FERRAMENTAS ESTATÍSTICAS PARA ANÁLISE DA CLASSIFICAÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FERRAMENTAS ESTATÍSTICAS PARA ANÁLISE DA CLASSIFICAÇÃO"

Transcrição

1 Objetivos: - QUANTIFICAR OS ERROS COMETIDOS NA CLASSIFICAÇÃO - MEDIR A QUALIDADE DO TRABALHO FINAL - AVALIAR A APLICABILIDADE OPERACIONAL DA CLASSIFICAÇÃO Fontes de erro das classificações temáticas Os erros se devem a alguma das seguintes características: Erro de omissão: se produz quando ainda pertencendo a uma determinada classe o pixel não é designado a esta classe (erro do tipo I). Erro de comissão: se produz quando os pixels são classificados em determinada classe não pertencendo realmente a ela (erro do tipo II). Observação: se existissem apenas duas classes as definições acima as definições acima seriam iguais com redação diferente, mas isso não acontece na realidade e por isso são diferentes.

2 Fontes de erro das classificações temáticas Entre os fatores que influem a incorreta classificação dos pixels ocupa uma posição relevante a estrutura territorial da imagem estudada. Se a fragmentação é grande (áreas homogêneas pequenas) teremos um aumento considerável de bordas e em consequência uma grande quantidade de mistura espectral (pixels mistos ). Outros fatores são: a forma das parcelas, as declividades, a orientação e o contraste espectral de áreas contínuas. A confecção da legenda afeta o nível de erro das classificações: - Legenda muito genérica: erro de classificação muito pequeno mas teremos um mapa temático pobre. - Legenda com muitas classes: aumento do erro da classificação porque as distâncias espectrais entre as classes será menor e consequentemente poderemos ter maiores erros de omissão e comissão.

3 Medidas de confiança Depois da classificação deveremos avaliar a qualidade da classificação de maneira que o usuário possa conhecer a proporção das designações às classes incorretas e o nível de confiança que proporciona o trabalho realizado. Excluindo-se a visita a campo a todos os pixels classificados da imagem existem duas maneiras de estimar o erro cometido na classificação: - Comparando os resultados com outras fontes analógicas (por exemplo, mapas de uso do solo) ou tabelados (por exemplo, estatísticas agrárias) Procedimento não muito interessante já que os documentos utilizados geralmente já são produto de uma amostragem ou generalização de outros dados. Além disso geralmente a data de obtenção dos documentos utilizados é mais antiga que a imagem a ser analisada. - Realizando uma campanha de campo sobre uma amostra de pixels da imagem.

4 Amostragem para a verificação A composição da amostra deve ser suficientemente representativa da população para permitir que se estimem os parâmetros necessários a verificação da classificação. Além dos fatores espaciais (abaixo) o custo econômico relacionado as rotas que serão necessárias para levantar a verdade terreno deverá ser levado em conta. Tipos de amostragem: Aleatório Simples: consiste em estabelecer ao azar os pixels que vão ser visitados a campo, sem nenhum outro aspecto. A seleção de um elemento não condiciona a seleção dos seguintes. Todos os pixels tem a mesma probabilidade de serem selecionados o qual é uma vantagem do ponto de vista estatístico. Método difícil ou muito caro de ser executado, já que os pixels selecionados não levam em conta a estrutura espacial da área em estudo (ex., estradas). A variabilidade espacial de certas classes pode não ser contemplado por este método de seleção da amostra.

5 Aleatório estratificado: se divide o espaço amostral em diversas subpopulações, cada uma das quais se aplica a amostragem aleatória simples. Cada divisão do espaço amostral se chama estrato e para sua obtenção utilizamos algum critério que tenha relação com o processo de classificação, quer dizer, os estratos devem ter homogeneidade interna. Exemplo: na classificação de cultivos agrícolas poderíamos utilizar os seguintes tipos de estratos orientação norte e orientação sul, diferentes altitudes, tipos de solos diferentes, etc. Este método minimiza os inconvenientes do método anterior adaptando-se de forma mais eficiente as particularidades da população. Sistemático: a partir de um ponto qualquer, se selecionam os pontos amostrais equidistantes nas coordenadas x e y da imagem. Possui a vantagem de explorar espacialmente toda a extensão da imagem. No entanto desconhece a priori a distribuição das classes podendo infravalorizar a presença de alguma(s) das classes.

