALGEBRA LINEAR - Vetores Geométricos 1 NOTAS DE AULAS Professor Doutor: Jair Silvério dos Santos 1 1. LEMBRETE DA GEOMETRIA DE EUCLIDES RETA Dados dois pontos distintos no espaço P e Q, existe

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA Consideremos uma reta r e sejam A e B dois pontos de r Ao segmento de reta AB, podemos associar 2 sentidos : de A para B e de B para A Escrevemos AB para representar

Leia mais

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017

JOSÉ ROBERTO RIBEIRO JÚNIOR. 9 de Outubro de 2017 9 de Outubro de 2017 Vetores Ferramenta matemática que é utilizada nas seguintes disciplinas dos cursos de Engenharia: Física; Mecânica Resistência dos materiais Fenômenos do transporte Consideremos um

Leia mais

Vetores. Laura Goulart. 21 de Julho de 2018 UESB. Laura Goulart (UESB) Vetores 21 de Julho de / 1

Vetores. Laura Goulart. 21 de Julho de 2018 UESB. Laura Goulart (UESB) Vetores 21 de Julho de / 1 Vetores Laura Goulart UESB 21 de Julho de 2018 Laura Goulart (UESB) Vetores 21 de Julho de 2018 1 / 1 Introdução Muitas grandezas físicas como força para serem completamente identicadas precisam de comprimento,

Leia mais

MA23 - Geometria Anaĺıtica

MA23 - Geometria Anaĺıtica MA23 - Geometria Anaĺıtica Unidade 1 - Coordenadas e vetores no plano João Xavier PROFMAT - SBM 8 de agosto de 2013 Coordenadas René Descartes, matemático e filósofo, nasceu em La Have, França, em 31 de

Leia mais

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x.

com 3 Incógnitas A interseção do plano paralelo ao plano yz, passando por P, com o eixo x determina a coordenada x. Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Reginaldo J. Santos Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. O Conceito de Vetor. Terceiro Ano do Ensino Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. O Conceito de Vetor. Terceiro Ano do Ensino Médio Material Teórico - Módulo: Vetores em R 2 e R 3 O Conceito de Vetor Terceiro Ano do Ensino Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Segmentos orientados Nesta seção

Leia mais

Questões. 2ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1

Questões. 2ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1 ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1 Questões 1. Sejam A, B, C e D vértices de um quadrado. Quantos vetores diferentes entre si podem ser definidos

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03. Palavras-chaves: Vetores, norma, produto escalar, produto interno.

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03. Palavras-chaves: Vetores, norma, produto escalar, produto interno. Assunto: Vetores, Norma e Produto escalar UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 03 Palavras-chaves: Vetores, norma, produto escalar, produto interno. Vetores Segmento orientado

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos

Leia mais

1 a Lista de Exercícios MAT 105 Geometria Analitica

1 a Lista de Exercícios MAT 105 Geometria Analitica 1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva 08/03 (quarta-feira) Recepção dos alunos 15/03 (quarta-feira) AULA 1 22/03 (quarta-feira) AULA 2 29/03 (quarta-feira) AULA 3 05/04 (quarta-feira) AULA 4 12/04 (quarta-feira)

Leia mais

A Reta no Espaço. Sumário

A Reta no Espaço. Sumário 16 A Reta no Espaço Sumário 16.1 Introdução....................... 2 16.2 Equações paramétricas da reta no espaço...... 2 16.3 Equação simétrica da reta no espaço........ 8 16.4 Exercícios........................

Leia mais

1. Operações com vetores no espaço

1. Operações com vetores no espaço Capítulo 10 1. Operações com vetores no espaço Vamos definir agora as operações de adição de vetores no espaço e multiplicação de um vetor espacial por um número real. O processo é análogo ao efetuado

Leia mais

P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1)

P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1) P1 de Álgebra Linear I 20091 27 de Março de 2009 Gabarito Questão 1) Considere o vetor v = 1, 2, 1) e os pontos A = 1, 2, 1), B = 2, 1, 0) e 0, 1, 2) de R a) Determine, se possível, vetores unitários w

Leia mais

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,

. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometria Analítica e Álgebra Linear Vetores no Espaço Professor: Luiz Fernando Nunes, Dr. 019/Sem_01 Índice Vetores no Espaço Tridimensional... 1.1 Definição... 1. Operações com vetores...

