Pesquisa Operacional

Tamanho: px
Começar a partir da página:

Download "Pesquisa Operacional"

Transcrição

1 Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 3 - Teoria dos Grafos Fernando Marins fmarins@feg.unesp.br Departamento de Produção 1

2 Sumário Introdução Histórico Aplicações de grafos Conceitos e Notação Representações de um grafo Tipos de grafos Problemas típicos e Algoritmos Caminho Ótimo - Algoritmo de Djisktra Árvore Ótima - Algoritmo de Kruskal Fluxo Máximo - Algoritmo de Ford - Fulkerson 2

3 Introdução Histórico Euler resolveu o problema das pontes de Königsberg do rio Pregel, em 1736, utilizando um modelo de grafos: partir de uma das 4 regiões, atravessar cada ponte uma única vez e retornar à região de partida. Figura 1. Rio Pregel e suas sete pontes. 3

4 Introdução Figura 2. Modelo de Grafo para o Rio Pregel e suas sete pontes. Modelo de grafos utilizado por Euler para demonstrar que o problema não tem solução. Para haver solução é necessário que cada região tenha um número par de pontes associadas. 4

5 Introdução Aplicações de modelos em grafos 1. Grafos planares: problemas de montagens/ trevos A, B, C : linhas de montagens/ rodovias principais D 1, D 2, D 3 : departamentos/ rodovias secundárias Figura 3. Um problema de montagem. Ligações: esteiras/ viadutos ou túneis 5

6 Introdução 2. Problemas de Localização Existindo n cidades consumidoras do produto fabricado por uma determinada empresa, deseja-se saber onde seria o melhor local para a instalação de uma filial desta empresa que atendesse as n cidades com menor custos de distribuição do produto. Existem algoritmos próprios para este problema, além de várias heurísticas que possuem bom desempenho. 6

7 Notação Representações de um grafo G 1. G(V, A) onde: V = Conjunto de vértices ou nós do grafo A = Conjunto de arcos ou arestas do grafo 2. Diagramas e tipos de grafos 2 Grafo a c Não- orientado 1 b 3 1 a b e 4 d f c 2 3 Grafo Orientado 7

8 Notação 3. Matriz de adjacência (grafo não-orientado) 1, se aresta do nó i ao nó j A = (a ij ) = 0, se aresta do nó i ao nó j 2 1 a b c 3 A =

9 Notação 4. Matriz de incidência (grafos orientados) A = [a ij ] é a matriz (não necessariamente quadrada) de incidência de G se 1, se o arco j sai do nó i a ij -1, se o arco j chega no nó i 0, se o arco j não é incidente ao nó i 1 a b 4 d c 2 e f 3 9

10 Grafo Valorado Grafo com as distâncias de São Paulo a 3 capitais: 700 São Paulo 400 Rio de Janeiro Belo Horizonte 1500 Brasília 10

11 Grafos Especiais Para o grafo G abaixo: árvore, cadeia, caminho, ciclo e circuito d a e l c j b f g h i 11

12 Árvore 1. Árvore (arborescência): grafo conexo sem ciclos d a j b g h 12

13 Cadeia 2. Cadeia: seqüência de arcos com extremidade em comum d a j l h 13

14 Caminho 3. Caminho: seqüência de arcos com mesma orientação a c j f 14

15 Ciclo e Circuito 4. Ciclo: cadeia fechada d a l b g i 5. Circuito: caminho fechado a b c 15

16 Problemas e Algoritmos Otimização em grafos 1. Determinação de Árvores ótimas: Algoritmo de Kruskal 2. Determinação de Caminhos Ótimos: Algoritmo de Djisktra 3. Determinação de Fluxo Máximo: Algoritmo de Ford & Fulkerson 16

17 Algoritmo de Kruskal Determinação de uma árvore mínima num grafo G (V, A) Para cada aresta (i, j) existe um custo associado C ij. V = cardinalidade do conjunto de nós V = número de nós. Passo 1. Considerar o grafo trivial formado apenas pelos nós de G Passo 2. Construção da Árvore Acrescentar ao grafo trivial a aresta (i, j) associada ao menor valor de custo C ij. Repetir o procedimento respeitando a ordem crescente de valores de C ij, desde que a aresta analisada não forme ciclo com as arestas já incorporadas à árvore. Após incorporar V - 1 arestas Parar! A árvore mínima foi obtida. 17

18 Exemplo para o Algoritmo de Kruskal Determinar uma árvore mínima A 6 F 5 D G 4 B 9 C J 11 E H 10 I 8 18

19 Exemplo para o Algoritmo de Kruskal Passo 1: Grafo trivial 19

20 Exemplo para o Algoritmo de Kruskal Passo 2: A primeira aresta a ser incorporada será a aresta associada ao valor de custo = 1. Observe-se que há duas arestas nestas condições: aresta (a, b) e aresta (c, d). Pode-se escolher arbitrariamente qual delas será incorporada primeiro ao grafo trivial. A seguir incorpore a outra (observe que elas não formam ciclo). 20

21 Exemplo para o Algoritmo de Kruskal Árvore parcial: colocar as arestas com custo 1 A D 1 1 B C E 21

22 Exemplo para o Algoritmo de Kruskal A seguir tem-se as arestas (b, e) e (b, f) correspondentes aos custo com valor 2. Analogamente ao caso anterior pode-se optar por qualquer uma elas para ser analisada primeiro. Ambas serão incorporadas ao grafo resultante da operação anterior, pois também não formam ciclo. 22

23 Exemplo para o Algoritmo de Kruskal Árvore parcial: colocar as arestas com custo 2. A D B C 2 E 23

24 Exemplo para o Algoritmo de Kruskal Árvore parcial: colocar a aresta com custo 3. A D B C 2 3 E 24

25 Exemplo para o Algoritmo de Kruskal Árvore parcial: colocar as arestas com custo 4. A D B 3 2 C 1 E 4 25

26 Exemplo para o Algoritmo de Kruskal Árvore parcial: colocar uma das duas arestas com custo 5, a outra será descartada. 5 A D B C 2 3 E 4 26