6 Sistemático não alinhado: o ponto de partida desta amostragem é uma quadrícula sistemática sobre a imagem e a obtenção aleatória do ponto amostral dentro de cada quadrícula. Este método mantém as vantagens do método sistemático e introduz a aleatoriedade das amostras. Por conglomerados: se trata de uma amostragem aleatória em que ao invés de utilizar apenas um pixel no ponto sorteado selecionam-se um grupo deles para formar a amostra, seguindo sempre o mesmo padrão de forma. Tamanho da Amostra O tamanho da amostra depende de dois fatores fundamentais: Devemos levar em consideração o nível de confiança que queremos outorgar a estimativa. Se quisermos 100% de confiança devermos fazer com que n tenda ao infinito (n ), ou seja, o tamanho da amostra tende a ser do tamanho da população. O tamanho da amostra dependerá do grau de informação prévia já temos sobre a população, porque isso permitirá reduzir o tamanho da amostra sem reduzir o nível de confiança da estimativa.

7 Matriz de confusão O próximo passo da verificação dos resultados obtidos na classificação consiste em obter de cada pixel da amostra a sua verdadeira ocupação (verdade terreno) e compará-la com a proposta do classificador. Esta comparação entre os resultados da classificação e os da amostragem (verdade terreno) realiza-se a confecção de uma matriz quadrada em que nas colunas temos as classes propostas pelo algoritmo de classificação e as linhas a ocupação real Æ Matriz de confusão. Cada elemento da matriz estará ocupado com um número que representará a quantidade de pixels da amostra analisada, que pertencendo na imagem classificada a classe que marca a sua coluna realmente a amostragem demonstrou que pertence a classe que indica a sua linha. A diagonal principal da matriz de confusão estará ocupada pelo número de pixels corretamente classificada para cada classe da legenda. Por outro lado, os elementos fora da diagonal principal correspondem a erros de classificação. Os elementos dentro da mesma linha pertenciam a uma determinada classe mas não foram classificados corretamente. Este erro é do tipo I e se denomina erro de omissão.

8 Matriz de confusão Os elementos fora da diagonal principal pertencentes a uma mesma coluna representam os pixels da amostra que, foram classificados dentro de uma determinada classe mas realmente pertencem a outra. Se trata de um erro tipo II ou seja erro de comissão.

9 Análise da Matriz de confusão Medidas Globais de Confiança: a matriz de confusão é um modelo de uma tabela de contingência a partir da qual podemos extrair informação quantitativa a respeito da verificação da classificação. A confiança global da imagem classificada se estima pela razão existente entre o número de pixels corretamente classificados e o total de pixels amostrados. Ou seja a confiança global é o quociente entre a soma dos pixels existentes na diagonal principal da matriz de confusão e a soma de todos os elementos da matriz. A este valor deveremos atribuir um intervalo de erro (±ε), calculado segundo a expressão abaixo, para um determinado intervalo de confiança (1-α), obtendo-se:

10 Análise da Matriz de confusão Risco do usuário e do produtor: a soma dos resíduos por linhas constitui o denominado erro de omissão, cujo cálculo para a classe i em termos relativos fica definido como: Da mesma maneira a soma dos resíduos por colunas constitui o erro de comissão: A expressão de ambos erros em termos percentuais se denominam risco do produtor e risco do usuário, respectivamente. Risco do produtor é a probabilidade de erro que o analista está cometendo em consequência da não inclusão de alguns pixels em suas classes correspondentes (omissão). Risco do usuário é a probabilidade de um pixel classificado pelo usuário como sendo de uma classe mas na realidade ele pertence a uma classe diferente (comissão).

11 Análise da Matriz de confusão Risco do usuário e do produtor: Os complementares a 100 de ambos riscos serão as respectivas confianças, ou seja, confiança do produtor: confiança do usuário: Análise categórico multivariante: A classificação, supervisionada ou automática, estabelecerá uma designação de pixels a cada classe da legenda de forma lógica e deverá produzir uma matriz de confusão com maior confiança que aquela obtida por uma classificação aleatória ou ao azar. Um dos índices mais utilizados na avaliação da qualidade da classificação é o kappa () que quantifica o nível de acerto explicado pelo método de classificação seguido, em relação àquele obtido meramente pelo azar ou aleatório.

12 Análise da Matriz de confusão Análise categórico multivariante: Sendo: O índice kappa se define como: Este estimador adotará valores tanto mais próximos da unidade quanto maior seja o ajuste seja significativamente melhor que aquele obtido por uma classificação aleatória.