Leia mais

Aula 3 A Reta e a Dependência Linear

Aula 3 A Reta e a Dependência Linear MÓDULO 1 - AULA 3 Aula 3 A Reta e a Dependência Linear Objetivos Determinar a equação paramétrica de uma reta no plano. Compreender o paralelismo entre retas e vetores. Entender a noção de dependência

Leia mais

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1

III) Os vetores (m, 1, m) e (1, m, 1) são L.D. se, somente se, m = 1 Lista de Exercícios de SMA000 - Geometria Analítica 1) Indique qual das seguintes afirmações é falsa: a) Os vetores (m, 0, 0); (1, m, 0); (1, m, m 2 ) são L.I. se, somente se, m 0. b) Se u, v 0, então

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

Objetivos. e b, designado por a + b, é o. a e. a + b = AB + BC = AC. Na Figura 2.1, mostramos a soma a + b dos vetores

Objetivos. e b, designado por a + b, é o. a e. a + b = AB + BC = AC. Na Figura 2.1, mostramos a soma a + b dos vetores MÓDULO 1 - AULA Objetivos Aula Vetores no Plano - Operações Definir as operações de adição de vetores e multiplicação de vetores por escalares reais. Compreender as propriedades das operações com vetores.

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Vetores no plano Cartesiano

Vetores no plano Cartesiano Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional

Leia mais

n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do

n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do n. 20 EQUAÇÃO GERAL DO PLANO Seja A (x 1, y 1, z 1 ) um ponto que pertence ao plano π e n = a i + b j + c k, sendo n (0, 0, 0) um vetor ortogonal ao plano. O plano π pode ser definido como o conjunto de

Leia mais

GAAL: Exercícios 1, umas soluções

GAAL: Exercícios 1, umas soluções GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

2 - VETORES. Geométricamente, vetores são representados por segmentos orientados no plano ou no espaço. Figura 1: Vetor

2 - VETORES. Geométricamente, vetores são representados por segmentos orientados no plano ou no espaço. Figura 1: Vetor 2 - VETORES Geométricamente, vetores são representados por segmentos orientados no plano ou no espaço. Figura 1: Vetor Segmentos orientados com mesma direção, mesmo sentido e mesmo comprimento representam

Leia mais

Aula 4 Colinearidade, coplanaridade e dependência linear

Aula 4 Colinearidade, coplanaridade e dependência linear Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção

Leia mais

Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105

Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 Primeiro período de 2018 Está lista de exercícios contém exercícios de [2], [1] e exercícios de outras referências. Além dos exercícios

Leia mais

1 Vetores no Plano. O segmento de reta orientada P Q tem P como ponto inicial, Q como ponto nal e

1 Vetores no Plano. O segmento de reta orientada P Q tem P como ponto inicial, Q como ponto nal e Vetores no Plano Resumo 1 - Vetores no Plano 2. Componentes de um vetor; 3. Vetor nulo e vetores unitários; 4. Operações algébricas com vetores; 5. Exercícios; 6. Questões de Revisão 1 Vetores no Plano

Leia mais

Avaliação 1 Solução Geometria Espacial MAT 050

Avaliação 1 Solução Geometria Espacial MAT 050 Avaliação 1 Solução Geometria Espacial MAT 050 6 de abril de 2018 As respostas das quatro questões a seguir devem ser entregue até o final da aula de hoje: 1. (3 pontos) Mostre que por dois pontos dados

Leia mais

Lista 1 com respostas

Lista 1 com respostas Lista 1 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2019 Exercício 1. Verique se é verdadeira ou falsa cada armação e justique sua resposta: (a) (A, B) (C, D) AB = CD (b) AB =

Leia mais

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc..

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. Introdução a vetor Professor Fiore O que são grandezas? Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. O que são

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 128 Capítulo 7 Coordenadas e distância no espaço 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tridimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais

Leia mais

LISTA EXTRA DE EXERCÍCIOS MAT /I

LISTA EXTRA DE EXERCÍCIOS MAT /I LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

CÔNICAS PROJETIVAS SEMANA OLÍMPICA 2015 NÍVEL UNIVERSITÁRIO

CÔNICAS PROJETIVAS SEMANA OLÍMPICA 2015 NÍVEL UNIVERSITÁRIO CÔNICAS PROJETIVAS SEMANA OLÍMPICA 2015 NÍVEL UNIVERSITÁRIO PROF. LUCIANO MONTEIRO DE CASTRO Conteúdo Introdução 1 Espaços Projetivos 2 1. A Reta Projetiva Real: P 1 (R) 2 1.1. Coordenadas Projetivas ou

