Jogo de Golfe. Lógica Nebulosa Fuzzy Logic. Lógica Nebulosa. Jogo de Golfe. Lógica Nebulosa. Lógica Nebulosa. O ser humano é inexato por natureza

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Jogo de Golfe. Lógica Nebulosa Fuzzy Logic. Lógica Nebulosa. Jogo de Golfe. Lógica Nebulosa. Lógica Nebulosa. O ser humano é inexato por natureza"

Transcrição

1 uzzy Logic O ser huano é inexato por natureza Hoje está ais ou enos quente O show é eio caro Aquele cara é baixinho Coloque u pouco de sal Picanha be passada Não há incerteza sobre o valor. O problea é coo definir liguisticaente esse valor Jogo de Golfe Se a bola está longe do buraco e o terreno está leveente inclinado da esquerda para direita, bata na bola forte e nua direção u pouco a esquerda da bandeira Se a bola está uito perto do buraco e o terreno é plano, bata na bola gentilente e diretaente na direção do buraco Jogo de Golfe Definição de Distância Muito Perto: < 1 Perto: 1 3 Médio: 3 5 Longe: 5 7 Muito Longe: >7 Coo classificar a distância 4.99? Intuitivaente, sabeos que 4.99 está ais para longe do que para édio 1965 Lotfi Zadeh uzzy logic is a eans of presenting probles to coputers in a way akin to the way huans solve the The essence of fuzzy logic is that everything is a atter of degree Muito perto, perto, édio, longe, uito longe 4.99 esta ais para longe do que para édio Lógica Booleana Quente Quente Tradicionalistas e lógica arguenta que lógica booleana pode ser utilizada para representar as esas coisas 27 o Gray Area 27 o Vários atributos: T21-24, T24-27, T27-3, T3-33 azer os intervalos ficar cada vez enores... ~Quente ~Quente perite diferentes graus de verdadeiro e falso Pense e u controle de Ar Condicionado... Co isso, o núero de regras e u Rule Based Syste é uito aior... % a % aior 1

2 Processo Básico - Inferência Conjuntos Claros (Crisp) Crisp Exeplo uzzification Universo (U): núeros inteiros entre 1 e 15 Pares = { 2, 4, 6, 8, 1, 12, 14} Ípares = { 1, 3, 5, 7, 9, 11, 13, 15} Regras Nebulosas 2 pertence aos pares, 3 pertence aos ípares Operações Defuzzification Crisp União Interseção Copleento Conjuntos Nebulosos Mebership unctions Conjuntos Crisp não são adequados e várias situações práticas Exeplo Teste de QI Burro = { 7, 71, 72,..., 89} Mediano = { 9, 91, 92,..., 19} = { 11, 111,..., 129} Coo coparar os QI s 89 co 9 e 91 co 19? Os conjuntos nebulosos perite que os eleentos pertença à diferentes conjuntos Partial Mebership Transfora ua entrada crisp e ua entrada nebulosa As funções vão indicar o grau daquela entrada para u deterinado conjunto nebuloso Define ua transição gradual Mapeia a entrada e valores..1 Virtualente qualquer função pode ser usada Esse processo é chaado de uzzification Mebership unctions unções Típicas Lógica Booleana Rapa Triângulo.5 x x 1 x x 1 x Rapa Invertida Trapézio 26.9 graus é frio 27.1 graus é quente 27 graus é.5 quente (27 graus é eio quente) x x 1 x x 1 x 2 x 3 2

3 Mebership to uzzy Sets Dicas para ua boa escolha.75 De fora a fazer transições suaves a soa dos DOMs deve ser próxia de 1 Não colocar ais de dois conjuntos para cada valor de x.25 Contra Exeplo Degree of Mebership (DOM): 25% Mediano 75% Mediano () =.25 () =.75 Mediano AND Mediano OR Mediano = in{, } Mediano Mediano = ax{, } Mediano NOT Hedge Very: estreita o conjunto airly: alarga o conjunto ( ( )) 2 VERY = x AIRLY = ( x).25 = 1 3

4 Regras Nebulosas If A then B A é chaado antecedente ou preissa B é chaado conseqüente ou conclusão Exeplos: If Perto and Te_Munição then Atira If Longe then az_nada Diferenteente da lógica booleana, A vai ter valores entre e 1. B vai receber o eso valor de A Regras Nebulosas As regras são disparadas co u certo grau! Após a aplicação de todas as regras, pode-se ter diferentes graus para as conclusões Inferência Nebulosa Para cada regra Para cada Antecedente, calcular o seu grau Calcular a Conclusão Cobinar os resultados para deterinar o conjunto nebuloso (uzzy Association Matrix AM) Se desejada ua saída crisp fazer a defuzzificação Exeplo Exeplo Teos u lançador de granadas, e quereos saber quando ele é útil, de fora a escolhê-lo e usá-lo na hora certa Variáveis (LVs uzzy Linguistic Variables) Antecedentes Distância para o alvo Quantidade de unição Conclusão idade Distância pixels Munição # granadas idade % Exeplo: Regras Exeplo: Inferência Lançador de granadas é ais útil a édia distância. Perto pode e atar If longe AND Carregada THEN serve If longe AND OK THEN inutil If longe AND Baixa THEN inutil If edio AND Carregada THEN util If edio AND OK THEN util If edio AND Baixa THEN serve If perto AND Carregada THEN inutil If perto AND OK THEN inutil If perto AND Baixa THEN inutil 2 pixels de distância co 8 granadas... Uso o lançador de granadas? Inferência Regra 1: If longe AND Carregada THEN serve Longe =.33, Carregada = : (.33 AND ) = Portanto, = Regra 2: If longe AND OK THEN inutil Longe =.33, Ok =.78 : (.33 AND.78) =.33 Portanto, Inutil =

