Extração de Conhecimento a partir dos Sistemas de Informação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Extração de Conhecimento a partir dos Sistemas de Informação"

Transcrição

1 Extração de Conhecimento a partir dos Sistemas de Informação Gisele Faffe Pellegrini & Katia Collazos Grupo de Pesquisa em Eng. Biomédica Universidade Federal de Santa Catarina Jorge Muniz Barreto Prof. Dr. Dpto Informática e Estatística Universidade Federal de Santa Catarina Resumo Este trabalho tem por finalidade apresentar uma abordagem sobre extração de conhecimento para bases de dados na área da saúde. Tradicionalmente no meio médico a Estatística é a ferramenta mais utilizada para esta tarefa. Mais recentemente, os Sistemas Especialistas trouxeram uma nova perspectiva, mas até o presente momento sua utilização é limitada por algumas vezes, não atingirem os desejos da comunidade médica. Este trabalho visa apresentar uma nova tecnologia para a extração de conhecimento em bases de dados da área médica, com a perspectiva de construir Sistemas de Informações inteligentes, ou seja, extrair um conhecimento que não foi informado explicitamente nos dados armazenados.a extração de conhecimento em bases de dados consiste na seleção e processamento de dados com a finalidade de identificar novos padrões, dar maior precisão em padrões conhecidos e modelar o mundo real. As técnicas da Inteligência Artificial KDD ( Knowledge in Data Discovery ) e Data Mining buscam identificar esses padrões. Data Mining significa em português mineração de dados e se refere ao exame de grandes quantidades de dados, procurando encontrar relações entre dados não explícitas que possam ser usadas em modelos do mundo com capacidade preditiva e esplanatória. Introdução Um Sistema de Informação (SI) para um centro de saúde tem como finalidade maior criar a intra-estrutura para atender os requisitos de assistência médica, para o ensino, pesquisa e para atender os aspectos administrativos (3). A partir de um SI consistente e sedimentado, as atividades de pesquisa com as informações armazenadas tornam-se um enfoque de grande importância para a área da saúde. De um modo geral as pesquisas baseadas em grande volumes de dados na área da saúde vêem sendo norteadas a partir de uma perspectiva descritiva e preditiva, onde a Estatística, com toda sua fundamentação matemática, é uma ferramenta bem difundida e aceita. Mas a facilidade de se armazenar a informação em grande quantidade está fazendo com que muitos pesquisadores perguntem: Agora que temos muitos dados, o que faremos com eles? e novas metodologias para extração de conhecimento estão sendo estudadas, dentre elas a metodologia Data Mining (3,4,5). Nos anos 70, num esforço de se adquirir conhecimento das bases de dados acumuladas, inicia-se a interdisciplina KDD ( Knowledge in Data Discovery ), englobando recursos de estatística, reconhecimento de padrões, máquinas de aprendizado e métodos de visualização para se obter formas de regras, para dar suporte de análise de dados e descobrir princípios que estão embutidos nestes dados. Entretanto esta técnica, até o presente momento tem tido pouca popularidade na comunidade interessada em problemas da saúde (5,6). KDD e Data Mining são essencialmente técnicas de Inteligência Artificial (IA). Com efeito, ler grandes volumes de dados e extrair conhecimento exige inteligência. Para facilitar, apresentações gráficas são algumas vezes empregadas quando este conhecimento pode ser extraido com técnicas estatísticas.

2 Entretanto, como será visto mais adiante, em muitos casos outras técnicas são mais adequadas, embora ainda não estejam sendo muito utilizadas. As pesquisas envolvendo Inteligência Artificial na área da saúde, concentra seus esforços no desenvolvimento de sistemas especialistas para auxílio ao diagnóstico, onde o conhecimento é todo adquirido através da experiência do especialista, conforme o esquema abaixo(7). Especialista Máquina de inferência Interface do usuário Usuário Base de conhecimento Fig1- Esquema de KDD Para montar as base de conhecimento, são montadas as regras com um primeiro formalismo para expressar o conhecimento de uma maneira simbólica. As regras têm a vantagem de ser um formalismo simples, uniforme, transparente, e fácil de fazer inferências. Isto leva a supor ser esta a melhor maneira de representar o conhecimento do mundo real. As regras podem ser elicitadas diretamento do domínio dos especialistas, e expressas através do grau de abstração do especialista. Esta metodologia pode apresentar alguma inconsistência pois em alguns casos o especialista não tem a compreensão global sobre a organização das regras de uma forma hierarquizada. Para solucionar o problema das falhas encontradas na extração do conhecimento a partir dos especialistas, as pesquisas em IA estão voltadas para a inclusão da inteligência nos SI, o que resultaria na obtenção do conhecimento a partir dos dados reais armezanados no SI. Extraçao de Conhecimento em Bases de Dados com Inteligência A extração de Conhecimento em Bases de Dados consiste na seleção e processamento de dados com a finalidade de identificar novo padrões, dar maior precisão em padrões conhecidos e modelar o mundo real. Assim inicia-se um novo conceito chamado Data Mining, significando em português mineração de dados se referindo ao exame de grandes quantidade de dados, procurando encontrar relações entre dados não explícitos que possam ser usadas em modelos do mundo com capacidade preditiva e explanatória (8). KDD é um processo interativo e muitos passos precisam ser repetidos para serem refinados, provendo uma solução apropriada para a análise dos dados do problema. Neste processo, a visualização dos dados tem um importante papel. O processo do Data Mining no processo KDD lida com os desafios de extrair conhecimento dos dados (tipicamente um grande