Leia mais

Definição. Geometria plana

Definição. Geometria plana Geometria analítica Definição A palavra geometria vem do grego geometrien onde geo significa terra e metrien medida. Geometria foi, em sua origem, a ciência de medição de terras. O historiador grego Heródoto

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

Coordenadas e vetores no espaço

Coordenadas e vetores no espaço 13 Coordenadas e vetores no espaço Sumário 13.1 Coordenadas no espaço................ 2 13.2 Distância entre dois pontos do espaço........ 6 13.3 Vetores no espaço................... 10 13.4 Operações

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Lista 1 com respostas

Lista 1 com respostas Lista 1 com respostas Professora Nataliia Goloshchapova MAT0105/MAT0112-1 semestre de 2015 Exercício 1. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta: (a) (A, B) (C, D) AB

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3, MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e

Leia mais

Universidade Federal de Goiás Regional Catalão - IMTec

Universidade Federal de Goiás Regional Catalão - IMTec Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Exercícios. Observação: Tome a unidade sobre os eixos igual a distância comum entre as paralelas da figura. Fig. 2.4

Exercícios. Observação: Tome a unidade sobre os eixos igual a distância comum entre as paralelas da figura. Fig. 2.4 - O Plano 17 Exercícios 2.1. a) Construa um sistema de coordenadas de modo que na Figura 2.4 se tenha P(5, 2) e

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Notas de Aula. Gustavo Henrique Silva Sarturi. i Z (1 i m) a j1 a j2

Notas de Aula. Gustavo Henrique Silva Sarturi. i Z (1 i m) a j1 a j2 Notas de Aula Gustavo Henrique Silva Sarturi Matemática B - Em Ação gustavo.sarturi@ufpr.br 1 Matrizes Definição 1.1. Uma matriz A m n é um arranjo retangular de m n números reais (ou complexos) organizados

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

AB BA ABC CBA A(B + C) B = B =

AB BA ABC CBA A(B + C) B = B = ÁÒ Ø ØÙØÓ ÍÒ Ú Ö Ø Ö Ó Ä Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø Ü Ö Ó ýð Ö Ä Ò Ö ÂÓÓ Ó Ø Ë Ö Ó Å Ò À Ð Ò ËÓ Ö ½ Å ØÖ Þ ÆÓØ Ó M m n ÒÓØ Ó ÓÒ ÙÒØÓ Ñ ØÖ Þ Ö Ó Ø ÔÓ m nº ÉÙ Ò Ó m = n Ö ¹ Ú ÑÓ M n º ½º½ ýð Ö ÔÖÓ ÙØÓ ØÖ Ò ÔÓ

Leia mais

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015 MAT 112 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 2015 LISTA 1 1. Ache a soma dos vetores indicados na figura, nos casos: 2. Ache a soma dos vetores indicados em cada caso, sabendo-se que (a) ABCDEFGH

Leia mais

s γ β α r t r s α = β α+γ = 180.

s γ β α r t r s α = β α+γ = 180. Å ½ ¹ ÍÒ ÓÒ ÖÙ Ò ÌÖ Ò ÙÐÓ ÁÁ Ë Ñ Ò ½»¼»¾¼½½ ¾½»¼»¾¼½½ È Ö Ð Ð ÑÓ Ù Ö Ø ÒÓ ÔÐ ÒÓ Ø ÑÓ ÓÑ ÒØ Ù ÔÓ Ð Ô Ö Ñ ¹ Ñ ÓÙ Ð Ø Ñ ÙÑ ÔÓÒØÓ Ñ ÓÑÙÑ ÓÙ ÒÓ Ø Ñ Ò Ò ÙÑ ÔÓÒØÓ Ñ ÓÑÙÑ ÒÓ ÔÖ Ñ ÖÓ Ó Ö Ø Ó Ø ÓÒÓÖÖ ÒØ ÒÓ ÙÒ Ó

Leia mais

Álgebra Linear I - Aula 4. Roteiro. 1 Determinantes (revisão rápida)

Álgebra Linear I - Aula 4. Roteiro. 1 Determinantes (revisão rápida) Álgebra Linear I - Aula 4 1. Determinantes (revisão). 2. Significado geométrico. 3. Cálculo de determinantes. 4. Produto vetorial. 5. Aplicações do produto vetorial. Roteiro 1 Determinantes (revisão rápida)