5 Exeplo: AM uzzy Association Matrix (AM) Baixo OK Carregada Perto Médio.2 Útil.67 Útil Longe.2.33 Exeplo: agregação Considera-se apenas as regras disparadas O valor obtido pode ser considerado coo u nível de confidência daquele resultado Útil =.67 =.2 =.33 Max das duas que disparara. Pode usar o ínio, a soa ou algua édia. Exeplo: resultados graficaente Exeplo: Cobinando Conclusões.33 + idade para distância 2 e Munição Exeplo: Defuzzificação Processo de obter u resultado crisp partir do conjunto nebuloso Vários Métodos: MOM Mea of Maxiu Centróide MaxAv (Mediana) Etc... Exeplo: Defuzzificação Centróide O étodo ais preciso as tabé o ais coplexo de calcular Coputa-se o centróide (centro de assa) do conjunto Valor = ax x= in ax x x= in f f No exeplo, centróide =

6 Exeplo: Resultado inal Aplicações e Jogos Controle de Moviento Para onde virar o NPC? Toada de Decisões / Inferência Qual decisão toar frente ao estado atual? Exército Iniigo: pequeno, édio, grande,... Distância: uito longe, longe, perto,... Conclusão: pouca aeaça, édia aeaça,... Ação: núero de exércitos enviar para defesa Classificação Ex. Deterinar u ranking para seus NPCs 6

ANÁLISE DO LUGAR DAS RAÍZES

ANÁLISE DO LUGAR DAS RAÍZES VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea

Leia mais

Sistemas especialistas Fuzzy

Sistemas especialistas Fuzzy Sistemas Fuzzy Sistemas especialistas Fuzzy Especialistas Senso comum para resolver problemas Impreciso, inconsistente, incompleto, vago Embora o transformador esteja um pouco carregado, pode-se usá-lo

Leia mais

CCI-22 CCI-22. 7) Integração Numérica. Matemática Computacional. Definição Fórmulas de Newton-Cotes. Definição Fórmulas de Newton-Cotes

CCI-22 CCI-22. 7) Integração Numérica. Matemática Computacional. Definição Fórmulas de Newton-Cotes. Definição Fórmulas de Newton-Cotes CCI- CCI- Mateática Coputacional 7 Integração Nuérica Carlos Alberto Alonso Sances Fórulas de Newton-Cotes, Quadratura Adaptativa CCI- Fórulas de Newton-Cotes Regra de Sipson Fórula geral stiativas de

Leia mais

Gabarito - Lista de Exercícios 2

Gabarito - Lista de Exercícios 2 Gabarito - Lista de Exercícios Teoria das Filas Modelos Adicionais. U escritório te 3 datilógrafas e cada ua pode datilografar e édia, 6 cartas por hora. As cartas chega para sere datilografadas co taxa

Leia mais

lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy)

lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy) lnteligência Artificial Introdução a Lógica Nebulosa (Fuzzy) Sumário Introdução Fundamentos Operações básicas Representação do Conhecimento Modelo de Inferência Passos de Projeto de um Sistema Nebuloso

Leia mais

Teorema Chinês dos Restos

Teorema Chinês dos Restos Teorea Chinês dos Restos Sauel Barbosa 22 de arço de 2006 Teorea 1. (Bézout) Seja a e b inteiros não nulos e d seu dc. Então existe inteiros x e y tais que d = ax + by. Se a e b são positivos podeos escolher

Leia mais

Módulo 3: Conteúdo programático Diâmetro Hidráulico

Módulo 3: Conteúdo programático Diâmetro Hidráulico Módulo 3: Conteúdo prograático Diâetro Hidráulico Bibliografia: Bunetti, F. Mecânica dos Fluidos, São aulo, rentice Hall, 2007. Na aioria das soluções dos probleas reais é necesário o cálculo da perda

Leia mais

O PROBLEMA DO MOVIMENTO

O PROBLEMA DO MOVIMENTO O PROBLEMA DO MOVIMENTO O problea do oiento pode se resuir na deterinação da elocidade e da direção de u objeto óel, nu deterinado instante. Você já está acostuado a deterinar a elocidade édia de u objeto

Leia mais

Sistema de Inferência Fuzzy. Prof. Juan Mauricio Villanueva

Sistema de Inferência Fuzzy. Prof. Juan Mauricio Villanueva Sistema de Inferência Fuzzy Prof. Juan Mauricio Villanueva jmauricio@cear.ufpb.br http://app.cear.ufpb.br/~juan/ 1 Introdução Lógica Fuzzy É uma ferramenta que permite capturar informações imprecisas,

Leia mais

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos.