Noções de Amostragem

Noções de Amostragem Noções de Amostragem AMOSTRAGEM Amostragem: é a área da estatística que estuda técnicas e procedimentos para retirar e analisar uma amostra com o objetivo de fazer inferência a respeito da população de

Leia mais

Sensoriamento Remoto

Sensoriamento Remoto LABORATÓRIOS DIDÁTICOS DE GEOPROCESSAMENTO Sensoriamento Remoto Classificação Supervisionada de Imagens de Sensoriamento Remoto Elaboração: Cláudia Soares Machado Mariana Giannotti Rafael Walter de Albuquerque

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

Mapeamento do uso do solo

Mapeamento do uso do solo Multidisciplinar Mapeamento do uso do solo para manejo de propriedades rurais Allan Arnesen Frederico T. Genofre Marcelo Pedroso Curtarelli CAPÍTULO 4 Técnicas de classificação de imagens e processamento

Leia mais

F- Classificação. Banda A

F- Classificação. Banda A F- Classificação Classificação Digital é associar determinado pixel a determinada categoria por meio de critérios estatísticos Banda B? da d b dc Espaço dos Atributos Classes Banda A Classificação: ordenar,

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Técnicas de Amostragem

Técnicas de Amostragem Técnicas de Amostragem 1 Amostragem é o processo de seleção de uma amostra, que possibilita o estudo das características da população. Quando obtemos informações a partir de amostras e tentamos atingir

Leia mais

Noções de Amostragem. Universidade Estadual de Santa Cruz Gustavo Fragoso

Noções de Amostragem. Universidade Estadual de Santa Cruz Gustavo Fragoso Noções de Amostragem Universidade Estadual de Santa Cruz Gustavo Fragoso Motivação Raramente se consegue obter a distribuição exata de alguma variável, ou porque isso é muito dispendioso, ou muito demorado

Leia mais

CAPÍTULO 3 POPULAÇÃO E AMOSTRA

CAPÍTULO 3 POPULAÇÃO E AMOSTRA DEPARTAMENTO DE GEOCIÊNCIAS GCN 7901 ANÁLISE ESTATÍSTICA EM GEOCIÊNCIAS PROFESSOR: Dr. ALBERTO FRANKE CONTATO: alberto.franke@ufsc.br F: 3721 8595 CAPÍTULO 3 POPULAÇÃO E AMOSTRA As pesquisas de opinião

Leia mais

Elementos de Estatística. Michel H. Montoril Departamento de Estatística - UFJF

Elementos de Estatística. Michel H. Montoril Departamento de Estatística - UFJF Elementos de Estatística Michel H. Montoril Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os estatísticos são

Leia mais

Amostragem. Amostragem. Técnica: possibilita realizar a pesquisa em universos infinitos.

Amostragem. Amostragem. Técnica: possibilita realizar a pesquisa em universos infinitos. Técnica: possibilita realizar a pesquisa em universos infinitos. A Estatística pode ser estendida ao estudo das populações chamadas infinitas nas quais não temos a possibilidade de observar todos os elementos

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO.

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. - Que é Amostragem Aleatória Simples. - Métodos para a

Leia mais

TIPOS DE AMOSTRAGEM Amostragem Probabilística e Não-Probabilística. Amostragem PROBABILÍSTICA: Amostragem Aleatória Simples: VANTAGENS:

TIPOS DE AMOSTRAGEM Amostragem Probabilística e Não-Probabilística. Amostragem PROBABILÍSTICA: Amostragem Aleatória Simples: VANTAGENS: TIPOS DE AMOSTRAGEM Amostragem Probabilística e Não-Probabilística. Amostragem PROBABILÍSTICA: Técnicas de amostragem em que a seleção é aleatória de tal forma que cada elemento tem igual probabilidade

Leia mais

INTRODUÇÃO A ESTATISTICA PROF. RANILDO LOPES

INTRODUÇÃO A ESTATISTICA PROF. RANILDO LOPES INTRODUÇÃO A ESTATISTICA PROF. RANILDO LOPES DESCRIÇÃO DOS DADOS CONTÍNUOS Trazem informações que expressam a tendência central e a dispersão dos dados. Tendência Central: Média ( x ), Mediana ( Md ),

Leia mais

AMOSTRAGEM. É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas.