27 Exemplo para o Algoritmo de Kruskal Como o número de nós é 10 prossegue-se neste processo até que sejam incorporadas 10-1 = 9 arestas, sendo obtida uma árvore mínima: Observe que esta é uma solução ótima do problema. Custo ótimo: =

28 Algoritmo de Dijsktra Problema do Caminho Ótimo Determinação de caminhos mínimos em grafos valorados. Princípio de Otimalidade de Bellman: Um caminho mínimo é constituído de sub-caminhos mínimos Aplica-se a grafos valorados onde não há laços, arcos paralelos e todos valores associados aos arcos são não-negativos. Achar caminho ótimo entre dois nós (origem = S e destino = T) de um grafo. 28

29 Algoritmo de Dijsktra Aspectos Gerais Adota a técnica de rotulação dos nós, havendo dois tipos de rótulos: rótulos temporários e rótulos definitivos. A cada iteração, alguns nós são rotulados temporariamente e apenas um nó é rotulado definitivamente. O valor do rótulo definitivo associado a um nó j corresponde ao valor da distância mínima entre o nó origem S e o nó j. A execução do algoritmo termina quando se consegue rotular definitivamente o nó destino T. 29

30 Algoritmo de Djisktra 1. Inicialização 2. Atualização dos rótulos temporários 3. Rotulação Definitiva de um nó 4. Passo geral 1. Inicialização Rotular definitivamente o nó origem S com valor 0. Rotular temporariamente os demais nós com valor. 30

31 Algoritmo de Djisktra 2. Atualização dos rótulos temporários Todo nó j ainda não rotulado definitivamente deve receber novo valor de rótulo dado por Min {rótulo atual do nó j, rótulo do nó i + c ij }, onde, i = último nó rotulado definitivamente c ij = valor associado ao arco que liga os nós i e j. 31

32 3. Rotulação definitiva Comparar os rótulos temporários e escolher para ser rotulado definitivamente o nó j associado ao menor valor. 4. Passo geral Algoritmo de Djisktra Repetir sucessivamente os passos 2 e 3 até rotular definitivamente o nó destino T. O valor da distância mínima entre os nós S e T é o valor do rótulo definitivo do nó destino T. 32

33 Obtenção dos nós do caminho mínimo A partir do nó t achar qual foi o nó i do passo 2 responsável pelo valor de seu rótulo definitivo. Suponha que tenha sido o nó k. A partir do nó k achar qual foi o nó i do passo 2 responsável pelo valor de seu rótulo definitivo. Suponha que tenha sido o nó h. Repetir este processo até que o nó i seja o nó origem s Os nós i encontrados em cada etapa deste processo de busca serão os nós intermediários do caminho mínimo entre s e t. 33

34 Exemplo para Caminho Ótimo Achar a distância mínima entre os nós S e T: S A 3 B E C D T 10 34

35 Algoritmo de Djisktra Resolução completa do exemplo de caminho mínimo Aplicação do Algoritmo de Djisktra - Tabela completa Rótulos Explicação S A B C E D T Vetor com nós do grafo 0* Passo 1 - Inicialização 0* 7 1 Passo 2 com i = S 0* 7 1* Passo 3 - Rot. Def. Nó B 0* 4 1* 5 4 Passo 2 com i = B 0* 4 1* 5 4* Passo 3 - Rot. Def. Nó D 0* 4 1* * 11 Passo 2 com i = D 0* 4* 1* * 11 Passo 3 - Rot. Def. Nó A 0* 4* 1* * 11 Passo 2 com i = A 0* 4* 1* 12 5* 4* 11 Passo 3 - Rot. Def. Nó E 0* 4* 1* 12 5* 4* 7 Passo 2 com i = E 0* 4* 1* 12 5* 4* 7* Passo 3 - Rot. Def. Nó T (parar!) 35

36 Algoritmo de Djisktra Distância mínima entre os nós S e T = 7 = Rótulo definitivo do nó T. Recuperação do caminho mínimo (ótimo): Valor do rótulo definitivo do nó T = 7 sendo o nó i responsável = E Valor do rótulo definitivo do nó E = 5 sendo o nó i responsável = B Valor do rótulo definitivo do nó B = 1 sendo o nó i responsável = S T E B S

37 Exercício Achar a distância mínima entre os nós S e T: A 6 D S 3 B 4 E 3 T C 4 10 F 37

38 Análise de Redes: Problema do Fluxo Máximo Rede: Formada por duas entidades - Nós, Arcos Interesse: Comportamento da Variável Fluxo Exemplos: Aplicação Nós Arcos Fluxo Sistemas de comunicação Sistemas hidráulicos Sistemas de transportes Satélites, computadores Estação de bombeamento, reservatório Interseções, aeroportos Micro ondas, fibra ótica Tubos Estradas, rotas aéreas Mensagens, dados Água, gás, petróleo Veículos, passageiros 38

39 Problema de Fluxo Máximo Notação: Nó fonte: S Nó destino: T Fluxo no arco (i,j): F ij = quantidade de produto no arco (i,j) C ij ou K ij = capacidade do arco (i,j) = maior fluxo possível no arco (i,j) Restrições envolvidas: Há conservação de fluxo nos nós. Há limitação do valor de fluxo nos arcos. Observações: O Método Simplex resolve este problema. Método mais eficiente: Ford &Fulkerson. 39