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos. Escala na Biologia Na natureza há ua grande variação dos taanhos dos seres vivos O copriento característico de u ser vivo é definido coo qualquer copriento conveniente para cálculos aproxiados Exeplos:

Leia mais

SISTEMAS DIGITAIS FUNÇÕES LÓGICAS

SISTEMAS DIGITAIS FUNÇÕES LÓGICAS FUNÇÕES LÓGICAS Setebro de 0 H Neto N Horta FUNÇÕES LÓGICAS - SUMÁRIO: FUNÇÕES LÓGICAS CIRCUITOS COM PORTAS NAND CIRCUITOS COM PORTAS NOR REPRESENTAÇÕES NORMALIZADAS SOMA DE PRODUTOS MINTERMOS PRODUTO

Leia mais

1ºAula Cap. 09 Sistemas de partículas

1ºAula Cap. 09 Sistemas de partículas ºAula Cap. 09 Sisteas de partículas Introdução Deterinação do Centro de Massa, Centro de assa e sietrias, a Lei de Newton/sistea de partículas. Velocidade/Aceleração do centro de assa Referência: Halliday,

Leia mais

Docente Marília Silva Soares Ano letivo 2012/2013 1

Docente Marília Silva Soares Ano letivo 2012/2013 1 Ciências Físico-quíicas - 9º ano de Unidade 1 EM TRÂNSITO 1 Movientos e suas características 1.1. O que é o oviento 1.2. Grandezas físicas características do oviento 1.3. Tipos de Moviento COMPETÊNCIAS

Leia mais

Exercícios complementares às notas de aulas de estradas (parte 10)

Exercícios complementares às notas de aulas de estradas (parte 10) 1 Exercícios copleentares às notas de aulas de estradas (parte 10) Helio Marcos Fernandes Viana Tea: Curvas verticais 1. o ) Sendo os seguintes dados para o projeto de ua curva vertical: a) Distância de

Leia mais

III Introdução ao estudo do fluxo de carga

III Introdução ao estudo do fluxo de carga Análise de Sisteas de Potência (ASP) ntrodução ao estudo do fluxo de carga A avaliação do desepenho das redes de energia elétrica e condições de regie peranente senoidal é de grande iportância tanto na

Leia mais

Inteligência Artificial

Inteligência Artificial DSC/CCT/UFC Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial Representação do Conhecimento (Lógica Fuzzy) Prof.

Leia mais

A Teoria dos Jogos é devida principalmente aos trabalhos desenvolvidos por von Neumann e John Nash.

A Teoria dos Jogos é devida principalmente aos trabalhos desenvolvidos por von Neumann e John Nash. Teoria dos Jogos. Introdução A Teoria dos Jogos é devida principalente aos trabalhos desenvolvidos por von Neuann e John Nash. John von Neuann (*90, Budapeste, Hungria; 957, Washington, Estados Unidos).

Leia mais

SISTEMAS BINÁRIOS ESTELARES

SISTEMAS BINÁRIOS ESTELARES SISTEMAS BINÁRIOS ESTELARES A aioria das estrelas encontra-se e sisteas duplos ou últiplos, estando fisicaente associadas entre si, sob influência de ua ação gravitacional útua. Através do estudo dos sisteas

Leia mais

Movimento oscilatório forçado

Movimento oscilatório forçado Moviento oscilatório forçado U otor vibra co ua frequência de ω ext 1 rad s 1 e está ontado nua platafora co u aortecedor. O otor te ua assa 5 kg e a ola do aortecedor te ua constante elástica k 1 4 N

Leia mais

A Fig.12 - Área triangular a ser dividida em duas partes proporcionais.

A Fig.12 - Área triangular a ser dividida em duas partes proporcionais. Topografia plicada à ngenharia ivil 009 / ª dição Iran arlos Stalliviere orrêa orto legre/rs. Introdução ITULO IV. DIVISÃO D TRRS (RORIDDS divisão de ua propriedade ocorre e situações diversas coo por

Leia mais

Experiência de Difracção e Interferências de ondas electromagnéticas

Experiência de Difracção e Interferências de ondas electromagnéticas 1º Seestre 2003/2004 Instituto Superior Técnico Experiência de Difracção e Interferências de ondas electroagnéticas Licenciatura e Engenharia Física Tecnológica Ricardo Figueira nº53755 André Cunha nº53757

Leia mais

Propagação de erros. independentes e aleatórios

Propagação de erros. independentes e aleatórios TLF 010/11 Capítulo V Propagação de erros independentes e aleatórios 5.1. Propagação da Incerteza na Soa ou Dierença. Liite superior do Erro. 50 5.. Propagação da Incerteza no Produto ou Diisão. Liite

Leia mais

LEAmb, LEMat, LQ, MEBiol, MEQ. Paulo Pinto ppinto/ 2 GENES LIGADOS AO SEXO 2

LEAmb, LEMat, LQ, MEBiol, MEQ. Paulo Pinto  ppinto/ 2 GENES LIGADOS AO SEXO 2 Instituto Superior Técnico Departaento de Mateática Secção de Álgebra e Análise Notas sobre alguas aplicações de o Seestre 007/008 Álgebra Linear LEAb, LEMat, LQ, MEBiol, MEQ Paulo Pinto http://www.ath.ist.utl.pt/

Leia mais

Sistemas Articulados Planos

Sistemas Articulados Planos Sisteas Articulados Planos Definição: U Sistea Articulado Plano (SAP, ou treliça coo é usualente chaado) é definido coo sendo u sistea de barras rígidas coplanares ligadas entre si por extreidades articuladas

Leia mais

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno Aula 1. Introdução Hoje e dia teos a educação presencial, sei-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontra sepre nu local, chaado sala

Leia mais

Laboratório de Física 2

Laboratório de Física 2 Prof. Sidney Alves Lourenço Curso: Engenharia de Materiais Laboratório de Física Grupo: --------------------------------------------------------------------------------------------------------- Sistea