AMOSTRAGEM. É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas. AMOSTRAGEM É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas. Nos planejamentos amostrais, a coleta dos dados deve ser realizada

Leia mais

Amostragem Sistemática

Amostragem Sistemática CAPÍTULO VII Amostragem Sistemática Professor Gilson Fernandes da Silva Departamento de Engenharia Florestal Centro de Ciências Agrárias CCA/UFES 1 Introdução Por este processo, diferentemente do processo

Leia mais

Inventário Florestal. Amostragem

Inventário Florestal. Amostragem Inventário Florestal Amostragem 1 Definição: Seleção de uma parte (amostra) de um todo (população), coletando na parte selecionada, algumas informações de interesse, com o objetivo de tirar conclusão (inferência)

Leia mais

III - Amostragem. Prof. Herondino

III - Amostragem. Prof. Herondino III - Amostragem Prof. Herondino População e amostra População uma população é o conjunto de todos os itens, objetos, coisas ou pessoas a respeito das quais a informação é desejada para a solução de um

Leia mais

Avaliação de métodos de classificação para o mapeamento de remanescentes florestais a partir de imagens HRC/CBERS

Avaliação de métodos de classificação para o mapeamento de remanescentes florestais a partir de imagens HRC/CBERS http://dx.doi.org/10.12702/viii.simposfloresta.2014.131-592-1 Avaliação de métodos de classificação para o mapeamento de remanescentes florestais a partir de imagens HRC/CBERS Juliana Tramontina 1, Elisiane

Leia mais

CLASSIFICAÇÃO DE IMAGENS DE SATÉLITE MULTITEMPORAISBASEADA EM OBJETOS E APURAMENTO SEMIAUTOMÁTICO DE LIMIARES DE CORTE

CLASSIFICAÇÃO DE IMAGENS DE SATÉLITE MULTITEMPORAISBASEADA EM OBJETOS E APURAMENTO SEMIAUTOMÁTICO DE LIMIARES DE CORTE CLASSIFICAÇÃO DE IMAGENS DE SATÉLITE MULTITEMPORAISBASEADA EM OBJETOS E APURAMENTO SEMIAUTOMÁTICO DE LIMIARES DE CORTE Ângela Barbosa, Dora Roque, Ana Maria Fonseca e Jorge Rocha Problemática Classificação

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Amostragem estratificada Divisão da população em

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho.

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho. População e Amostra De importância fundamental para toda a análise estatística é a relação entre amostra e população. Praticamente todas as técnicas a serem discutidas neste curso consistem de métodos

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Técnicas de Amostragem. É o estudo de um pequeno grupo de elementos retirado de uma população que se pretende conhecer.

Técnicas de Amostragem. É o estudo de um pequeno grupo de elementos retirado de uma população que se pretende conhecer. Técnicas de Amostragem O que é? É o estudo de um pequeno grupo de elementos retirado de uma população que se pretende conhecer. Esses pequenos grupos retirados da população são chamados de Amostras. Por

Leia mais

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Estatística Aplicada à Gestão

Estatística Aplicada à Gestão Estatística Aplicada à Gestão E-mail: reginaldo.izelli@fatec.sp.gov.br Disciplina: Estatística Aplicada à Gestão Disciplina: Estatística Aplicada à Gestão Conceitos em amostragem: : é o processo de retirada

Leia mais

Mais Informações sobre Itens do Relatório

Mais Informações sobre Itens do Relatório Mais Informações sobre Itens do Relatório Amostra Tabela contendo os valores amostrados a serem utilizados pelo método comparativo (estatística descritiva ou inferencial) Modelos Pesquisados Tabela contendo

Leia mais

MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL

MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL Pedro Henrique Bragioni Las Casas Pedro.lascasas@dcc.ufmg.br Apresentação baseada nos slides originais de Jussara Almeida e Virgílio Almeida

Leia mais

EAE36AM - ESTATÍSTICA APLICADA A EXPERIMENTOS

EAE36AM - ESTATÍSTICA APLICADA A EXPERIMENTOS EAE36AM - ESTATÍSTICA APLICADA A EXPERIMENTOS AULA 1 PROFª SHEILA REGINA ORO EMENTA Planejamento de experimentos; Planejamento amostral; Delineamento experimental; Coleta e validação dos dados; Testes

Leia mais

A Importância do Desenho Amostral. Donald Pianto Departamento de Estatística UnB

A Importância do Desenho Amostral. Donald Pianto Departamento de Estatística UnB A Importância do Desenho Amostral Donald Pianto Departamento de Estatística UnB Objetivo dessa aula Explicar os tipos básicos de amostragem e a razão pelo uso de cada um Contemplar o uso simultaneo de

Leia mais

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo.

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo. UNIVERSIDADE FEDERAL DA PARAÍBA Amostragem Luiz Medeiros de Araujo Lima Filho Departamento de Estatística INTRODUÇÃO Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é,

Leia mais

Levantamento de Solos. Vanderlei Rodrigues da Silva

Levantamento de Solos. Vanderlei Rodrigues da Silva Levantamento de Solos Vanderlei Rodrigues da Silva Introdução - Variabilidade pedológica fenômeno natural resultante da interação dos diferentes fatores e processos de formação e suas interrelações com

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

O que é Amostragem? Qual o objetivo de um curso em Amostragem?