40 Problema de Fluxo Máximo Seja a rede abaixo. Deseja-se achar o valor do fluxo máximo que pode ser enviado do nó S ao nó T, respeitando as restrições de capacidade nos arcos e a conservação de fluxo nos nós. Sejam K ij (ou C ij ) as restrições de fluxo (capacidade) no arco (i, j) 1 F S T F 2 40

41 Modelo de Programação Linear Max Z = F F S1 + F S2 = F (1) F 12 + F 1T = F S1 + F 21 (2) s. a: F 21 + F 2T = F S2 + F 12 (3) F 1T + F 2T = F (4) 0 F ij K ij (5) Restrição (1) representa a conservação de fluxo no nó fonte S. Restrições (2) e (3) representam a conservação de fluxo nos nós intermediários 1 e 2. Restrição (4) representa a conservação de fluxo no nó destino T. Restrição (5) restringe os fluxos a serem não-negativos e respeitarem os limites de capacidade nos arcos. 41

42 Problema de Fluxo Máximo Dada uma rede orientada formada por arcos onde há restrições de capacidade, deseja-se enviar a maior quantidade (fluxo) possível de um produto a partir de um nó fonte (S) para um nó destino (T). Fluxo de produto pode ser fluxo de eletricidade, de água, de informação, ou de veículos, entre outros. Extensões: Rede não-orientada Múltiplas fontes e múltiplos destinos 42

43 Problema de Fluxo Máximo Conceitos Básicos Arcos Forward para o nó i: todo arco que sai do nó i. Arcos Backward para o nó i: todo arco que entra no nó i. Caminho entre o nó fonte e o nó destino: seqüência de arcos que se inicia no nó fonte S e termina no nó destino T. Ciclo é um caminho cujos nós inicial e final são os mesmos. Seja N = conjunto de todos os nós da rede. Um Corte separando a fonte S do destino T é uma partição dos nós da rede em dois subconjuntos denotando por S aquele que contém o nó S e por S aquele que contém o nó T. 43

44 Exemplos: Seja a rede anteriormente considerada: Problema de Fluxo Máximo 1 F S T F 2 Nó 1: arcos Forward = {(1,2),(1,T)}, arcos Backward = {(S,1),(2,1)} Caminho: (S,1),(1,2),(2,T) Corte: S = {S,1,2}, S = {T} capacidade = K 1T + K 2T S = {S,2}, S = {1,T} capacidade = K S1 + K 21 + K 2T 44

45 Problema de Fluxo Máximo Resultados Importantes: O corte mínimo é aquele corte com o menor valor de capacidade associado. Excluindo os arcos de um corte da rede não há caminho entre os nós S e T nenhum fluxo ocorrerá entre S e T. Todo fluxo entre S e T deve se dar pelos arcos de um corte o valor do fluxo é limitado pela capacidade do corte. Lema 1: Se F é o fluxo da fonte ao destino e (S,S) é um corte o valor de F é menor ou igual a capacidade daquele corte (S,S). 45

46 Problema de Fluxo Máximo Consequências: Todo fluxo viável da fonte ao destino não pode exceder a capacidade de um corte qualquer. O fluxo máximo na rede é limitado pela capacidade do corte mínimo. Teorema do Fluxo Máximo e do Corte Mínimo O valor do fluxo máximo numa rede é igual a capacidade do corte mínimo. Usando o teorema do fluxo máximo e corte mínimo podese obter o valor do fluxo máximo. Basta encontrar as capacidades de todos os cortes existentes na rede e escolher o menor valor de capacidade. 46

47 Problema de Fluxo Máximo Princípios Básicos do Algoritmo do Fluxo Máximo: Encontrar um caminho pelo qual um fluxo positivo possa ser enviado da fonte S ao destino T. Este caminho é denominado Flow Augmenting Path = caminho com fluxo crescente CFC. O CFC é usado para enviar a maior quantidade de fluxo possível de S para T. Repete-se o processo até que nenhum CFC possa ser obtido. 47

48 Problema de Fluxo Máximo Rotina de rotulação adotada pelo algoritmo: Usada para achar CFC de S para T. 1. Iniciar com o nó fonte S. Um nó j pode ser rotulado a partir de S se um fluxo positivo pode ser enviado de S para j. 2. Em geral, a partir de qualquer nó i ( S) pode-se rotular um nó j se uma das condições abaixo ocorre: a) O arco que conecta os nós i e j é do tipo Forward para o nó i e o fluxo F ij neste arco (i,j) é menor que o valor da sua capacidade K ij. b) O arco que conecta os nós i e j é do tipo Backward para o nó i e o fluxo F ij neste arco (j,i) é maior que zero. 3. O processo continua até que o nó destino T é rotulado. Tem-se então um CFC. 48

49 Algoritmo do fluxo máximo 1. Inicialização Obter um fluxo viável em todos os arcos da rede. Este fluxo deve satisfazer as restrições de conservação de fluxo nos nós e as restrições de capacidade nos arcos. Inicialmente adotar fluxo nulo em todos os arcos. Ir à Etapa Procura de um caminho de fluxo crescente CFC de S para T Usar o procedimento de rotulação de nós, iniciando com o nó origem e terminando com o nó destino T. Se não for possível obter um CFC Parar! Uma solução ótima foi obtida o fluxo atual é máximo. Caso contrário ir a Etapa 3. 49

50 Algoritmo do fluxo máximo 3. Aumento no valor do fluxo entre S e T Calcular o valor máximo δ de fluxo que pode ser enviado pela CFC obtida na etapa anterior. Nos arcos Forward do CFC aumentar o fluxo de δ. Nos arcos Backward do CFC diminuir o fluxo de δ. Voltar à Etapa 2.