Leia mais

CONJUNTOS FUZZY CONTEÚDO. CONJUNTOS CRISP x FUZZY. Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges

CONJUNTOS FUZZY CONTEÚDO. CONJUNTOS CRISP x FUZZY. Conjuntos Crisp x Fuzzy Definição Representação Propriedades Formatos Operações Hedges CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos Básicos Definição, Características e Formas de Imprecisão Conjuntos Fuzzy Propriedades, Formas de Representação e Operações Lógica Fuzzy Relações,

Leia mais

INTRODUÇÃO ÀS FINANÇAS TAXAS NOMINAIS vs EFECTIVAS TAXAS EQUIVALENTES PARA PERÍODOS DIFERENTES TAE E TAEG

INTRODUÇÃO ÀS FINANÇAS TAXAS NOMINAIS vs EFECTIVAS TAXAS EQUIVALENTES PARA PERÍODOS DIFERENTES TAE E TAEG INTRODUÇÃO ÀS FINANÇAS TAXAS NOMINAIS vs EFECTIVAS TAXAS EQUIVALENTES PARA PERÍODOS DIFERENTES TAE E TAEG 2006. António Goes Mota, Cleentina Barroso, Helena Soares e Luís Laureano. Taxas Noinais vs Efectivas

Leia mais

A soma de dois números pares, obtém um resultado que também é par. Sendo, p=2q e r=2n, temos p+r = 2q+2n = 2(q+n) = 2k.

A soma de dois números pares, obtém um resultado que também é par. Sendo, p=2q e r=2n, temos p+r = 2q+2n = 2(q+n) = 2k. Teoria dos Núeros Resuo do que foi estudado nas aulas de Teoria dos Núeros, inistradas pelo Prof. Dr. Antonio Sales. Acadêica: Sabrina Aori Araujo 20939 Núeros pares e ípares Coo saber se u núero é par

Leia mais

Quantidade de movimento ou momento linear Sistemas materiais

Quantidade de movimento ou momento linear Sistemas materiais Quantidade de oiento ou oento linear Sisteas ateriais Nota: s fotografias assinaladas co fora retiradas do liro. ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes são retiradas

Leia mais

Lógica Nebulosa. Lógica Fuzzy

Lógica Nebulosa. Lógica Fuzzy Lógica Nebulosa Ou Lógica Fuzzy Lógicas Bivalente e Polivalente Na logica clássica ou aristotélica: Dois valores verdade possíveis: Proposições verdadeiras;ou Proposições falsas. São sistemas chamados

Leia mais

Para pressões superiores a 7620 Pa: compressores ou sopradores.

Para pressões superiores a 7620 Pa: compressores ou sopradores. DEFIIÇÃO: É ua áquina que produz fluxo de gás co duas ou ais pás fixadas a u eixo rotativo. Converte energia ecânica rotacional, aplicada ao seu eixo, e auento de pressão total do gás e oviento. Confore

Leia mais

Capítulo I Noções básicas sobre incertezas em medidas (cont.) Capítulo II Propagação de erros

Capítulo I Noções básicas sobre incertezas em medidas (cont.) Capítulo II Propagação de erros Técnicas Laboratoriais de Física Lic. Física e Eng. Bioédica 2007/08 Capítulo I Noções básicas sobre incertezas e edidas (cont.) Discrepância entre duas edidas da esa grandeza Incerteza e edidas directas:

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 1 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTÉCNIA - FÍSICA APLICADA 8 de Novebro, 2004 Duração: 2 horas + 30 in tolerância Indique

Leia mais

TIPOS DE MÉTODOS ELETROANALÍTICOS

TIPOS DE MÉTODOS ELETROANALÍTICOS CONDUTOMETRIA TIPOS DE MÉTODOS ELETROANALÍTICOS CONDUTOMETRIA Baseia-se e edições de condutância das soluções iônicas (seio da solução). A condução de eletricidade através das soluções iônicas é devida

Leia mais

SISTEMAS FUZZY CONTEÚDO CONJUNTOS FUZZY. CONJUNTOS CRISP x FUZZY

SISTEMAS FUZZY CONTEÚDO CONJUNTOS FUZZY. CONJUNTOS CRISP x FUZZY SISTEMAS FUZZY A maioria dos fenômenos com os quais nos deparamos são imprecisos Exemplo: dia QUENTE (40, 35, 30, 29,5?) Imprecisão Intrínseca ajuda na compreensão do problema. Fuzziness é independente

Leia mais

PROVA MODELO 1 PROPOSTA DE RESOLUÇÃO

PROVA MODELO 1 PROPOSTA DE RESOLUÇÃO PROVA MODELO PROPOSTA DE RESOLUÇÃO GRUPO I. A frase do texto que traduz u facto e que Aristóteles e Galileu era concordantes será Tal coo Aristóteles, descobriu ser uito difícil edir diretaente as trajetórias

Leia mais

FGV - 1 a Fase 21/10/2001

FGV - 1 a Fase 21/10/2001 FGV - a Fase /0/00 Mateática 0. dotando-se os valores log 0,0 e log 0,48, a raiz da equação 0 vale aproiadaente:,,8 4,4,7 log 0,0 log 0,48 0. log log 0 (.. ) log 0 log 0 0,0 + 0,48 + 0,0 log + log + log0