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

O próximo passo é aprender a medir o comprimento de um segmento. Para este fim emprega-se diversos instrumentos de medição, dos quais a régua

O próximo passo é aprender a medir o comprimento de um segmento. Para este fim emprega-se diversos instrumentos de medição, dos quais a régua Axiomas de Medição O próximo passo é aprender a medir o comprimento de um segmento. Para este fim emprega-se diversos instrumentos de medição, dos quais a régua graduada é um dos mais conhecidos. Aprendemos

Leia mais

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC 1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,

Leia mais

Aula 4 Produto Interno

Aula 4 Produto Interno MÓDULO 1 - AULA 4 Objetivos Aula 4 Produto Interno Definir as noções de ângulo entre dois vetores, a norma de um vetor e a operação de produto interno. Compreender as propriedades básicas da norma e do

Leia mais

= PD PA PB = R 2 OP 2.

= PD PA PB = R 2 OP 2. Å ½ ¹ ÍÒ ½½ ÈÖÓÔÓÖ ÓÒ Ð Ë Ñ Ð Ò ÁÁ Ë Ñ Ò ½¾»¼»¾¼½½ ½»¼»¾¼½½ Ç Ø ÓÖ Ñ ÓÖ ÔÓØ Ò ÔÓÒØÓ Ù ÔÖÓÔÓ Ù Ö Ò ÖÖ Ñ ÓÙØÖ ÑÔÓÖØ ÒØ ÓÒ ÕÙ Ò Ð ¹ Ñ ÒØ Ö Ó Ó Ñ Ð Ò ØÖ Ò ÙÐÓ ØÙ Ó Ò ÍÒ ½¼ Ò Ó ÓÒ ÓÒ ÙÒØ Ñ ÒØ Ò Ð Ø Ö ØÙÖ ÓÑÓ

Leia mais

SEGUNDA PROVA. Segunda prova: 11/maio, sábado, 08:00 ou 10:00 horas. Capítulo 3: Vetores, produto escalar, produto vetorial.

SEGUNDA PROVA. Segunda prova: 11/maio, sábado, 08:00 ou 10:00 horas. Capítulo 3: Vetores, produto escalar, produto vetorial. SEGUNDA PROVA Segunda prova: 11/maio, sábado, 08:00 ou 10:00 horas. Capítulo 3: Vetores, produto escalar, produto vetorial. Capítulo 4: Retas e Planos no espaço. Ângulos e distâncias. VETORES Operações

Leia mais

Geometria Analítica Plana

Geometria Analítica Plana Módulo 1 Geometria Analítica Plana Geometria una et aeterna est in mente Dei refulgens. A Geometria é única e eterna, brilhando na mente de Deus. Conversation with the Sidereal Messenger: carta aberta

Leia mais

1 Segmentos orientados e vetores, adição e multiplicação

1 Segmentos orientados e vetores, adição e multiplicação MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado. aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se

Leia mais

O Plano no Espaço. Sumário

O Plano no Espaço. Sumário 17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

ýä ÍÄÇ Ä Å Ä Ò Ù Ñ Ô Ö Ö Ú Ö Ú Ð Ö ÙÒ º ÈÓÖ ÕÙ ØÙ Ö ÙÒ Ñ Ò ÓÑÔÙØ Ó ÍÑ ÔÖÓ Ö Ñ ÔÓ Ö Ú ØÓ ÓÑÓ ÙÑ ÙÒÓ Ú ÐÓÖ ÒØÖ Ñ Ú ÐÓÖ ÔÓ Ú ÐÑ ÒØ ÑÓ Ò Ó ÙÑ Ñ Ñ Ö µº ÌÓ