51 Exemplo Completo Determinar o fluxo máximo F da fonte S ao destino T, na rede a seguir. Os números ao lado dos arcos representam suas capacidades C ij. F S Notação: Os números ao lado dos arcos representam (F ij, C ij ), onde F ij é o fluxo no arco (i, j). Nós rotulados serão marcados por asteriscos. T F Etapa 1 Inicialização: Fazer F ij = 0 em todos os arcos. 51

52 Exemplo Completo Etapa 2 (Figura 1) Para achar um CFC de S para T: Rotular inicialmente S. Deste nó S pode-se rotular o nó 1 pois o arco (S,1) é do tipo Forward para o nó S e 0 = F S1 C S1 = 7 a seguir, do nó 1 pode-se rotular o nó 2 pois o arco (1,2) é do tipo Forward para o nó 1 e 0 = F 12 C 12 = 3. Finalmente rotula-se o nó destino T pois o arco (2,T) é do tipo Forward para o nó 2 e 0 = F 2T C 2T = 8. Isto resulta num valor de fluxo F = 0. F = 0 1* (0,7) (0,9) S* (0,3) T* (0,9) (0,8) 2* F = 0 Figura 1 52

53 Exemplo Completo Desta forma foi obtida uma CFA formada por arcos do tipo Forward, (S,1), (1,2), (2,T). Etapa 3 O fluxo máximo neste CFC é dado por min {(7-0), (3-0), (8-0)} = 3. Assim pode-se aumentar o fluxo entre S e T de δ = 3. Os novos fluxos estão na Figura 2. 1 (3,7) (0,9) F = 3 S (3,3) T F = 3 (0,9) 2 (3,8) Figura 2 53

54 Exemplo Completo Etapa 2 Repetindo o processo de rotulação de nós para a configuração da Figura 2 obtém-se um novo CFC dado por: S* 1* T* v Etapa 3 O fluxo máximo permitido neste CFC = min {(7-3), (9-0)}= 4. Isto aumenta o fluxo pela rede para F = = 7. A nova configuração de fluxos fica sendo a da Figura 3. F = 7 S 1 (7,7) (4,9) (3,3) T F = 7 (0,9) 2 (3,8) Figura 3 54

55 Exemplo Completo Etapa 2 Na busca de um novo CFC, o nó 1 não pode ser rotulado a partir do nó S pois o arco (S,1) é Forward para S e agora F S1 = C S1 = 7. Mas um novo CFC pode ser obtido rotulando-se o nó 2 e depois o nó T: S* 2* T* v Etapa 3 Neste CFC o fluxo pode ser aumentado de min {(9-0), (8-3)} = 5, o que resulta na configuração dada pela Figura 4: F = 12 S 1 (7,7) (4,9) (3,3) T F = 12 (5,9) 2 Figura 4 (8,8) 55

56 Exemplo Completo Etapa 2: Partindo-se do nó S pode-se rotular o nó 2, a seguir rotula-se o nó 1, pois o arco (1,2) contém um fluxo positivo de 3 unidades e é Backward para o nó 2, neste novo CFC, finalmente a partir do nó 1, pelo arco (1,T) rotula-se o nó destino T: S* 1* v T* 2* Etapa 3 Neste CFC pode-se aumentar o fluxo na rede de min{(9-5),3,(9-4)} = 3, pois o arco (1,2) é Backward e pode ter o fluxo de 3 diminuído até zero. A nova configuração de fluxos está na Figura 5: F = 15 S 1 (7,7) (7,9) (0,3) T F = 15 (8,9) 2 (8,8) Figura 5 56

57 Exemplo Completo Etapa 2: O nó 2 pode ser rotulado a partir do nó S, mas nenhum outro nó pode ser rotulado a partir do nó 2, ou seja, não há nenhum CFC adicional. Logo obteve-se o fluxo máximo de S para T dado por 15 unidades de fluxo. Observação: Pode-se usar o Teorema de Ford & Fulkerson para provar que o fluxo máximo é de fato 15. Veja a Figura 6. 57

58 Exemplo Completo F = 15 1 (7,7) S* (0,3) T F = 15 2* Figura 6 (8,8) Considere o corte que separa os nós rotulados (S e 2) dos não rotulados (1 e T) na última etapa 2, ele é formado pelos arcos (S,1) e (2,T), tendo capacidade = 15 e separa o nó S do nó T. Pelo Teorema de F & F o fluxo não pode exceder a capacidade de nenhum corte que separe o nó S do nó T, logo o corte em questão é o corte mínimo e o fluxo máximo = 15 é igual a capacidade deste corte mínimo. 58

59 Extensões para o problema de Fluxo Máximo Rede não-orientada: considere a rede urbana abaixo: S T Maximizar o fluxo de tráfego de S até T. 59

60 Extensões para o problema de Fluxo Máximo Trabalhar com modelo equivalente de redes: S T Aplicar o algoritmo apresentado e achar Fluxo Máximo. Se arco (i,j) não é direcionado e f ij > f ji fluxo = (f ij f ji ) será enviado de i para j. (Adequar mão de trânsito no arco i j) 60

61 Extensões para o problema de Fluxo Máximo Múltiplas fontes e múltiplos destinos: B 15 E Capacidade do arco AC 20 C 5 F 10 HC D 5 G Nó A = Fonte com oferta produto = 20 (Oferta Total = 40) Nó D = Fonte com oferta produto = 20 Nó E = Destino com demanda produto = 15 (Demanda Total = 35) Nó H = Destino com demanda produto =20 61

62 O problema é viável? Extensões para o problema de Fluxo Máximo AC BC 15 EC C 5 FC 10 TC HC 20 f fictícia f fictícia sc 20 5 DC GC MAXIMIZAR f f MAX = 30 < 35 = Demanda Total Problema Inviável 62

Pesquisa Operacional. Teoria dos Grafos

Pesquisa Operacional. Teoria dos Grafos Pesquisa Operacional Teoria dos Grafos 1 Sumário Introdução Histórico Aplicações de modelos em grafos Conceitos e Notação Representações de um grafo G Tipos de grafos Algoritmos Algoritmo de Djisktra Algoritmo