Leia mais

Aula 1a As Leis de Kepler e a Gravitação Newtoniana

Aula 1a As Leis de Kepler e a Gravitação Newtoniana Aula a As Leis de Kepler e a Gravitação Newtoniana Profa. Jane Gregorio-Hete & Prof. Annibal Hete AGA05 Manobras Orbitais AGA05 - Aula a: As Leis de Kepler e gravitação Dinâica: As Três Leis de Newton

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;

Leia mais

Segunda lista de exercícios

Segunda lista de exercícios Segunda lista de exercícios 3 de abril de 2017 Docente Responsável : Prof. Dr. Antônio C. Roque Monitor: Renan Oliveira Shioura Os exercícios desta lista deve ser resolvidos e Matlab. Para a criação dos

Leia mais

Lógica Nebulosa (Fuzzy)

Lógica Nebulosa (Fuzzy) Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Lógica Nebulosa (Fuzzy) Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

TRABALHO Nº 5 ANÉIS DE NEWTON

TRABALHO Nº 5 ANÉIS DE NEWTON TRABALHO Nº 5 ANÉIS DE NEWTON Neste trabalho vai procurar ilustrar-se u arranjo geoétrico usado para a obtenção de franjas de interferência que ficou conhecido por anéis de Newton. Pretende-se co esses

Leia mais

MANUAL OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420

MANUAL OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420 MANUAL DE OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420 ENGELETRO COMERCIAL LTDA. Rua Gabriela de Melo, 484 Olhos d Água Norte 30390-080 Belo Horizonte MG Tel (31)3288-1366 Fax (31)3288-1099/1340 http://www.engeletro.ind.br

Leia mais

Onde estão os doces? Soluções para o Problema da Rua Encantada

Onde estão os doces? Soluções para o Problema da Rua Encantada Onde estão os doces? Soluções para o Problea da Rua Encantada Rossana Baptista Queiroz 1 1 Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS) Prograa de Pós-Graduação e Ciência da Coputação

Leia mais

Secção 3. Aplicações das equações diferenciais de primeira ordem

Secção 3. Aplicações das equações diferenciais de primeira ordem 3 Aplicações das equações diferenciais de prieira orde Secção 3 Aplicações das equações diferenciais de prieira orde (Farlow: Sec 23 a 26) hegou a altura de ilustrar a utilidade prática das equações diferenciais

Leia mais

Seu sonho, nossa meta Pa. Resposta da questão 1: [B]

Seu sonho, nossa meta Pa. Resposta da questão 1: [B] RESOSTAS CAÍTULO 6-GASES Resposta da questão 1: [B] A pressão parcial do gás oxigênio ao nível do ar é igual a 1% da pressão atosférica do ar, assi teos: O 0,1100000 po 1000O 0,1100000 po 1000 a O E La

Leia mais

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES Introdução SISTEMS INTELIGENTES Profa. Roseli p. Francelin Roero Conjuntos Nebulosos (FUZZY) - Teoria conveniente para trataento de incerteas, teros lingüísticos, redundâncias, iprecisão e de fora geral

Leia mais

Unidade II 4. Fenômenos ondulatórios e acústica

Unidade II 4. Fenômenos ondulatórios e acústica Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNVERSDADE DO ESTADO DO RO GRANDE DO NORTE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://www.uern.br

Leia mais

Matemática D Extensivo V. 5

Matemática D Extensivo V. 5 ateática D Extensivo V. 5 Exercícios 01 B I. Falso. Pois duas retas deterina u plano quando são concorrentes ou paralelas e distintas. II. Falso. Pois duas retas pode ser perpendiculares ou paralelas a

Leia mais

Unidade II 3. Ondas mecânicas e

Unidade II 3. Ondas mecânicas e Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://www.uern.br

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

defi departamento de física

defi departamento de física defi departaento de física Laboratórios de Física www.defi.isep.ipp.pt Capacidade térica ássica de u líquido Instituto Superior de Engenharia do Porto- Departaento de Física Rua Dr. António Bernardino

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas.

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas. ONDAS I Cap 16: Ondas I - Prof. Wladiir 1 ONDAS l 16.1 Introdução Ondas são perturbações que se propaga transportando energia. Desta fora ua úsica a iage nua tela de tv a counicações utilizando celulares

Leia mais

Aula 15 Introdução à lógica fuzzy

Aula 15 Introdução à lógica fuzzy Organização Aula 5 Introdução à lógica fuzzy Prof. Dr. Alexandre da Silva Simões Introdução à teoria de conjuntos nebulosos Bivalência x multivalência Números fuzzy Conjuntos fuzzy Probabilidade e possibilidade

Leia mais

Valter B. Dantas. Geometria das massas

Valter B. Dantas. Geometria das massas Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação

Leia mais

Capítulo 3. Métodos Numéricos Iterativos

Capítulo 3. Métodos Numéricos Iterativos Métodos Nuéricos Iterativos Métodos Nuéricos Iterativos Capítulo 3. Métodos Nuéricos Iterativos 1. Métodos nuéricos Sepre que se pretende resolver u problea cuja solução é u valor nuérico, é habitual ter

Leia mais

Lógica dos Conjuntos Difusos (Fuzzy Sets)

Lógica dos Conjuntos Difusos (Fuzzy Sets) Lógica dos Conjuntos Difusos (Fuzzy Sets) Uma aula dada por: Francisco Andrade (ei05013@fe.up.pt) José Santos (ei05038@fe.up.pt) Luís Carneiro (ei05045@fe.up.pt) Ricardo Paulo (ei05067@fe.up.pt) Conteúdos