3 volume de dados), descrevendo os termos dos dados em relação as regularidades descobertas. O significado extraído da inteligência dos método de análise concerne ao suporte específico da base de conhecimento, englobando as atividades de diagnósticos, prognósticos e monitoramento, organizando a informação na sua maioria numérica. Este método, chama-se método de abstração de dados, que consiste em descobrir novos conhecimentos médicos que podem ser extraídos através da representação de casos de Data Mining, extraindo conhecimento útil e compreensível para o usuário final. A qualidade dessas regras são baseadas tanto na performance (classificação e predição, especificação como no entendimento do significado do conhecimento adquirido). O processo de Análise Inteligente de Dados pode ser apresentado como um processo (8) com etapas definidas. São elas: 1) Compreensão do domínio, 2) Definição do local de armazenamento e formação dos conjuntos de dados coletados. Este locais também são chamados de Data Warehouse. 3) Extração das regularidades escondidas nos dados e formulação de conhecimento em forma de padrões e regras. Etapa onde se aplica o algoritmo de Data Mining propriamente dito. 4) Exposição dos resultados Genericamente o processo de Data Mining engloba 4 etapas bem definidas: 1. Identificação do problema Este passo utiliza o domínio do especialista para identificar problemas importantes e os itens necessários para resolvê-lo. Entretanto constata-se a importância desta etapa ser feita em conjunto com o engenheiro de conhecimento, principalmente porque no domínio médico dos especialistas éutilizar estatística (9). 2. Transformar os dados em resultados calculáveis Organizar os dados de modo que possam ser manipulados facilmente para a construção de modelo. É um processo interativos e deve ser focado em como os dados serão usados. 3. Estabelecer associações sobre os dados Agir sobre os dados supondo associações que não foram estabelecidas. Os resultados significam uma nova perspectiva de associação, e os resultados insatisfatórios mostram a necessidade de enriquecer e/ou limpar a base de dados. 4. Medir os resultados É a medida das ações dos resultados. Esta medida alimenta o ciclo provendo mais questões e mais dados para adicionar esforços no processo de mineração da informação (Data Mining). A técnica de mineração dos dados está baseada em um dos seguintes métodos: 1) Detecção de cluster

4 Usa-se detecção de cluster quando se suspeita da existência de grupamentos naturais, que podem ser representados por grupos que apresentam muito em comum. Geralmente é usado quando existe uma competição muito grande de padrões nos dados, sendo difícil selecionar um. A criação de cluster para dados semelhante, reduz a complexidade. 2) Árvores de decisão Árvore de decisão é um bom método quando o objetivo do data mining é classificação de dados ou predição de saídas. Use árvore de decisões quando seu objetivo é categorizar dados de arquivos. Também é uma boa escolha quando o objetivo é gerar regras que podem ser facilmente ententida, explicadas e traduzidas para SQL ou linguagem natual. 3) Redes Neurais É uma boa maneira de se classificar e predizer regras, quando os resultados do modelo são mais importantes do que enternder seu funcionamento. Redes neurais não funcionam muito bem quando existem muitos dados e muitas entradas. Muitos pesos na rede, resultam em muito tempo de treinamento da rede, que nunca converge para uma única solução. As árvores de decisão são melhores para escolher as variáveis mais importantes, e estas podem ser usadas para treinar a rede. Esta metodologia foi testada numa base de dados de récem-nascidos com mal-formações visando estabelecer fatores de risco (9). Alguns fatores de risco foram comprovados, entretanto, muitos fatores que foram supostos inicialmente, não puderam ser verificados devido a falta de informação nos protocolos pesquisados. Isto deu lugar a uma proposta de protocolo mais abrangente visando seu uso em Data Mining. Conclusão Apresentando um resumo comparativo, a tabela mostra aspectos de um SI tradicional e sua equivalência utilizando Data Mining: Tab 1. Comparação entre SI tradicional e Data Mining SI tradicional Data Mining Foco na manipulação de informação Foco na escolha dos dados Foco no projeto e programação do sistema Foco em busca e representação 30% do esforço em análise e projeto 70% do esforço na preparação dos dados 70% do esforço na programação e teste 30% na geração do medelo e teste Prototipagem cara Prototipagem barata Desenvolvimento pouco iterativo Desenvolvimento iterativo Manutenção com intervenção humana Manutenção exige reaprendizado

5 Fazendo uma análise sobre os SI, podemos fazer um histórico sobre sua evolução. Num primeiro momento o objetivo era manter os dados em local seguro e que fosse possível sua recuperação. A partir das redes de comunicação, além dos dados armazenados, a transferência destes para qualquer ponto ficou possível. A interação com os especialistas também ficou fortalecida, e agora queremos extrair o conhecimento das informações armazenadas. Referência Bibliográfica 1) Barahona, P., and Christensen, J. P., Knowledge and Decision in Health Telematics, IOS Press, ) Pellegrini, G. F., Avaliação de Sistemas Especialistas para Área Médica, Tese de Mestrado, GPEB - EEL, UFSC, ) Frawley, W., Piatetsky-Shapiro, G., and Matheus, C., Knowledge discovery in databases: An overview, AAAI Press, ) Rueckert, L., Aplicação de data mining em casos de recém-nascidos com mal-formação, UFSC, Depto de Informática e Estatística, Monografia de fim de curso, Fpolis, ) Barreto, J. M., Inteligência Artificial no limiar do século XXI, ) Van Bemmel, J. H., Medical Informatics, art or science?, Meth Inform. Med., 35: , ) Keravnou, E. T., Deep models for medical knowledge engineering, editors, ) Berry, M., Linoff, G., Mastering Data Mining Art and Science of Customer Relationship Management, Ed. Wiley, ) Collazos, K, Barreto, J.M., KDD para o estudo epidemiológico das malformações. In I Cong. Peruano de Ingenieria Biomedica, TUMI 99, P.U.C, Peru, 8-9/

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO Fernanda Delizete Madeira 1 ; Aracele Garcia de Oliveira Fassbinder 2 INTRODUÇÃO Data

Leia mais

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares SAD Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares DataWarehouse Armazena informações relativas a uma organização em BD Facilita tomada de decisões Dados são coletados de OLTP(séries históricas) Dados

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO EPE0147 UTILIZAÇÃO DA MINERAÇÃO DE DADOS EM UMA AVALIAÇÃO INSTITUCIONAL

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

Universidade de Brasília. Departamento de Ciência da Informação e Documentação. Prof a.:lillian Alvares

Universidade de Brasília. Departamento de Ciência da Informação e Documentação. Prof a.:lillian Alvares Universidade de Brasília Departamento de Ciência da Informação e Documentação Prof a.:lillian Alvares Fóruns óu s/ Listas de discussão Espaços para discutir, homogeneizar e compartilhar informações, idéias

Leia mais

Módulo 4: Gerenciamento de Dados

Módulo 4: Gerenciamento de Dados Módulo 4: Gerenciamento de Dados 1 1. CONCEITOS Os dados são um recurso organizacional decisivo que precisa ser administrado como outros importantes ativos das empresas. A maioria das organizações não

Leia mais

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados Universidade Federal de Pernambuco Graduação em Ciência da Computação Centro de Informática 2006.2 Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA LABORATÓRIO DE GUERRA ELETRÔNICA

INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA LABORATÓRIO DE GUERRA ELETRÔNICA INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA LABORATÓRIO DE GUERRA ELETRÔNICA CURSO DE ESPECIALIZAÇÃO EM ANÁLISE DE AMBIENTE ELETROMAGNÉTICO CEAAE /2008 DISCIPLINA EE-09: Inteligência

Leia mais

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br Centro Universitário de Volta Redonda - UniFOA Curso Tecnológico de Redes de Computadores 5º período Disciplina: Tecnologia WEB Professor: José Maurício S. Pinheiro

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

Aula 02: Conceitos Fundamentais

Aula 02: Conceitos Fundamentais Aula 02: Conceitos Fundamentais Profa. Ms. Rosângela da Silva Nunes 1 de 26 Roteiro 1. Por que mineração de dados 2. O que é Mineração de dados 3. Processo 4. Que tipo de dados podem ser minerados 5. Que

Leia mais

srbo@ufpa.br www.ufpa.br/srbo

srbo@ufpa.br www.ufpa.br/srbo CBSI Curso de Bacharelado em Sistemas de Informação BI Prof. Dr. Sandro Ronaldo Bezerra Oliveira srbo@ufpa.br www.ufpa.br/srbo Tópicos Especiais em Sistemas de Informação Faculdade de Computação Instituto

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas e técnicas

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

Feature-Driven Development

Feature-Driven Development FDD Feature-Driven Development Descrição dos Processos Requisitos Concepção e Planejamento Mais forma que conteúdo Desenvolver um Modelo Abrangente Construir a Lista de Features Planejar por

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Universidade de Brasília. Faculdade de Ciência da Informação. Profa. Lillian Alvares

Universidade de Brasília. Faculdade de Ciência da Informação. Profa. Lillian Alvares Universidade de Brasília Faculdade de Ciência da Informação Profa. Lillian Alvares Fóruns / Listas de discussão Espaços para discutir, homogeneizar e compartilhar informações, idéias e experiências que

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

Extração de Conhecimento & Mineração de Dados

Extração de Conhecimento & Mineração de Dados Extração de Conhecimento & Mineração de Dados Nesta apresentação é dada uma breve introdução à Extração de Conhecimento e Mineração de Dados José Augusto Baranauskas Departamento de Física e Matemática

Leia mais

Universidade de Brasília. Faculdade de Ciência da Informação. Prof a Lillian Alvares

Universidade de Brasília. Faculdade de Ciência da Informação. Prof a Lillian Alvares Universidade de Brasília Faculdade de Ciência da Informação Prof a Lillian Alvares Fóruns Comunidades de Prática Mapeamento do Conhecimento Portal Intranet Extranet Banco de Competências Memória Organizacional

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Banco de Dados I. Apresentação (mini-currículo) Conceitos. Disciplina Banco de Dados. Cont... Cont... Edson Thizon (edson@esucri.com.

Banco de Dados I. Apresentação (mini-currículo) Conceitos. Disciplina Banco de Dados. Cont... Cont... Edson Thizon (edson@esucri.com. Sistemas da Informação Banco de Dados I Edson Thizon (edson@esucri.com.br) 2008 Apresentação (mini-currículo) Formação Acadêmica Mestrando em Ciência da Computação (UFSC/ ) Créditos Concluídos. Bacharel

Leia mais

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o DATABASE MARKETING No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o empresário obter sucesso em seu negócio é

Leia mais

Introdução. Conceitos Básicos. Conceitos Básicos. Conceitos Básicos

Introdução. Conceitos Básicos. Conceitos Básicos. Conceitos Básicos Conceitos Básicos Introdução Banco de Dados I Prof. Guilherme Tavares de Assis Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM Dados

Leia mais

Sistemas de Banco de Dados Aspectos Gerais de Banco de Dados

Sistemas de Banco de Dados Aspectos Gerais de Banco de Dados Sistemas de Banco de Dados Aspectos Gerais de Banco de Dados 1. Conceitos Básicos No contexto de sistemas de banco de dados as palavras dado e informação possuem o mesmo significado, representando uma

Leia mais

Ser sincero em sua crença de que todos devem ir para casa todos os dias com segurança e saúde - demonstre que você se importa.

Ser sincero em sua crença de que todos devem ir para casa todos os dias com segurança e saúde - demonstre que você se importa. A Liderança Faz a Diferença Guia de Gerenciamento de Riscos Fatais Introdução 2 A prevenção de doenças e acidentes ocupacionais ocorre em duas esferas de controle distintas, mas concomitantes: uma que

Leia mais

CA Mainframe Chorus for DB2 Database Management Version 2.0

CA Mainframe Chorus for DB2 Database Management Version 2.0 FOLHA DO PRODUTO CA Mainframe Chorus for DB2 Database Management CA Mainframe Chorus for DB2 Database Management Version 2.0 Simplifique e otimize seu DB2 para tarefas de gerenciamento de carga de trabalho

Leia mais

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados SUMÁRIO - AULA1 O Processo de KDD O processo de KDD Interpretação e Avaliação Consolidação de dados Seleção e Pré-processamento Warehouse Data Mining Dados Preparados p(x)=0.02 Padrões & Modelos Conhecimento

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Extração de Requisitos

Extração de Requisitos Extração de Requisitos Extração de requisitos é o processo de transformação das idéias que estão na mente dos usuários (a entrada) em um documento formal (saída). Pode se entender também como o processo

Leia mais

GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA SOBRE O MÓDULO DE GESTÃO E GERAÇÃO DE CONHECIMENTO...

GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA SOBRE O MÓDULO DE GESTÃO E GERAÇÃO DE CONHECIMENTO... GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA SOBRE O MÓDULO DE GESTÃO E GERAÇÃO DE CONHECIMENTO... 589 GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA

Leia mais

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Um Sistema Gerenciador de Banco de Dados (SGBD) é constituído por um conjunto de dados associados a um conjunto de programas para acesso a esses

Leia mais

Inteligência Artificial Aplicada no Auxílio a Tomadas de Decisões na Área de Saúde

Inteligência Artificial Aplicada no Auxílio a Tomadas de Decisões na Área de Saúde Inteligência Artificial Aplicada no Auxílio a Tomadas de Decisões na Área de Saúde Angelo Oliveira Moura*, Diego da Silva Andrade*, Wagner kazumitsu Kikuchi Associação Educacional Dom Bosco AEDB Estrada

Leia mais

Conceitos de Banco de Dados

Conceitos de Banco de Dados Conceitos de Banco de Dados Autor: Luiz Antonio Junior 1 INTRODUÇÃO Objetivos Introduzir conceitos básicos de Modelo de dados Introduzir conceitos básicos de Banco de dados Capacitar o aluno a construir

Leia mais

LEVANTAMENTO DE REQUISITOS SEGUNDO O MÉTODO VOLERE

LEVANTAMENTO DE REQUISITOS SEGUNDO O MÉTODO VOLERE LEVANTAMENTO DE REQUISITOS SEGUNDO O MÉTODO VOLERE RESUMO Fazer um bom levantamento e especificação de requisitos é algo primordial para quem trabalha com desenvolvimento de sistemas. Esse levantamento

Leia mais

Padronização de Processos: BI e KDD

Padronização de Processos: BI e KDD 47 Padronização de Processos: BI e KDD Nara Martini Bigolin Departamento da Tecnologia da Informação -Universidade Federal de Santa Maria 98400-000 Frederico Westphalen RS Brazil nara.bigolin@ufsm.br Abstract:

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

MINERAÇÃO DE DADOS. Mineração de Dados

MINERAÇÃO DE DADOS. Mineração de Dados MINERAÇÃO DE DADOS Mineração de Dados Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Conceitos de Mineração de Dados... 5 3. Aplicações de Mineração de Dados... 7 4. Ferramentas de Mineração

Leia mais

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5 Para entender bancos de dados, é útil ter em mente que os elementos de dados que os compõem são divididos em níveis hierárquicos. Esses elementos de dados lógicos constituem os conceitos de dados básicos

Leia mais

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1. O que é a ciência de dados (data science). Discussão do conceito Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.3, Outubro, 2015 Nota prévia Esta apresentação tem por objetivo, proporcionar

Leia mais

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA Lizianne Priscila Marques SOUTO 1 1 Faculdade de Ciências Sociais e Aplicadas

Leia mais

Universidade Federal de Santa Maria Curso de Arquivologia. Disciplina de Banco de Dados Aplicados à Arquivística. Versao 1.

Universidade Federal de Santa Maria Curso de Arquivologia. Disciplina de Banco de Dados Aplicados à Arquivística. Versao 1. Universidade Federal de Santa Maria Curso de Arquivologia Disciplina de Banco de Dados Aplicados à Arquivística Prof. Andre Zanki Cordenonsi Versao 1.0 Março de 2008 Tópicos Abordados Conceitos sobre Banco

Leia mais

Programação com acesso a BD. Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br

Programação com acesso a BD. Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br Programação com acesso a BD Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br 1 Introdução BD desempenha papel crítico em todas as áreas em que computadores são utilizados: Banco: Depositar ou retirar

Leia mais

Processos Gerenciais

Processos Gerenciais UNIVERSIDADE PAULISTA CURSO SUPERIOR DE TECNOLOGIA Projeto Integrado Multidisciplinar III e IV Processos Gerenciais Manual de orientações - PIM Curso Superior de Tecnologia em Processos Gerenciais. 1.

Leia mais

Tecnologias da Informação, Comunicação e Sistemas de Inteligência

Tecnologias da Informação, Comunicação e Sistemas de Inteligência , Comunicação e Sistemas de Inteligência Gestão e de Bancos de Dados IESB - Centro Universitário A importância da informação em um mundo de informação disponível em tempo real a informação menos acessível

Leia mais

Universidade de Brasília Departamento de Ciência da Informação e Documentação Profa.:Lillian Alvares

Universidade de Brasília Departamento de Ciência da Informação e Documentação Profa.:Lillian Alvares Universidade de Brasília Departamento de Ciência da Informação e Documentação Profa.:Lillian Alvares Comunidades de Prática Grupos informais e interdisciplinares de pessoas unidas em torno de um interesse

Leia mais

Assunto 9 : Tecnologias de Inteligência Artificial nos Negócios

Assunto 9 : Tecnologias de Inteligência Artificial nos Negócios Assunto 9 : Tecnologias de Inteligência Artificial nos Negócios Empresas e outras organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus

Leia mais

Pós-Graduação Lato Sensu em ENGENHARIA DE MARKETING

Pós-Graduação Lato Sensu em ENGENHARIA DE MARKETING Pós-Graduação Lato Sensu em ENGENHARIA DE MARKETING Inscrições Abertas: Início das aulas: 28/03/2016 Término das aulas: 10/12/2016 Dias e horários das aulas: Segunda-Feira 18h30 às 22h30 Semanal Quarta-Feira

Leia mais

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo

Leia mais

MBA em Gestão de Empreendimentos Turísticos

MBA em Gestão de Empreendimentos Turísticos Prof. Martius V. Rodriguez y Rodriguez, DSc martius@kmpress.com.br MBA em Gestão de Empreendimentos Turísticos Gestão do Conhecimento e Tecnologia da Informação Gestão do Conhecimento evolução conceitual.

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

Requisitos de Software. Requisitos de Software. Requisitos de Software. Requisitos de Software. Requisitos de Software. Requisitos de Software

Requisitos de Software. Requisitos de Software. Requisitos de Software. Requisitos de Software. Requisitos de Software. Requisitos de Software INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Curso Técnico em Informática ENGENHARIA DE SOFTWARE Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br Clayton Maciel Costa

Leia mais

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO

FUNDAÇÃO DE APOIO AO ENSINO TÉCNICO DO ESTADO DO RIO DE JANEIRO FAETERJ Petrópolis Área de Extensão PLANO DE CURSO FUNDAÇÃO DE APOIO AO ENINO TÉCNICO DO ETADO DO RIO DE JANEIRO PLANO DE CURO 1. Identificação Curso de Extensão: INTRODUÇÃO AO ITEMA INTELIGENTE Professor Regente: José Carlos Tavares da ilva Carga Horária:

Leia mais

INTELIGÊNCIA COMPUTACIONAL

INTELIGÊNCIA COMPUTACIONAL INTELIGÊNCIA COMPUTACIONAL Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Dados pessoais Rosalvo Ferreira de Oliveira Neto MSc. em ciência da computação (UFPE) rosalvo.oliveira@univasf.edu.br

Leia mais

Orientações para a elaboração dos projetos de pesquisa (Iniciação científica)

Orientações para a elaboração dos projetos de pesquisa (Iniciação científica) GRUPO PAIDÉIA FE/UNICAMP Linha: Episteduc Coordenador: Prof. Dr. Silvio Sánchez Gamboa Orientações para a elaboração dos projetos de pesquisa (Iniciação científica) Os projetos de pesquisa se caracterizam

Leia mais

GARANTIA DA QUALIDADE DE SOFTWARE

GARANTIA DA QUALIDADE DE SOFTWARE GARANTIA DA QUALIDADE DE SOFTWARE Fonte: http://www.testexpert.com.br/?q=node/669 1 GARANTIA DA QUALIDADE DE SOFTWARE Segundo a NBR ISO 9000:2005, qualidade é o grau no qual um conjunto de características

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

Davy Baía MSC Candidate

Davy Baía MSC Candidate Descoberta de conhecimento em banco de dados utilizando técnicas de mineração de dados no domínio da Engenharia de Software para fins de gerenciamento do processo de desenvolvimento Davy Baía MSC Candidate

Leia mais

Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios

Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios Como Melhorar a Tomada de Decisão e a Gestão do Conhecimento Capítulo

Leia mais

CRM. Customer Relationship Management

CRM. Customer Relationship Management CRM Customer Relationship Management CRM Uma estratégia de negócio para gerenciar e otimizar o relacionamento com o cliente a longo prazo Mercado CRM Uma ferramenta de CRM é um conjunto de processos e

Leia mais

Gerenciamento de Dados e Gestão do Conhecimento

Gerenciamento de Dados e Gestão do Conhecimento ELC1075 Introdução a Sistemas de Informação Gerenciamento de Dados e Gestão do Conhecimento Raul Ceretta Nunes CSI/UFSM Introdução Gerenciando dados A abordagem de banco de dados Sistemas de gerenciamento

Leia mais

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Sloan School of Management

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Sloan School of Management MASSACHUSETTS INSTITUTE OF TECHNOLOGY Sloan School of Management 15.565 INTEGRAÇÃO DE SISTEMAS DE INFORMAÇÃO: FATORES TECNOLÓGICOS, ESTRATÉGICOS E ORGANIZACIONAIS Panorama Funcional CP0 -- INTRODUÇÃO AO

Leia mais

A Grande Importância da Mineração de Dados nas Organizações

A Grande Importância da Mineração de Dados nas Organizações A Grande Importância da Mineração de Dados nas Organizações Amarildo Aparecido Ferreira Junior¹, Késsia Rita da Costa Marchi¹, Jaime Willian Dias¹ ¹Universidade Paranaense (Unipar) Paranavaí PR Brasil

Leia mais

Predição do Valor Econômico de uma Oportunidade Exploratória de Petróleo

Predição do Valor Econômico de uma Oportunidade Exploratória de Petróleo Predição do Valor Econômico de uma Oportunidade Exploratória de Petróleo Trabalho de Mestrado Marcos A. Affonso 1 (Aluno), Leila Andrade 2 (Orientador), Kate Revoredo 3 (Coorientador) Programa de pós-graduação

Leia mais

Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática Curso de Bacharelado em Ciência da Computação

Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática Curso de Bacharelado em Ciência da Computação Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de Informática Curso de Bacharelado em Ciência da Computação APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS À MINERAÇÃO DE DADOS

Leia mais

Universidade Federal de Minas Gerais ICEx / DCC

Universidade Federal de Minas Gerais ICEx / DCC Universidade Federal de Minas Gerais ICEx / DCC Belo Horizonte, 15 de dezembro de 2006 Relatório sobre aplicação de Mineração de Dados Mineração de Dados em Bases de Dados de Vestibulares da UFMG Professor:

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ UFPR Bacharelado em Ciência da Computação

UNIVERSIDADE FEDERAL DO PARANÁ UFPR Bacharelado em Ciência da Computação SOFT DISCIPLINA: Engenharia de software AULA NÚMERO: 08 DATA: / / PROFESSOR: Andrey APRESENTAÇÃO O objetivo desta aula é apresentar e discutir conceitos relacionados a modelos e especificações. Nesta aula

Leia mais

ATENÇÃO: ESTE ARTIGO NÃO PODERÁ SER UTILIZADO PARA FINS COMERCIAIS. DEVERÁ OBRIGATORIAMENTE SER REFERENCIADO COMO:

ATENÇÃO: ESTE ARTIGO NÃO PODERÁ SER UTILIZADO PARA FINS COMERCIAIS. DEVERÁ OBRIGATORIAMENTE SER REFERENCIADO COMO: ATENÇÃO: ESTE ARTIGO NÃO PODERÁ SER UTILIZADO PARA FINS COMERCIAIS. DEVERÁ OBRIGATORIAMENTE SER REFERENCIADO COMO: Fabre, Jorge Leandro; Carvalho, José Oscar Fontanini de. (2004). Uma Taxonomia para Informações

Leia mais

UNIVERSIDADE PAULISTA

UNIVERSIDADE PAULISTA UNIVERSIDADE PAULISTA CURSO SUPERIOR DE TECNOLOGIA Projeto Integrado Multidisciplinar III e IV Recursos Humanos Manual de orientações - PIM Curso Superior de Tecnologia em Gestão de Recursos Humanos 1.

Leia mais

Oracle Hyperion Essbase

Oracle Hyperion Essbase Oracle Hyperion Essbase Guia Claudio Bonel Oracle Hyperion Essbase Guia Dedicatória Este Livro é dedicado a minha família. 2 Guia Oracle Hyperion Essbase Sumário Agradecimentos Introdução Capítulo 1: OLAP

Leia mais

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO OSCAR DALFOVO, M.A. dalfovo@furb.rct-sc.br Professor da Universidade Regional de Blumenau - FURB Professor do

Leia mais

Modelo de dados do Data Warehouse

Modelo de dados do Data Warehouse Modelo de dados do Data Warehouse Ricardo Andreatto O modelo de dados tem um papel fundamental para o desenvolvimento interativo do data warehouse. Quando os esforços de desenvolvimentos são baseados em

Leia mais

Trabalho de Conclusão de Curso - TCC - Bacharelado Interdisciplinar em Ciências Humanas

Trabalho de Conclusão de Curso - TCC - Bacharelado Interdisciplinar em Ciências Humanas Trabalho de Conclusão de Curso - TCC - Bacharelado Interdisciplinar em Ciências Humanas 1. O que é o TCC? O O TCC é uma atividade de síntese e integração de conhecimentos adquiridos ao longo do curso,

Leia mais

Data Mining: Conceitos e Técnicas

Data Mining: Conceitos e Técnicas Data Mining: Conceitos e Técnicas DM, DW e OLAP Data Warehousing e OLAP para Data Mining O que é data warehouse? De data warehousing para data mining Data Warehousing e OLAP para Data Mining Data Warehouse:

Leia mais

As principais características da abordagem de um banco de dados versus a abordagem de processamento de arquivos são as seguintes:

As principais características da abordagem de um banco de dados versus a abordagem de processamento de arquivos são as seguintes: SGBD Características do Emprego de Bancos de Dados As principais características da abordagem de um banco de dados versus a abordagem de processamento de arquivos são as seguintes: Natureza autodescritiva

Leia mais

Sistema. Atividades. Sistema de informações. Tipos de sistemas de informação. Everson Santos Araujo everson@everson.com.br

Sistema. Atividades. Sistema de informações. Tipos de sistemas de informação. Everson Santos Araujo everson@everson.com.br Sistema Tipos de sistemas de informação Everson Santos Araujo everson@everson.com.br Um sistema pode ser definido como um complexo de elementos em interação (Ludwig Von Bertalanffy) sistema é um conjunto

Leia mais

Texto para Coluna do NRE-POLI na Revista Construção e Mercado Pini Novembro 2014

Texto para Coluna do NRE-POLI na Revista Construção e Mercado Pini Novembro 2014 Texto para Coluna do NRE-POLI na Revista Construção e Mercado Pini Novembro 2014 PLANEJAMENTO ESTRATÉGICO EM EMPRESAS DE CONSTRUÇÃO CIVIL DE MÉDIO PORTE NO BRASIL. Elisabete Maria de Freitas Arquiteta

Leia mais

Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico

Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico Alexander Rivas de Melo Junior 1, Márcio Palheta Piedade 1 1 Ciência da Computação Centro de Ensino Superior FUCAPI

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Mining Os métodos tradicionais de Data Mining são: Classificação Associa ou classifica um item a uma ou várias classes categóricas pré-definidas.

Leia mais

PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012

PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012 PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012 Curso: TECNOLOGIA EM GESTÃO COMERCIAL Habilitação: TECNÓLOGO Disciplina: NEGÓCIOS INTELIGENTES (BUSINESS INTELLIGENCE) Período: M V N 4º semestre do Curso

Leia mais

INTELIGÊNCIA ARTIFICIAL E SUA APLICABILIDADE NOS JOGOS

INTELIGÊNCIA ARTIFICIAL E SUA APLICABILIDADE NOS JOGOS INTELIGÊNCIA ARTIFICIAL E SUA APLICABILIDADE NOS JOGOS Aline Ferraz da Silva 1 Carine Bueira Loureiro 2 Resumo: Este artigo trata do projeto de Trabalho

Leia mais

Banco de Dados I. Introdução. Fabricio Breve

Banco de Dados I. Introdução. Fabricio Breve Banco de Dados I Introdução Fabricio Breve Introdução SGBD (Sistema Gerenciador de Banco de Dados): coleção de dados interrelacionados e um conjunto de programas para acessar esses dados Coleção de dados

Leia mais

A Computação e as Classificações da Ciência

A Computação e as Classificações da Ciência A Computação e as Classificações da Ciência Ricardo de Almeida Falbo Metodologia de Pesquisa Departamento de Informática Universidade Federal do Espírito Santo Agenda Classificações da Ciência A Computação

Leia mais

15 Computador, projeto e manufatura

15 Computador, projeto e manufatura A U A UL LA Computador, projeto e manufatura Um problema Depois de pronto o desenho de uma peça ou objeto, de que maneira ele é utilizado na fabricação? Parte da resposta está na Aula 2, que aborda as

Leia mais

Apresentação, xix Prefácio à 8a edição, xxi Prefácio à 1a edição, xxiii. Parte I - Empresa e Sistemas, 1

Apresentação, xix Prefácio à 8a edição, xxi Prefácio à 1a edição, xxiii. Parte I - Empresa e Sistemas, 1 Apresentação, xix Prefácio à 8a edição, xxi Prefácio à 1a edição, xxiii Parte I - Empresa e Sistemas, 1 1 SISTEMA EMPRESA, 3 1.1 Teoria geral de sistemas, 3 1.1.1 Introdução e pressupostos, 3 1.1.2 Premissas

Leia mais

UNIVERSIDADE PAULISTA

UNIVERSIDADE PAULISTA UNIVERSIDADE PAULISTA CURSO SUPERIOR DE TECNOLOGIA Projeto Integrado Multidisciplinar III e IV Marketing Manual de orientações - PIM Curso Superior de Tecnologia em Marketing. 1. Introdução Os Projetos

Leia mais