Leia mais

Problemas de Fluxo em Redes

Problemas de Fluxo em Redes CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação

Leia mais

Problema de Fluxo Máximo

Problema de Fluxo Máximo Problema de Fluxo Máximo The Maximum Flow Problem Fernando Nogueira Fluxo Máximo 1 O Problema de Fluxo Máximo (The Maximum Flow Problem) Considere uma rede direcionada (dígrafo) conectada, com 2 nós especiais

Leia mais

Módulo 2 OTIMIZAÇÃO DE REDES

Módulo 2 OTIMIZAÇÃO DE REDES Módulo 2 OTIMIZAÇÃO DE REDES Grafos e Redes Está contida na área de Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente na solução

Leia mais

Método Simplex Dual. Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP

Método Simplex Dual. Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP Método Simplex Dual Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins fmarins@feg.unesp.br Introdução Algoritmo

Leia mais

MÓDULO 3 - PROBLEMAS DE COBERTURAS DE ARCOS E NÓS

MÓDULO 3 - PROBLEMAS DE COBERTURAS DE ARCOS E NÓS MÓULO 3 - PROBLEMAS E COBERTURAS E ARCOS E NÓS 1. CONCEITOS INICIAIS Área contida na Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente

Leia mais

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas

Leia mais

2 Definição do Problema

2 Definição do Problema Definição do Problema. Formulação Matemática O problema do Fluxo Máximo entre todos os pares de nós surge no contexto de redes, estas representadas por grafos, e deriva-se do problema singular de fluxo

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 5 Modelo da Designação Fernando Marins fmarins@feg.unesp.br Departamento de Produção

Leia mais

Teoria dos Grafos AULA

Teoria dos Grafos AULA Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA Caminho mínimo - Algoritmo de Djskstra Preparado a partir

Leia mais

Conceitos Básicos da Teoria de Grafos

Conceitos Básicos da Teoria de Grafos Conceitos Básicos da Teoria de Grafos Universidade Federal do Pampa - UNIPAMPA Engenharia da Computação Estrutura de Dados Profª Sandra Piovesan Grafos Uma noção simples, abstrata e intuitiva. Representa

Leia mais

Departamento de Engenharia de Produção UFPR 57

Departamento de Engenharia de Produção UFPR 57 Departamento de Engenharia de Produção UFPR 57 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas em redes aparecem

Leia mais

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.

Leia mais

Módulo 3 OTIMIZAÇÃO DE REDES DE TRANSPORTES

Módulo 3 OTIMIZAÇÃO DE REDES DE TRANSPORTES Módulo 3 OTIMIZAÇÃO DE REDES DE TRANSPORTES Grafos e Redes Está contida na área de Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente

Leia mais

GRAFOS Aula 03 Representações de Grafos Max Pereira

GRAFOS Aula 03 Representações de Grafos Max Pereira Ciência da Computação GRAFOS Aula 03 Representações de Grafos Max Pereira A maior vantagem de um grafo é a sua representação visual da informação. Mas para a manipulação e armazenamento em um computador,

Leia mais

Estruturas de Dados Grafos

Estruturas de Dados Grafos Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:

Leia mais

MÓDULO 2 - OTIMIZAÇÃO DE REDES

MÓDULO 2 - OTIMIZAÇÃO DE REDES MÓUL - TIMIZÇÃ RS s problemas de otimização de redes podem ocorrer em várias áreas, mas geralmente são encontrados nas áreas de transportes e comunicações. Um problema típico de transporte consiste em

Leia mais

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 11: Introdução aos Grafos

Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 11: Introdução aos Grafos Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 11: Introdução aos Grafos Indução Finita Indução Finita é uma técnica para provar teoremas também usada no projecto de algoritmos. Suponha

Leia mais

Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I

Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I edmar.kampke@ufes.br Introdução Teoria dos Grafos é o estudo das propriedades e estruturas dos grafos. O objetivo é, após modelar um problema

Leia mais

GRAFOS. Introdução Conceitos Fundamentais

GRAFOS. Introdução Conceitos Fundamentais GRAFOS Introdução Conceitos Fundamentais Uma aplicação do produto de matrizes Agora é a sua vez... Considere o diagrama seguinte Determine, o número de formas diferentes de ir de a 1 até e 2 e de a 2

Leia mais

Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6

Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6 Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo

Leia mais

Grafos Orientados (digrafos)

Grafos Orientados (digrafos) Grafos Orientados (digrafos) Grafo Orientado ou digrafo Consiste em um grafo G = (V,A) onde V = {v 1,, v n } é um conjunto de vértices e A = {a 1,, a k } é um conjunto de arcos tais que a k, k=1,,m é representado

Leia mais

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres.

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres. Ciência da Computação Engenharia de Computação Mestrado em Informática Maria Claudia Silva Boeres boeres@inf.ufes.br Programa 1.Conceitos Básicos 2.Grafos Eulerianos e Hamiltonianos 3.Caminhos, Ciclos

Leia mais

Teoria dos grafos. FATEC Carapicuíba Augusto de Toledo Cruz Junior

Teoria dos grafos. FATEC Carapicuíba Augusto de Toledo Cruz Junior Teoria dos grafos FATEC Carapicuíba Augusto de Toledo Cruz Junior Teoria dos grafos HISTÓRICO 2 Origem O artigo do matemático e físico suiço Leonhard Euler, publicado em 1736, sobre o problema das Sete

Leia mais

Introdução à Teoria dos Grafos. Isomorfismo

Introdução à Teoria dos Grafos. Isomorfismo Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são