Leia mais

BUSCA ASSÍNCRONA DE CAMINHOS MÍNIMOS

BUSCA ASSÍNCRONA DE CAMINHOS MÍNIMOS BUSCA ASSÍNCRONA DE CAMINHOS MÍNIMOS Silvio do Lago Pereira Luiz Tsutou Akaine² Lucio Nunes de Lira Prof. Dr. do Departaento de Tecnologia da Inforação FATEC-SP Prof. Esp. do Departaento de Tecnologia

Leia mais

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017 Teoria do Consuidor: Equilíbrio e deanda Roberto Guena de Oliveira 18 de Março de 2017 1 Estrutura geral da aula Parte 1: Restrição orçaentária Parte 2: Equilíbrio Parte 3: Deanda 2 Parte I Restrição orçaentária

Leia mais

Fuzzy Logic. (Lógica Difusa) Adriano Zanette Eduardo Aquiles Radanovitsck William Wolmann Gonçalves

Fuzzy Logic. (Lógica Difusa) Adriano Zanette Eduardo Aquiles Radanovitsck William Wolmann Gonçalves Fuzzy Logic (Lógica Difusa) Adriano Zanette Eduardo Aquiles Radanovitsck William Wolmann Gonçalves Apresentação realizada para a disciplina de Lógica para Computação 2006/2 Prof. Marcus Ritt Breve história

Leia mais

UMA HEURÍSTICA PARA UM PROBLEMA DE DESIGNAÇÃO PRODUTO-MÁQUINA. Armando Zeferino Milioni, Nelson Miguel Marino Junior. Marcos Antonio Pereira

UMA HEURÍSTICA PARA UM PROBLEMA DE DESIGNAÇÃO PRODUTO-MÁQUINA. Armando Zeferino Milioni, Nelson Miguel Marino Junior. Marcos Antonio Pereira UMA HEURÍSTICA PARA UM PROBLEMA DE DESIGNAÇÃO PRODUTO-MÁQUINA Arando Zeferino Milioni, Nelson Miguel Marino Junior Marcos Antonio Pereira Instituto Tecnológico de Aeronáutica (055 12 3947-5912) UniSoa

Leia mais

Lógica Difusa (Fuzzy)

Lógica Difusa (Fuzzy) Lógica Difusa (Fuzzy) Prof. Josiane M. Pinheiro Ferreira Outubro/2007 Lógica tradicional x Lógica difusa Lógica tradicional (Aristóteles) Uma proposição = dois estados possíveis (V ou F) Pode ser insuficiente

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geoetria Analítica e Álgebra Linear Ale Nogueira Brasil Faculdade de Engenharia Mecânica Universidade de Itaúna http://www.alebrasil.eng.br brasil@uit.br 0 de fevereiro de 00 Geoetria Analítica e Álgebra

Leia mais

Para um sistema elétrico, com NB barras, as equações básicas do fluxo de carga para

Para um sistema elétrico, com NB barras, as equações básicas do fluxo de carga para Modelage e Análise de Sisteas Elétricos e Regie Peranente II Fluxo de carga não linear: algoritos básicos II. Forulação do problea básico Para u sistea elétrico, co NB barras, as equações básicas do fluxo

Leia mais

8.18 EXERCÍCIOS pg. 407

8.18 EXERCÍCIOS pg. 407 . EXERCÍCIOS pg.. Encontrar a assa total e o centro de assa de ua barra de c de copriento, se a densidade linear da barra nu ponto P, que dista c da kg b ρ a etreidade esquerda, é ( ) c ( ) d ( ) d.. kg

Leia mais

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn

Método Simbólico. Versus. Método Diagramas de Euler. Diagramas de Venn IV Método Sibólico Versus Método Diagraas de Euler E Diagraas de Venn - 124 - Método Sibólico Versus Método Diagraas de Euler e Diagraas de Venn Para eplicar o que é o Método Sibólico e e que aspecto difere

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação

Leia mais

Problemas de Correntes de Tráfego e de Filas de Espera

Problemas de Correntes de Tráfego e de Filas de Espera Probleas de Correntes de Tráfego e de Filas de Espera 1 Exercício 1: U ciclista, praticando todos os dias, a diferentes horas, inclui no seu traecto u percurso de 1K ao longo de ua pista para bicicletas,

Leia mais

Exercícios de Telecomunicações 2

Exercícios de Telecomunicações 2 Departaento de Engenharia Electrotécnica e de Coputadores Exercícios de Telecounicações (004-005) Sílvio A. Abrantes Foratação de fonte (aostrage e PCM) 1.1. A densidade espectral de potência de ua ensage

Leia mais

WWW.escoladoeletrotecnico.com.br

WWW.escoladoeletrotecnico.com.br CURSO PREPARATÓRO PARA COCURSOS EM ELETROTÉCCA CPCE ELETRCDADE AULA TRASFORMADOR: Polaridade de u enrolaento Enrolaento e série e e paralelo Ensaio a vazio e e curto-circuito Ligações de u transforador

Leia mais

a) Calcular a energia cinética com que a moeda chega ao piso.

a) Calcular a energia cinética com que a moeda chega ao piso. Dados: Considere, quando necessário: g = 10 /s ; sen 30 = cos 60 = 1/; cos 30 = sen 60 = 3/; calor específico da água = 1 cal/g C. 1) Ua pessoa deixa ua oeda cair, e, então, ouve-se o barulho do choque