O que é Amostragem? Qual o objetivo de um curso em Amostragem? 1. Introdução Nos dias de hoje, a demanda por informações que ajudem em processos de tomadas de decisão é considerável. Freqüentemente essas informações são de caráter quantitativo, como índice de inflação,

Leia mais

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo.

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo. UNIVERSIDADE FEDERAL DA PARAÍBA Amostragem Luiz Medeiros de Araujo Lima Filho Departamento de Estatística INTRODUÇÃO Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é,

Leia mais

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis = de Instrução e = Região de procedência. Neste caso, a distribuição de freqüências é apresentada como uma tabela

Leia mais

Especialização em Engenharia de Processos e de Sistemas de Produção

Especialização em Engenharia de Processos e de Sistemas de Produção Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 2ª parte Experimentos inteiramente

Leia mais

Aula 8 A coleta de dados na Pesquisa Social

Aula 8 A coleta de dados na Pesquisa Social Aula 8 A coleta de dados na Pesquisa Social População População- totalidade dos elementos sob estudo. Apresentam uma ou mais características em comum. Universo ou população: é o conjunto de indivíduos

Leia mais

DEFININDO AMOSTRA REPRESENTATIVA. POPULAÇÃO: Qualquer tipo de grupo de pessoas, organizações, objetos ou eventos que queremos estudar.

DEFININDO AMOSTRA REPRESENTATIVA. POPULAÇÃO: Qualquer tipo de grupo de pessoas, organizações, objetos ou eventos que queremos estudar. QUEM, O QUÊ, ONDE, QUANDO: O PROBLEMA DA AMOSTRAGEM AMOSTRAGEM PROBABILÍSTICA DEFININDO AMOSTRA REPRESENTATIVA POPULAÇÃO: Qualquer tipo de grupo de pessoas, organizações, objetos ou eventos que queremos

Leia mais

Alterações no padrão de cobertura da terra na Zona Oeste da cidade do Rio de Janeiro/RJ nos anos de 1985 e DOMINIQUE PIRES SILVA

Alterações no padrão de cobertura da terra na Zona Oeste da cidade do Rio de Janeiro/RJ nos anos de 1985 e DOMINIQUE PIRES SILVA Alterações no padrão de cobertura da terra na Zona Oeste da cidade do Rio de Janeiro/RJ nos anos de 1985 e 2010. DOMINIQUE PIRES SILVA Universidade Federal Rural do Rio de Janeiro E-mail: nique_rhcp@hotmail.com

Leia mais

Instituto Nacional de Pesquisas Espaciais - INPE. Divisão de Processamento de Imagens - DPI

Instituto Nacional de Pesquisas Espaciais - INPE. Divisão de Processamento de Imagens - DPI 1 Sumário 2 Introdução Técnicas de ESDA Matrizes de Proximidade Espacial Média Espacial Móvel (m i ) Indicadores Globais de Autocorrelação Espacial Índices Globais de Moran (I), Geary (C) e Getis e Ord

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

Estatística. Disciplina de Estatística 2012/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

Estatística. Disciplina de Estatística 2012/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Disciplina de Estatística 2012/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa 1 Numa pesquisa por amostragem, como sabemos se uma amostra pode representar adequadamente

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

ESTATÍSTICA- I 3- POPULAÇÃO E AMOSTRA Variáveis A cada fenômeno corresponde um número de resultados possíveis. Assim, por exemplo:

ESTATÍSTICA- I 3- POPULAÇÃO E AMOSTRA Variáveis A cada fenômeno corresponde um número de resultados possíveis. Assim, por exemplo: ESTATÍSTICA- I 1- INTRODUÇÃO -A Estatística é a parte da Matemática Aplicada que fornece métodos para a coleta, organização, descrição, análise e interpretação de dados e para a utilização dos mesmos na

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

DCBD. Avaliação de modelos. Métricas para avaliação de desempenho. Avaliação de modelos. Métricas para avaliação de desempenho...

DCBD. Avaliação de modelos. Métricas para avaliação de desempenho. Avaliação de modelos. Métricas para avaliação de desempenho... DCBD Métricas para avaliação de desempenho Como avaliar o desempenho de um modelo? Métodos para avaliação de desempenho Como obter estimativas confiáveis? Métodos para comparação de modelos Como comparar

Leia mais

Prof. Dr. Engenharia Ambiental, UNESP

Prof. Dr. Engenharia Ambiental, UNESP INTRODUÇÃO A ESTATÍSTICA ESPACIAL Análise Exploratória dos Dados Estatística Descritiva Univariada Roberto Wagner Lourenço Roberto Wagner Lourenço Prof. Dr. Engenharia Ambiental, UNESP Estrutura da Apresentação

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Disciplina: AGR116 Bioestatística Professor: Celso Luiz Borges de Oliveira Assunto: Estatística Descritiva Tema: Amostragem,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis X = Grau de Instrução e Y = Região

Leia mais

META Estudar características de populações com base nas informações colhidas por amostras de dados selecionados aleatoriamente nestas populações.