Leia mais

Árvore de Suporte de Comprimento Mínimo Minimal Spanning Tree

Árvore de Suporte de Comprimento Mínimo Minimal Spanning Tree Investigação Operacional Árvore de Suporte de Comprimento Mínimo Minimal Spanning Tree Slide Transparências de apoio à leccionação de aulas teóricas Maria Antónia Carravilla José Fernando Oliveira Árvore

Leia mais

Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2

Otimização. Otimização em Redes. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Otimização Otimização em Redes Paulo Henrique Ribeiro Gabriel phrg@ufu.br Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 51 Conteúdo

Leia mais

Definição e Conceitos Básicos

Definição e Conceitos Básicos Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;

Leia mais

Teoria dos Grafos. Maria Claudia Silva Boeres. UFES. Teoria dos Grafos

Teoria dos Grafos. Maria Claudia Silva Boeres. UFES. Teoria dos Grafos Maria Claudia Silva Boeres boeres@inf.ufes.br Motivação Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados na definição e/ou resolução de

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Redes Aula 19: Modelos de Optimização de Redes O Problema do Caminho Mais Curto. O Problema do Fluxo Máximo. O Problema do Fluxo de Custo Mínimo. 2 Modelos de Optimização de Redes O que são redes em (IO)?

Leia mais

Problema do Caminho Mínimo

Problema do Caminho Mínimo Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.

Leia mais

Prof. Marco Antonio M. Carvalho

Prof. Marco Antonio M. Carvalho Prof. Marco Antonio M. Carvalho Lembretes! Lista de discussão! Endereço:! programaacao@googlegroups.com! Solicitem acesso:! http://groups.google.com/group/programaacao! Página com material dos treinamentos!

Leia mais

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47 1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado

Leia mais

Teoria dos Grafos. Motivação

Teoria dos Grafos. Motivação Teoria dos Grafos Aula 1 Primeiras Ideias Prof a. Alessandra Martins Coelho março/2013 Motivação Muitas aplicações em computação necessitam considerar conjunto de conexões entre pares de objetos: Existe

Leia mais

= comprimento (distância, valor) da aresta orientada do vértice i ao vértice j,, e:

= comprimento (distância, valor) da aresta orientada do vértice i ao vértice j,, e: 8 - Problema do Caminho Mínimo Considere a rede: Dado dois vértices nesta rede, queremos determinar o menor caminho ente eles. Uma primeira questão é como representar os valores associados às arestas neste

Leia mais

PCC173 - Otimização em Redes

PCC173 - Otimização em Redes PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 31 de maio de 2017 Marco Antonio M. Carvalho

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 35 Teoria dos Grafos - Relembrando Árvore Um grafo G é uma árvore se é conexo e não possui ciclos (acíclico).

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 14: Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel,

Leia mais

CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches

CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches CES-11 Algoritmos e Estruturas de Dados Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CES-11 Grafos Conceitos gerais e representações Algoritmos em grafos Exploração sistemática em largura Caminhos

Leia mais

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas

Leia mais

Pesquisa Operacional II. Professor João Soares de Mello

Pesquisa Operacional II. Professor João Soares de Mello Pesquisa Operacional II Professor João Soares de Mello http://www.uff.br/decisao/notas.htm Ementa Teoria dos grafos (pré-requisitos: PO I, Álgebra Linear) Programação não linear (pré-requisitos: PO I,

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

Otimização em Grafos

Otimização em Grafos Otimização em Grafos Luidi G. Simonetti PESC/COPPE 2017 Luidi Simonetti (PESC) EEL857 2017 1 / 33 Definição do Problema Dado: um grafo ponderado G = (V, E), orientado ou não, onde d : E R + define as distâncias

Leia mais

GRAFOS E ALGORITMOS TEORIA DE GRAFOS

GRAFOS E ALGORITMOS TEORIA DE GRAFOS GRAFOS E ALGORITMOS TEORIA DE GRAFOS 1a. PARTE Prof. Ronaldo R. Goldschmidt rribeiro@univercidade.br ronaldo_goldschmidt@yahoo.com.br ROTEIRO 1. INTRODUÇÃO E MOTIVAÇÃO 2. FUNDAMENTOS 3. CONECTIVIDADE 4.

Leia mais

Conceitos e Teoremas. Tecnologia da Decisão I TP065. Profª Mariana

Conceitos e Teoremas. Tecnologia da Decisão I TP065. Profª Mariana Conceitos e Teoremas Tecnologia da Decisão I TP Profª Mariana Restrições de um PL: D= = -=J G= =I =H E=- / /= / /=A 9/ =C . ma Z s.a c a a m c a n n a mn n n n n b b m a A am a n a mn b b b m c c c n n

Leia mais

Lista de Exercícios Programação Inteira. x 2 0 e inteiros.

Lista de Exercícios Programação Inteira. x 2 0 e inteiros. Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + y s.a x + y x + y 5 b) Max z = x + y s.a x + y 0 x + y 5 c) Max z = x + y s.a x + 9y 6 8 x +

Leia mais

Fluxo em Redes -01. Prof. Gustavo Peixoto Silva 2 modelos

Fluxo em Redes -01. Prof. Gustavo Peixoto Silva 2 modelos Fluxo em Redes - Prof. Gustavo Peixoto Silva modelos . Otimização em Redes É um caso particular da Programação Linear, onde pretende-se minimizar uma função de custoque dependedofluxoque passa pelos arcosde

Leia mais

GRAFOS: UMA INTRODUÇÃO

GRAFOS: UMA INTRODUÇÃO GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos

Leia mais

Algoritmo Aproximação. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3

Algoritmo Aproximação. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Algoritmo Aproximação Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Heurísticas para Problemas NP- Completo Heurística: algoritmo que pode produzir um bom resultado (ou até a solução ótima),

Leia mais

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações? 8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações

Leia mais

Teoria dos Grafos. Conjuntos de Corte e Conectividade

Teoria dos Grafos. Conjuntos de Corte e Conectividade Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Conjuntos de