ýä ÍÄÇ Ä Å Ä Ò Ù Ñ Ô Ö Ö Ú Ö Ú Ð Ö ÙÒ º ÈÓÖ ÕÙ ØÙ Ö ÙÒ Ñ Ò ÓÑÔÙØ Ó ÍÑ ÔÖÓ Ö Ñ ÔÓ Ö Ú ØÓ ÓÑÓ ÙÑ ÙÒÓ Ú ÐÓÖ ÒØÖ Ñ Ú ÐÓÖ ÔÓ Ú ÐÑ ÒØ ÑÓ Ò Ó ÙÑ Ñ Ñ Ö µº ÌÓ ýä ÍÄÇ Ä Å Ä Ò Ù Ñ Ô Ö Ö Ú Ö Ú Ð Ö ÙÒ º ÈÓÖ ÕÙ ØÙ Ö ÙÒ Ñ Ò ÓÑÔÙØ Ó ÍÑ ÔÖÓ Ö Ñ ÔÓ Ö Ú ØÓ ÓÑÓ ÙÑ ÙÒÓ Ú ÐÓÖ ÒØÖ Ñ Ú ÐÓÖ ÔÓ Ú ÐÑ ÒØ ÑÓ Ò Ó ÙÑ Ñ Ñ Ö µº ÌÓ Ü Ø Ñ ÒØ µ ÙÒ ÓÑÔÙØ Ú ÔÓ Ñ Ö Ö ÔÖ ÒØ Ñ ÐÙÐÓ Ð Ñ º ÓÑÓ

Leia mais

4 Produto de vetores. 4.1 Produto Escalar. GA3X1 - Geometria Analítica e Álgebra Linear

4 Produto de vetores. 4.1 Produto Escalar. GA3X1 - Geometria Analítica e Álgebra Linear 4 Produto de vetores 4.1 Produto Escalar Definição (Medida angular): Sejam u e vetores não-nulos. Chama-se medida angular entre u e a medida θ do ângulo PÔQ, sendo (O,P) e (O,Q), respectivamente, representantes

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Adriano Cruz 19 de julho de 2017

Adriano Cruz 19 de julho de 2017 ÙÖ Ó Ì ÔÓ Ó Adriano Cruz 19 de julho de 2017 ½ Ê ÙÑÓ Ë Ó Î Ö Ú Ì ÔÓ ÓÒ Ø ÒØ ÓÒÚ Ö Ó ÒØÖ ÈÓÒØÓ ÐÙØÙ ÒØ Ö Ø Ö ÆÓÑ Î Ö Ú ¾ Î Ö Ú Ú Ö Ñ Î Ö Ú Ú Ö Ñ ½º Î Ö Ú ÓÒ Ø ÒØ Ó Ó Ð Ñ ÒØÓ Ó ÕÙ ÙÑ ÔÖÓ Ö Ñ Ñ Ò ÔÙÐ º ¾º

Leia mais

Exercícios de Geometria Analítica - CM045

Exercícios de Geometria Analítica - CM045 Exercícios de Geometria Analítica - CM045 Prof. José Carlos Corrêa Eidam DMAT/UFPR Disponível no sítio people.ufpr.br/ eidam/index.htm 1o. semestre de 2011 Parte 1 Soma e produto escalar 1. Seja OABC um

Leia mais

Álgebra Linear Semana 02

Álgebra Linear Semana 02 Álgebra Linear Semana 2 Diego Marcon 3 de Abril de 27 Conteúdo Vetores Representação matricial para sistemas Lineares 3 2 Combinações lineares de vetores 4 3 Sistemas lineares e combinações lineares das

Leia mais

Vetores. A soma, V+W, de dois vetores V e W é determinada da seguinte forma:

Vetores. A soma, V+W, de dois vetores V e W é determinada da seguinte forma: Vetores Geometricamente, vetores são representados por segmentos de retas orientadas no plano ou no espaço. A ponta da seta do segmento orientado é chamada ponto final ou extremidade e o outro ponto extremo

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometria Analítica e Álgebra Linear por PAULO XAVIER PAMPLONA UFCG-UATA 2011 Conteúdo 1 Vetores 4 1.1 Introdução..................................... 4 1.2 Vetores no Plano.................................

Leia mais

MAT Álgebra Linear para Engenharia I

MAT Álgebra Linear para Engenharia I MAT2457 - Álgebra Linear para Engenharia I Prova 2-15/05/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova tem início às 7:30 e duração de 2 horas. (2) Não é permitido deixar a sala sem entregar

Leia mais

G1 de Álgebra Linear I Gabarito

G1 de Álgebra Linear I Gabarito G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais

Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado

Leia mais

MAT Geometria Analítica Licenciatura em Matemática

MAT Geometria Analítica Licenciatura em Matemática MAT010 - Geometria Analítica Licenciatura em Matemática 3 ā Prova - 29/06/2009 Nome: N ō USP: Instruções: 1- Preencha o cabeçalho a caneta. 2- A prova pode ser resolvida a lápis. 3- Justifique suas afirmações.

Leia mais