Leia mais

Sistema Internacional de Unidades

Sistema Internacional de Unidades TEXTO DE REVISÃO 01 Unidades de Medidas, Notação Científica e Análise Diensional. Caro aluno: No livro texto (Halliday) o cap.01 Medidas introduz alguns conceitos uito iportantes, que serão retoados ao

Leia mais

EXPERIÊNCIA 02- CONDUTIVIDADE DE ELETRÓLITOS

EXPERIÊNCIA 02- CONDUTIVIDADE DE ELETRÓLITOS EXPERIÊNCIA 02- CONDUTIVIDADE DE ELETRÓLITOS Objetivos: Utilizar adequadaente u condutivíetro. Medir a condutividade de eletrólitos fracos e fortes. Calcular o grau de dissociação e a constante de dissociação

Leia mais

Introdução. Lógica Fuzzy (Lógica Nebulosa) Introdução. Conceito

Introdução. Lógica Fuzzy (Lógica Nebulosa) Introdução. Conceito Lógica Nebulosa Introdução Lógica Fuzzy (Lógica Nebulosa) Adaptado de material da profa. Luciana Rech Lógica Difusa ou Lógica Fuzzy extensão da lógica boolena um valor lógico difuso é um valor qualquer

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 5 Corrente Elétrica

Prof. A.F.Guimarães Questões Eletricidade 5 Corrente Elétrica Questão Prof. A.F.Guiarães Questões etricidade 5 Corrente étrica (C MG) a carga +q ove se nua circunferência de raio co ua velocidade escalar v. A intensidade de corrente édia e u ponto da circunferência

Leia mais

Distribuindo os partos ao longo do ano: o sistema da UNESP - Jaboticabal

Distribuindo os partos ao longo do ano: o sistema da UNESP - Jaboticabal Distribuindo os partos ao longo do ano: o sistea da UNESP - Jaboticabal Kleber Toás de Resende Professor do Departaento de Zootecnia da UNESP - Câpus de Jaboticabal. Rodovia Carlos Tonanni, k 5-14870.000

Leia mais

MAPEAMENTO CROMOSSÔMICO

MAPEAMENTO CROMOSSÔMICO APEAENTO CROOSSÔICO Décia prieira aula (T11) Texto adaptado de: OORE, J. A. Science as a a of Knoing - Genetics. Aer. Zool. v. 26: p. 583-747, 1986. Objetivos 1. Definir apa croossôico. 2. Explicar o raciocínio

Leia mais

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico

Construção de um sistema de Realidade Virtual (1 a Parte) O Engine Físico Construção de u sistea de Realidade Virtual (1 a Parte) O Engine Físico Roberto Scalco, Fabrício Martins Pedroso, Jorge Tressino Rua, Ricardo Del Roio, Wellington Francisco Centro Universitário do Instituto

Leia mais

LEIS DAS COLISÕES. ' m2. p = +, (1) = p1 ' 2

LEIS DAS COLISÕES. ' m2. p = +, (1) = p1 ' 2 LEIS DAS COLISÕES. Resuo Faze-se colidir, elástica e inelasticaente, dois lanadores que se ove quase se atrito nua calha de ar. Mede-se as velocidades resectivas antes e deois das colisões. Verifica-se,

Leia mais

Integração Numérica. Cálculo Numérico

Integração Numérica. Cálculo Numérico Cálculo Nuérico Integração Nuérica Pro. Jorge Cavalcanti jorge.cavalcanti@univas.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ucg.edu.br/~cnu/ Integração Nuérica

Leia mais

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO

TEORIA ELETRÔNICA DA MAGNETIZAÇÃO 113 17 TEORA ELETRÔNCA DA MANETZAÇÃO Sabeos que ua corrente elétrica passando por u condutor dá orige a u capo agnético e torno deste. A este capo daos o noe de capo eletro-agnético, para denotar a sua

Leia mais

Introdução. Sistemas Nebulosos (Fuzzy) Benefícios da Lógica Nebulosa. Introdução. Probabilidade e Possibilidade. Complexidade e Compreensão

Introdução. Sistemas Nebulosos (Fuzzy) Benefícios da Lógica Nebulosa. Introdução. Probabilidade e Possibilidade. Complexidade e Compreensão (Fuzzy) Introdução Benefícios da Lógica Nebulosa Conjuntos Nebulosos Variáveis Lingüísticas Operadores (Fuzzy) Raciocínio Etapas Conclusão Introdução Surgiu com Lofti Zadeh em 965. O boom foi nos anos

Leia mais

Solução do exercício 36

Solução do exercício 36 Solução do exercício 36 Equação anoétrica de (A) até a superfície livre do fluido anoétrico. Adotando (A) coo orige, teos: p p ar ar 0,03 z água L sen30 0 0,03 0,5 9800 0,68 sen30 pat 0 p at Trabalhando

Leia mais

Reflexão e Refração da luz em superfícies planas

Reflexão e Refração da luz em superfícies planas Nesta prática serão estudados os fenôenos de reflexão e refração da luz e superfícies planas, verificando as leis da óptica geoétrica, que governa tais processos. Serão abordados os princípios fundaentais

Leia mais

Escoamento Cruzado sobre Cilindros e Tubos Circulares

Escoamento Cruzado sobre Cilindros e Tubos Circulares Exeplo resolvido (Holan 5-7) Ar a 0 o C e 1 at escoa sobre ua placa plana a 35 /s. A placa te 75 c de copriento e é antida a 60ºC. Calcule o fluxo de calor transferido da placa. opriedades avaliadas à