Leia mais

PESQUISA OPERACIONAL Definições e Teoremas Básicos. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Definições e Teoremas Básicos. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIONAL Definições e Teoremas ásicos Professor Volmir Wilhelm Professora Mariana Kleina Conceitos Solução Viável Solução Não Viável Região Viável Solução ásica Solução ásica Viável Solução

Leia mais

Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e

Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e Programação Linear A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Existe um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento

Leia mais

CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL FLUXO MÁXIMO

CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL FLUXO MÁXIMO CURSO DE ENGENHARIA DE PRODUÇÃO PESQUISA OPERACIONAL FLUXO MÁXIMO Email: marcosdossantos_coppe_ufrj@yahoo.com.br SUMÁRIO Introdução; Aplicações; Premissas; Teorema de Ford-Fulkerson; Fluxo Máximo como

Leia mais

ANÁLISE DE ALGORITMOS (INF 1721)

ANÁLISE DE ALGORITMOS (INF 1721) PUC-Rio Departamento de Informática Prof. Marcus Vinicius S. Poggi de Aragão (3WA) Horário: 2as. e 4as. 9-11hs (3WA) 3 de dezembro de 2016 Período: 2016.2 ANÁLISE DE ALGORITMOS (INF 1721) 3 a Lista de

Leia mais

Aula 19: Lifting e matrizes ideais

Aula 19: Lifting e matrizes ideais Aula 19: Lifting e matrizes ideais Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Branch-and-bound Formulações

Leia mais

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3

Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3 Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação

Leia mais

Grafos Parte 1. Aleardo Manacero Jr.

Grafos Parte 1. Aleardo Manacero Jr. Grafos Parte 1 Aleardo Manacero Jr. Uma breve introdução Grafos são estruturas bastante versáteis para a representação de diversas formas de sistemas e/ou problemas Na realidade, árvores e listas podem

Leia mais

1 - A capacidade de fluxo que corresponde a capacidade máxima que pode passar pelo arco.

1 - A capacidade de fluxo que corresponde a capacidade máxima que pode passar pelo arco. CONCEITOS DE REDE Uma rede é formada por um conjunto de nós, um conjunto de arcos e de parâmetros associados aos arcos. Nós Arcos Fluxo Interseções Rodovias Veículos Rodoviários Aeroportos Aerovia Aviões

Leia mais

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32

Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32 Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).

Leia mais

GRAFOS Aula 10 Fluxo em Redes Max Pereira

GRAFOS Aula 10 Fluxo em Redes Max Pereira Ciência da Computação GRAFOS Aula 10 Max Pereira É a transferência de algum tipo de recurso quantificável e sujeito a restrições de equilíbrio, de um local (origem) para outro (destino) através de uma

Leia mais

IFRN. Introdução à Teoria dos Grafos. Prof. Edmilson Campos

IFRN. Introdução à Teoria dos Grafos. Prof. Edmilson Campos IFRN Introdução à Teoria dos Grafos Prof. Edmilson Campos Conteúdo Histórico Aplicações Definições Grafo Dígrafo Ordem, adjacência e grau Laço Tipos de grafos Representação de Grafos Matriz de adjacências

Leia mais

Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana

Otimização Linear. Profª : Adriana Departamento de Matemática. wwwp.fc.unesp.br/~adriana Otimização Linear Profª : Adriana Departamento de Matemática adriana@fc.unesp.br wwwp.fc.unesp.br/~adriana Revisão Método Simplex Solução básica factível: xˆ xˆ, xˆ N em que xˆ N 0 1 xˆ b 0 Solução geral

Leia mais

Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade

Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem

Leia mais

Teoria dos Grafos. Profa. Alessandra Martins Coelho

Teoria dos Grafos. Profa. Alessandra Martins Coelho Teoria dos Grafos Profa. Alessandra Martins Coelho fev/2014 Avaliação 2 Provas 30 pontos cada; 3 Implementações 10 pontos cada; 1 Seminário 10 pontos; Listas de exercícios Listas não valem nota, entretanto...

Leia mais

Lista de Exercícios Programação Inteira. x 2 0 e inteiros.

Lista de Exercícios Programação Inteira. x 2 0 e inteiros. Lista de Exercícios Programação Inteira ) Resolva os problemas a seguir usando o método B&B a) Max z = 5 x + 2 y s.a x + y 2 x + y 5 x, y 0, x e y inteiros b) Max z = 2 x + y s.a x + 2y 0 x + y 25 x, y

Leia mais

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado. PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure

Leia mais

Grafos COM11087-Tópicos Especiais em Programação II

Grafos COM11087-Tópicos Especiais em Programação II Grafos COM11087-Tópicos Especiais em Programação II edmar.kampke@ufes.br Introdução Grafos são estruturas muito estudadas na Ciência da Computação para modelagem de problemas Euler (1736) em Königsberg

Leia mais

GRAFOS Aula 07 Algoritmos de Caminho Mínimo: Bellman-Ford / Floyd-Warshall Max Pereira

GRAFOS Aula 07 Algoritmos de Caminho Mínimo: Bellman-Ford / Floyd-Warshall Max Pereira Ciência da Computação GRAFOS Aula 07 Algoritmos de Caminho Mínimo: Bellman-Ford / Floyd-Warshall Max Pereira Algoritmo de Bellman-Ford Arestas com valores negativos podem parecer inúteis, mas elas podem

Leia mais

Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T:

Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T: 12 - Conjuntos de Corte o estudarmos árvores geradoras, nós estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados.