META Estudar características de populações com base nas informações colhidas por amostras de dados selecionados aleatoriamente nestas populações. AMOSTRAGEM: POPULAÇÃO E AMOSTRA. TIPOS DE AMOSTRAGEM. AMOSTRA PILOTO. NÍVEL DE CONFIANÇA. ESTIMATIVA DA MÉDIA E PROPORÇÃO POPULACIONAL POR PONTO E POR INTERVALO. META Estudar características de populações

Leia mais

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS DA SAÚDE FACULDADE DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA DISCIPLINA DE EPIDEMIOLOGIA ESTUDOS DE COORTE 1) Com o objetivo de investigar

Leia mais

CLASSIFICAÇÃO PIXEL A PIXEL SUPERVISIONADA EM IMAGEM DE SATÉLITE SÃO SEBASTIÃO DO PARAISO (MG)

CLASSIFICAÇÃO PIXEL A PIXEL SUPERVISIONADA EM IMAGEM DE SATÉLITE SÃO SEBASTIÃO DO PARAISO (MG) CLASSIFICAÇÃO PIXEL A PIXEL SUPERVISIONADA EM IMAGEM DE SATÉLITE SÃO SEBASTIÃO DO PARAISO (MG) Rennan de Freitas Bezerra Marujo Universidade Federal de Lavras rennan@computacao.ufla.br Margarete Marin

Leia mais

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido

Leia mais

Seminários Digitais Parte VI. Do universo, da amostra e da delimitação do corpus na pesquisa

Seminários Digitais Parte VI. Do universo, da amostra e da delimitação do corpus na pesquisa Seminários Digitais Parte VI Do universo, da amostra e da delimitação do corpus na pesquisa Curso de Comunicação em Mídias Digitais Pesquisa Aplicada em Comunicação e Mídias Digitais Marcos Nicolau Do

Leia mais

DesertWatch Extension to Portuguese Partners

DesertWatch Extension to Portuguese Partners DesertWatch Extension to Portuguese Partners 2009 Critical Software S.A. Ocupação do Solo Resumo Objectivos Ocupação do Solo Áreas de Estudo Nomenclatura DW-E Dados de Observação da Terra Comparação dos

Leia mais

Tratamento estatístico de observações

Tratamento estatístico de observações Tratamento estatístico de observações Prof. Dr. Carlos Aurélio Nadal OBSERVAÇÃO: é o valor obtido durante um processo de medição. DADO: é o resultado do tratamento de uma observação (por aplicação de uma

Leia mais

Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL

Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL Técnicas Experimentais Aplicadas à Zootecnia UNIDADE 1. NOÇÕES DE PLANEJAMENTO EXPERIMENTAL Experimentos (testes) são realizados por pesquisadores em todos os campos de investigação, usualmente para descobrir

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental Revisão Virgílio A. F. Almeida Maio de 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais FOCO do curso Revisão

Leia mais

A Influência da Amostragem na Representatividade dos Dados

A Influência da Amostragem na Representatividade dos Dados A Influência da Amostragem na Representatividade dos Dados por Manuel Rui F. Azevedo Alves ESTG- Instituto Politécnico de Viana do Castelo REQUIMTE Rede de Química e Tecnologia Sumário Tópico 1: Definições

Leia mais

A Estatística compreende um conjunto de

A Estatística compreende um conjunto de UNIVERSIDADE FEDERAL DA PARAÍBA INTRODUÇÃO Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ CONCEITOS FUNDAMENTAIS DE ESTATÍSTICA O que a Estatística significa para você? Pesquisas

Leia mais

17/07/2017. Semiprobabilística. Amostra. Amostra Probabilística. Estatística. Amostra Não probabilística TÉCNICAS DE AMOSTRAGEM NOÇÕES DE AMOSTRAGEM

17/07/2017. Semiprobabilística. Amostra. Amostra Probabilística. Estatística. Amostra Não probabilística TÉCNICAS DE AMOSTRAGEM NOÇÕES DE AMOSTRAGEM Probabilística Não probabilística Semiprobabilística 17/07/2017 Técnica de gem Não Probabilística Semiprobabilistica probabilística 1 TÉCNICAS DE AMOSTRAGEM Estatística 2 Por conveniência Sistemática Por

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Amostragem: Planejamento e Processos. Cap. 12 e 13 Introdução a Pesquisa de Marketing Naresh K. Malhotra

Amostragem: Planejamento e Processos. Cap. 12 e 13 Introdução a Pesquisa de Marketing Naresh K. Malhotra Amostragem: Planejamento e Processos Cap. 12 e 13 Introdução a Pesquisa de Marketing Naresh K. Malhotra Amostra ou Censo Amostra: Subgrupo dos elementos da população selecionados para participação no estudo.