Leia mais

ELASTICIDADE DA POBREZA EM RELAÇÃO À RENDA MÉDIA E À DESIGUALDADE

ELASTICIDADE DA POBREZA EM RELAÇÃO À RENDA MÉDIA E À DESIGUALDADE ELASTICIDADE DA POBREZA EM RELAÇÃO À RENDA MÉDIA E À DESIUALDADE Rodolfo Hoffann IE - UNICAMP Área ANPEC: RESUMO. Apresenta-se ua etodologia para calcular a elasticidade da proporção de pobres e relação

Leia mais

2.1. Um consumidor possui a função de utilidade do tipo Cobb-Douglas Considere um consumidor que possui a seguinte função de utilidade:

2.1. Um consumidor possui a função de utilidade do tipo Cobb-Douglas Considere um consumidor que possui a seguinte função de utilidade: Microeconoia I Ficha : Capítulos 5, 6 e 8 Exercícios propostos Capítulo 5.1. U consuidor possui a função de utilidade do tipo Cobb-Douglas U(x 1, x ) = x 1 1/3 x /3. a) Utilize o ultiplicador de Lagrange

Leia mais

Física. Resolução das atividades complementares. F10 Movimento harmônico simples

Física. Resolução das atividades complementares. F10 Movimento harmônico simples Resolução das atividades copleentares Física F0 Moviento harônico siples p. 8 E questões coo a, a resposta é dada pela soa dos núeros que identifica as alternativas corretas. (UEM-PR) Toando-se coo base

Leia mais

Lógica dos Conjuntos Difusos

Lógica dos Conjuntos Difusos Lógica dos Conjuntos Difusos Inteligência Artificial 8 de Abril de 2013 Filipe Oliveira ei10038@fe.up.pt Tiago Azevedo ei10090@fe.up.pt Conteúdo Introdução Contexto Histórico Definição de Conjunto Difuso

Leia mais

Curso Semi-extensivo LISTA EXERCÍCIOS - 03 Disciplina: Química Professor: Eduar Fernando Rosso

Curso Semi-extensivo LISTA EXERCÍCIOS - 03 Disciplina: Química Professor: Eduar Fernando Rosso Curso Sei-extensivo LISTA EXERCÍCIOS - 03 Disciplina: Quíica Professor: Eduar Fernando Rosso assa Atôica, assa olecular e ol 01 (Ufpr 2017) E oentos de estresse, as glândulas suprarrenais secreta o horônio

Leia mais

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012

Fenômenos de Transporte. Aula 1 do segundo semestre de 2012 Fenôenos de Transporte Aula 1 do segundo seestre de 01 Para calcularos a aceleração da gravidade pode-se recorrer a fórula: g 980,616,598cos 0,0069 latitude e graus H altitude e quilôetros g aceleração

Leia mais

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis,

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis, 0/0/0 Máio divisor cou e ínio últiplo cou: Dados dois núeros naturais e n, chaareos de aior divisor cou entre n e o núero natural dc (,n) que é otido pelo produto dos fatores couns entre e n. Assi podeos

Leia mais

Centro Universitário Anchieta Engenharia Química Físico Química I Prof. Vanderlei I Paula Nome: R.A. Gabarito 4 a lista de exercícios

Centro Universitário Anchieta Engenharia Química Físico Química I Prof. Vanderlei I Paula Nome: R.A. Gabarito 4 a lista de exercícios Engenharia Quíica Físico Quíica I. O abaixaento da pressão de vapor do solvente e soluções não eletrolíticas pode ser estudadas pela Lei de Raoult: P X P, onde P é a pressão de vapor do solvente na solução,

Leia mais

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS

CIRCUITOS ELÉTRICOS REGIME PERMANENTE SENOIDAL, REPRESENTAÇÃO FASORIAL E POTÊNCIAS ELÉTRICAS CICUIOS EÉICOS EGIME PEMANENE SENOIDA, EPESENAÇÃO FASOIA E As análises de circuitos até o presente, levou e consideração a aplicação de fontes de energia elétrica a u circuito e conseqüente resposta por

Leia mais

Capítulo 16. Ondas 1

Capítulo 16. Ondas 1 Capítulo 6 Ondas Outline Tipo de Ondas Ondas Longitudinais e Transversais Copriento de Onda e Frequência A velocidade de ua Onda Progressiva Energia e Potencia de ua Onda Progressiva A equação de Onda

Leia mais

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC Capítulo 3 Aperíetros e Voltíetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa Capítulo 3 Aperíetros e Voltíetros DC 3.. Aperíetros DC U galvanôetro, cuja lei de Deflexão Estática (relação entre a

Leia mais

através da aplicação da Teoria

através da aplicação da Teoria Análise de risco e rios, através da aplicação da Teoria Patrícia Freire Chagas, Raquel Jucá de oraes ales, Vanessa Ueta Goes, Arthur attos, Raiundo Oliveira de ouza REUO: Neste trabalho, desenvolveu-se

Leia mais

Existemcorposdeordemq se, e somente se, q éumapotência de primo.

Existemcorposdeordemq se, e somente se, q éumapotência de primo. Corpos Finitos U corpo é, grosso odo, u conjunto no qual podeos soar, subtrair, ultiplicar e dividir por não nulo, no qual vale todas as propriedades usuais de tais operações, incluindo a coutativa da

Leia mais