Leia mais

Algoritmo Floyd-Warshall. Problema dos caminhos mínimos entre todos os pares. Programação dinâmica

Algoritmo Floyd-Warshall. Problema dos caminhos mínimos entre todos os pares. Programação dinâmica Algoritmo Floyd-Warshall S. Problema dos caminhos mínimos entre todos os pares Problema: Dado um digrafo com custo nos arcos, determinar, para cada par de vértices s, t o custo de um caminho mínimo de

Leia mais

Introdução à Teoria dos Grafos

Introdução à Teoria dos Grafos Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os

Leia mais

Teoria dos Grafos AULA 1

Teoria dos Grafos AULA 1 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br AULA 1 Introdução,

Leia mais

Grafos: aplicações. Grafos: árvore geradora mínima

Grafos: aplicações. Grafos: árvore geradora mínima árvore geradora mínima caminhos mínimos problemas tipo 1 desejase conectar todos os computadores em um prédio usando a menor quantidade possível de cabos uma companhia aérea deseja voar para algumas cidades

Leia mais

Fluxo em Redes -01. Prof. Gustavo Peixoto Silva 2 modelos

Fluxo em Redes -01. Prof. Gustavo Peixoto Silva 2 modelos Fluo em Redes - Prof. Gustavo Peioto Silva modelos . Otimização em Redes É um caso particular da Programação Linear, onde pretende-se minimizar uma função de custoque dependedofluoque passa pelos arcosde

Leia mais

Programação Linear/Inteira

Programação Linear/Inteira Unidade de Matemática e Tecnologia - RC/UFG Programação Linear/Inteira Prof. Thiago Alves de Queiroz Aula 7 Thiago Queiroz (IMTec) Aula 7 Aula 7 1 / 25 Problemas de Caixeiro Viajante Envolvem um conjunto

Leia mais

Grafos: árvores geradoras mínimas. Graça Nunes

Grafos: árvores geradoras mínimas. Graça Nunes Grafos: árvores geradoras mínimas Graça Nunes 1 Motivação Suponha que queremos construir estradas para interligar n cidades Cada estrada direta entre as cidades i e j tem um custo associado Nem todas as

Leia mais

Teoria dos Grafos Aula 26

Teoria dos Grafos Aula 26 Teoria dos Grafos Aula 26 Aula passada Redes de fluxo Problema do fluxo máximo Problema do corte mínimo Aula de hoje Algoritmo de Ford Fulkerson Análise do algoritmo Melhorando algoritmo inicial Dualidade

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

Prof. Marco Antonio M. Carvalho

Prof. Marco Antonio M. Carvalho Prof. Marco Antonio M. Carvalho Lembretes Lista de discussão Endereço: programaacao@googlegroups.com Solicitem acesso: http://groups.google.com/group/programaacao Página com material dos treinamentos http://www.decom.ufop.br/marco/extensao/obi/

Leia mais

1 Introdução Motivação

1 Introdução Motivação 1 Introdução 1.1. Motivação A programação linear, ao menos na modelagem matemática que se conhece hoje, foi desenvolvida durante a segunda grande guerra quando foi utilizada no planejamento e execução

Leia mais

Método Simplex. Marina Andretta ICMC-USP. 19 de outubro de 2016

Método Simplex. Marina Andretta ICMC-USP. 19 de outubro de 2016 Método Simplex Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização linear

Leia mais

Investigação Operacional

Investigação Operacional Investigação Operacional Licenciatura em Gestão 3.º Ano Ano Lectivo 2013/14 Optimização em Redes Texto elaborado por: Maria João Cortinhal (Coordenadora) Anabela Costa Maria João Lopes Ana Catarina Nunes

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria

Leia mais

Otimização Combinatória - Parte 3

Otimização Combinatória - Parte 3 Graduação em Matemática Industrial Otimização Combinatória - Parte 3 Prof. Thiago Alves de Queiroz Unidade de Matemática e Tecnologia - CAC/UFG 2/2016 Thiago Queiroz (DM) Parte 3 2/2016 1 / 23 Problemas

Leia mais

ANÁLISE DE ALGORITMOS (INF 1721)

ANÁLISE DE ALGORITMOS (INF 1721) PUC-Rio Departamento de Informática Prof. Marcus Vinicius S. Poggi de Aragão (3WA) Horário: 2as. e 4as. 9-11hs (3WA) 24 de novembro de 2015 Período: 2015.2 ANÁLISE DE ALGORITMOS (INF 1721) 3 a Lista de

Leia mais

DISCIPLINA: Investigação Operacional ANO LECTIVO 2009/2010

DISCIPLINA: Investigação Operacional ANO LECTIVO 2009/2010 DISCIPLINA: Investigação Operacional ANO LECTIVO 2009/2010 Exame de Recurso Dep. Econ. Gestão e Engª Industrial 14 de Julho de 2010 duração: 2h30 (80) 1. Considere o modelo seguinte, de Programação Linear

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Sabemos que com um ou dois vértices apenas uma árvore pode ser formada. Entretanto com três vértices podemos formar três árvores. Com quatro vértices temos quatro estrelas e doze

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Algoritmo Aproximado. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3

Algoritmo Aproximado. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Algoritmo Aproximado Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Heurísticas para Problemas N P- Completo Heurística: algoritmo que pode produzir um bom resultado (ou até a solução ótima),

Leia mais

Noções da Teoria dos Grafos

Noções da Teoria dos Grafos Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo

Leia mais

ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.

ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron

Leia mais

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II 01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01

Leia mais

Otimização Combinatória - Parte 4

Otimização Combinatória - Parte 4 Graduação em Matemática Industrial Otimização Combinatória - Parte 4 Prof. Thiago Alves de Queiroz Departamento de Matemática - CAC/UFG 2/2014 Thiago Queiroz (DM) Parte 4 2/2014 1 / 33 Complexidade Computacional

Leia mais

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21 Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 21 Três objetivos i. Redução de custos (custos variáveis) ii. iii. Redução de capital (investimento, custos fixos) Melhoria do serviço

Leia mais