Leia mais

27/05/2016. Semiprobabilística. Amostra. Amostra Probabilística. Bioestatística TÉCNICAS DE AMOSTRAGEM NOÇÕES DE AMOSTRAGEM. Amostra Sistemática

27/05/2016. Semiprobabilística. Amostra. Amostra Probabilística. Bioestatística TÉCNICAS DE AMOSTRAGEM NOÇÕES DE AMOSTRAGEM. Amostra Sistemática Probabilística Não probabilística Semiprobabilística 27/05/2016 Técnica de gem Não Probabilística Semiprobabilistica Não probabilística 1 TÉCNICAS DE AMOSTRAGEM Bioestatística 2 Por conveniência Sistemática

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

AMOSTRAGEM 1. O QUE É AMOSTRAGEM?

AMOSTRAGEM 1. O QUE É AMOSTRAGEM? 1. O QUE É AMOSTRAGEM? AMOSTRAGEM CAROLINA PROCÓPIO PIO DE MOURA GUSTAVO ADOLFO MAIA P. L. LIMA JOSEVALDO DO AMARAL DE SOUSA Prof. Rodrigo Leone É uma técnica t e/ou conjunto de procedimentos necessários

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Unidade I. Profa. Ana Carolina Bueno

Unidade I. Profa. Ana Carolina Bueno Unidade I ESTATÍSTICA Profa. Ana Carolina Bueno Estatística Interpretar processos em que há variabilidade. Estatísticas indica qualquer coleção de dados quantitativos, ou ainda, ramo da matemática que

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual

Leia mais

APÊNDICE B ESTIMATIVA DE ERROS DE AMOSTRAGEM

APÊNDICE B ESTIMATIVA DE ERROS DE AMOSTRAGEM APÊNDICE B ESTIMATIVA DE ERROS DE AMOSTRAGEM APÊNDICE B ESTIMATIVA DE ERROS DE AMOSTRAGEM Por tratar-se dum inquérito por amostragem, os resultados do IDS-97 em Moçambique apresentados neste relatório

Leia mais

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO PROCESSAMENTO DE IMAGENS Introdução Conceitos básicos Pré-processamento Realce Classificação PROCESSAMENTO DE IMAGENS Extração de Informações

Leia mais

01/06/2016. Semiprobabilística. Amostra. Amostra Probabilística. Bioestatística. Amostra Não probabilística TÉCNICAS DE AMOSTRAGEM

01/06/2016. Semiprobabilística. Amostra. Amostra Probabilística. Bioestatística. Amostra Não probabilística TÉCNICAS DE AMOSTRAGEM Probabilística Não probabilística Semiprobabilística 01/06/2016 Técnica de gem Não Probabilística Semiprobabilistica probabilística 1 TÉCNICAS DE AMOSTRAGEM Bioestatística 2 Por conveniência Sistemática

Leia mais

DEFCUL- Metodologia da Investigação I. Amostragem. Maria João Lagarto Nuno Longle Sílvia Dias

DEFCUL- Metodologia da Investigação I. Amostragem. Maria João Lagarto Nuno Longle Sílvia Dias DEFCUL- Metodologia da Investigação I Amostragem Maria João Lagarto Nuno Longle Sílvia Dias 18 de Novembro de 2005 Mais do que ouvir muitas vozes, interessa ouvir as vozes certas. População e amostra População

Leia mais

Estatística Inferencial

Estatística Inferencial statística Inferencial A ou inferencial compreende a stimação e o Teste de hipótese. Na verdade, a estatística inferencial forma a base das atividades de controle da qualidade e também pode auxiliar na

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Estatística. Guia de Estudos P1

Estatística. Guia de Estudos P1 Estatística Guia de Estudos P1 1. Introdução O objetivo principal do curso de estatística é dar as ferramentas necessárias para o aluno saber analisar e manipular dados e, a partir deles, extrair conclusões

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16)

Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Resumo: Veremos nesta aula tabelas, cálculos de porcentagem e gráficos; amostras e tipo de amostragem; Medidas de tendência central e medidas

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Amostragem É o processo de seleção de amostras de uma população com o objetivo de fazer inferências sobre a população

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Noções básicasb de Inferência Estatística descritiva inferencial População - Parâmetros desconhecidos (reais) Amostra

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

TRATAMENTO DOS DADOS DE SATÉLITES

TRATAMENTO DOS DADOS DE SATÉLITES TRATAMENTO DOS DADOS DE SATÉLITES Fonte de radiação SISTEMA DE COLETA Trajetória ria PRODUTOS INTERAÇÃO SISTEMA TRATAMENTO AÇÕES Produto final Tratamento de imagem Consiste em aplicar determinadas técnicas

Leia mais

Distribuição t de Student

Distribuição t de Student Distribuição t de Student Introdução Quando o desvio padrão da população não é conhecido (o que é o caso, geralmente), usase o desvio padrão da amostra como estimativa, substituindo-se σ x por S x nas

Leia mais

PERFIL DOS AUTORES... XVII PREFÁCIO... XIX INTRODUÇÃO... XXI

PERFIL DOS AUTORES... XVII PREFÁCIO... XIX INTRODUÇÃO... XXI Sumário PERFIL DOS AUTORES... XVII PREFÁCIO... XIX INTRODUÇÃO... XXI CAPÍTULO 1 O processo de pesquisa e os enfoques quantitativo e qualitativo rumo a um modelo integral... 2 Que enfoques foram apresentados

Leia mais

O PAPEL DA ESTATÍSTICA NA PESQUISA CIENTÍFICA Irene Mauricio Cazorla

O PAPEL DA ESTATÍSTICA NA PESQUISA CIENTÍFICA Irene Mauricio Cazorla O PAPEL DA ESTATÍSTICA NA PESQUISA CIENTÍFICA Irene Mauricio Cazorla 1 O PAPEL DA ESTATÍSTICA NA PESQUISA CIENTÍFICA Irene Mauricio Cazorla 1.1 Relação entre o projeto de pesquisa e o papel da estatística

Leia mais

Sensoriamento Remoto Aplicado à Geografia. Interpretação de imagens e confecção de mapas

Sensoriamento Remoto Aplicado à Geografia. Interpretação de imagens e confecção de mapas Sensoriamento Remoto Aplicado à Geografia Interpretação de imagens e confecção de mapas Prof. Dr. Ailton Luchiari Prof. Dr. Reinaldo Paul Pérez Machado Interpretação de imagens e confecção de mapas Etapas

Leia mais

Uso de geotecnologias no estudo da sustentabilidade agrícola do núcleo rural Taquara, DF.

Uso de geotecnologias no estudo da sustentabilidade agrícola do núcleo rural Taquara, DF. 1 Uso de geotecnologias no estudo da sustentabilidade agrícola do núcleo rural Taquara, DF. Lousada, Bruno Maia Soriano (1) ; Lacerda, Marilusa Pinto Coelho (2) ; Boschini Ana Paula Masson (1) & Araújo,

Leia mais

Introdução à estatística

Introdução à estatística RESUMO Estatística é uma ciência exata que visa fornecer subsídios ao analista para coletar, organizar, resumir, analisar e apresentar dados. Trata de parâmetros extraídos da população, tais como média,

Leia mais

Mapeamento do uso do solo para manejo de propriedades rurais

Mapeamento do uso do solo para manejo de propriedades rurais 1/55 Mapeamento do uso do solo para manejo de propriedades rurais Prática Eng. Allan Saddi Arnesen Eng. Frederico Genofre Eng. Marcelo Pedroso Curtarelli 2/55 Conteúdo programático: Capitulo 1: Conceitos

Leia mais

Análise química do solo: amostras para análise

Análise química do solo: amostras para análise Análise química do solo: Amostragem de solos e Preparo das amostras para análise Análise do solo A análise de solo conjunto de procedimentos físicos e químicos que visam avaliar as características e propriedades

Leia mais

Capítulo 1 Conceitos de Marketing e Marketing Research

Capítulo 1 Conceitos de Marketing e Marketing Research Índice Prefácio 21 Introdução 25 PARTE I Capítulo 1 Conceitos de Marketing e Marketing Research 1. Evolução do Marketing 33 2. Evolução do conceito de Marketing 35 3. Modelo do sistema de Marketing 38

Leia mais

ESTATÍSTICA. Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA

ESTATÍSTICA. Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA 1 ESTATÍSTICA Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA Estatística descritiva : o objectivo é sintetizar e representar de uma forma

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais