Medição e propagação de erros

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Medição e propagação de erros"

Transcrição

1 Meição e propgção e erros Sistem e unies prão Pr fcilitr o comércio interncionl, iversos píses crirm prões comuns pr meir grnezs trvés e um coro interncionl. A 4 Conferênci Gerl sore Pesos e Meis (97 elegeu s sete grnezs físics funmentis, que constituem se o Sistem Interncionl e Unies (SI: comprimento, mss, tempo, intensie e corrente elétric, tempertur, quntie e mtéri e intensie luminos. metro [m]: unie e comprimento. É o comprimento o trjeto percorrio pel luz no vácuo urnte um intervlo e tempo e / e seguno. quilogrm [kg]: unie e mss. É mss o protótipo interncionl o quilogrm existente no Instituto Interncionl e Pesos e Meis em Sévres, n Frnç. seguno [s]: unie e tempo. É urção e períoos rição corresponente à trnsição entre ois níveis hiperfinos o esto funmentl o átomo e césio-33. mpére [A]: unie e corrente elétric. É intensie e um corrente elétric constnte que, mnti em ois conutores prlelos, retilíneos, e comprimento infinito, e secção circulr esprezível e situos à istânci e um metro entre si, no vácuo, prouz entre esses ois conutores um forç igul x0-7 newton por metro e comprimento. kelvin [K]: unie e tempertur termoinâmic. É frção /73,6 tempertur termoinâmic o ponto tríplice águ. mol [mol]: unie e quntie e mtéri. É quntie e mtéri e um sistem conteno tnts enties elementres quntos átomos existem em 0,0 quilogrms e crono-. cnel [c]: unie e intensie luminos. É intensie luminos, num ireção e um fonte que emite um rição monocromátic e freqüênci 540x0 hertz ( hertz = /seguno e cuj intensie energétic ness ireção é e /683 wtts ( Wtt = Joule /seguno por esferorino. Meições É conveniente efinir o significo os termos meição, mei(s, os experimentis e resultos experimentis. Meição é o to ou efeito e meir Mei é o termo uso pr se referir o vlor numérico (e unie prão resultnte e um meição Dos experimentis são os vlores otios ns meições irets esultos Experimentis são, gerlmente, os vlores otios pós serem relizos cálculos com os os experimentis. Os resultos experimentis poem ser otios e us mneirs: trvés e meições irets ou e meições inirets. 3 Incertezs e um mei Um os princípios ásicos físic iz: Não se poe meir um grnez físic com precisão solut, ou sej, qulquer meição, por mis em feit que sej, é sempre proxim. De coro com o princípio escrito no prágrfo nterior, o vlor meio nunc represent o vlor vereiro grnez, pois este nunc é conhecio com totl certez. Quno este resulto (número e unie vi ser plico ou registro é necessário ser com que confinç se poe izer que o número otio represent grnez físic. O vlor meio ou o resulto eve ser expresso com incertez mei, utilizno um representção em um lingugem universl, fzeno com que sej compreensível outrs pessos. Chm-se vlor vereiro ou vlor o mensurno o vlor que seri otio se meição grnez fosse feit e mneir perfeit e com instrumentos perfeitos. Por isso, eve-se necessrimente ssocir um erro ou esvio o vlor e qulquer mei. É importnte slientr que plvr erro não tem, qui, o significo e istrção, escuio ou engno, Toginho Filho, D. O., Anrello, A.C., Ctálogo e Experimentos o Lortório Integro e Físic Gerl Deprtmento e Físic Universie Estul e Lonrin, Mrço e 009.

2 Meição e propgção e erros pois estes poem ser evitos, enqunto o erro experimentl não poe ser evito, mesmo ns meições mis preciss. 4 Algrismos significtivos Ao expressr um mei é necessário ser expressr o número e lgrismos com que se poe escrever tl mei, unie e o gru e confinç o vlor expresso, ou sej, é necessário incluir um primeir estimtiv e incertez. O erro e um mei é clssifico como incertez o tipo A ou incertez o tipo B. A incertez oti prtir e váris meições é chm e incertez prão o tipo A, que é o esvio prão etermino por métoos esttísticos. A incertez estim em um únic meição é clssific como incertez prão tipo B, que é incertez oti por qulquer métoo que não sej esttístico. Um exemplo incertez o tipo B é presento n Figur, mei oti com um únic meição o comprimento S e um lápis, utilizno um régu com menor ivisão em mm. Figur - Meição o comprimento e um lápis utilizno um régu com escl e mm. A incertez poe ser estim como seno mete menor ivisão escl o equipmento utilizo. A estimtiv incertez é um vlição visul, poeno ser consier um frção menor ivisão escl, feit mentlmente por quem reliz meição. A mei o comprimento o lápis, oti n Figur é: S = 5,75 ± 0, 05 cm O resulto é presento com três lgrismos significtivos. A incertez ou erro n mei é represento pelo termo 0,05 cm ou 0,5 mm, que é mete menor ivisão escl o equipmento. Este proceimento só poe ser oto quno houver segurnç e quem reliz meição, o vlir visulmente um cs eciml mis que escrit n escl o equipmento. Cso contrário incertez eve ser consier menor ivisão escl o equipmento. Os lgrismos significtivos o comprimento o lápis são representos por lgrismos corretos e pelo primeiro lgrismo uvioso, e coro com escrição ixo: lgrismos significtivos = lgrismos corretos 5,75 5,75 5,75 5 Operções ritmétics + primeiro lgrismo uvioso Meis evem ser escrits com o número correto e lgrismos significtivos, omitino toos os lgrismos sore os quis não se tem informção. Ao efetur lgum operção com tis números, não se eve escrever lgrismos sem significo. A seguir são presentos exemplos e regrs simples pr operções ritmétics com números que representem meis. A ição ou sutrção e números que possuem lgrismos significtivos é feit com o linhmento s css ecimis, seno completos com zero, mesm form que em um operção ritmétic e som e sutrção convencionl. Ao finl operção, o número e lgrismos significtivos o resulto é o mesmo o elemento somo com menor precisão. Consieremos como exemplo ição os seguintes vlores e comprimento: 83mm + 83,4mm + 83,5mm. Os vlores são orgnizos seguinte mneir: 83 mm 83,4 mm 83,5 mm 49,9 mm O resulto est operção é 50 mm. A multiplicção ou ivisão e números com lgrismos significtivos tmém eve ser feit como n form. No resulto finl o número e lgrismos Toginho Filho, D. O., Anrello, A.C., Ctálogo e Experimentos o Lortório Integro e Físic Gerl Deprtmento e Físic Universie Estul e Lonrin, Mrço e 009.

3 Meição e propgção e erros significtivos o prouto ou ivisão e ois ou mis números (meis eve ser igul o número e lgrismos significtivos o ftor menos preciso. Consieremos como exemplo, multiplicção os vlores os comprimentos 83,4 mm e 83 mm. A operção é escrit como: 83,4 mm x 83 mm , O resulto operção é 69 x 0 mm ou in 6,9x0 3 mm. 6 egrs e rreonmento O rreonmento os números é feito e coro com s seguintes regrs: Os lgrismos,,3,4 são rreonos pr ixo, isto é, o lgrismo preceente é mntio inltero. Por exemplo: 3,4 e,73 são rreonos pr 3, e,7 respectivmente. Os lgrismos 6,7,8,9 são rreonos pr cim, isto é, o lgrismo preceente é umento e. Por exemplo: 3,6 e,78 são rreonos pr 3, e,8 respectivmente. Pr o lgrismo 5 é utiliz seguinte regr: 5 é rreono pr ixo sempre que o lgrismo preceente for pr e, é rreono pr cim sempre que o lgrismo preceente for impr. Por exemplo: 4,65 e 4,75 são rreonos pr 4,6 e 4,8 respectivmente. 7 Erros ou esvios Os erros poem ser clssificos em ois grnes grupos: erros sistemáticos ou erros letórios. Os erros sistemáticos são queles que resultm s iscrepâncis oservcionis persistentes, tis como erros e prlxe. Os erros sistemáticos ocorrem principlmente em experimentos que estão sujeitos munçs e tempertur, pressão e umie. Ests munçs estão relcions conições mientis. Os erros sistemáticos poem e evem ser eliminos ou minimizos pelo experimentor. Isso poe ser feito, oservno se os instrumentos estão corretmente justos e cliros, e in se estão seno usos e form corret n interligção com outros instrumentos, n montgem experimentl. Existe um limite ixo o qul não é possível reuzir o erro sistemático e um meição. Um estes erros é o e clirção, iretmente ssocio o instrumento com o qul se fz meição. Este tipo e erro é tmém chmo erro sistemático resiul. Gerlmente, o erro e clirção (resiul vem inico no instrumento ou mnul, pelo fricnte; é o limite entro o qul o fricnte grnte os erros o instrumento. Os erros letórios (ou esttísticos são queles que in existem mesmo quno tos s iscrepâncis sistemátics num processo e mensurção são minimizs, lnces ou corrigis. Os erros letórios jmis poem ser eliminos por completo. 6 prão mostrl e populcionl Define-se esvio prão mostrl ou esvio méio qurático, riz qur vriânci mostrl, escrit pel relção: ( xi x i= s = ( N O vlor e s fornece um iéi sore incertez prão (incertez típic e qulquer mei, teno como se o conjunto s N meis. O prâmetro s poe ser interpreto como seno incertez que se poe esperr, entro e cert proilie, se um (N+-ésim meição viesse ser reliz, quno já se conhece o que ocorreu ns N meições nteriores. O esvio prão mostrl inic um o vlição sore istriuição s meis, em torno o vlor méio. Consierno um conjunto e os experimentis, são presentos n Tel I, lguns prâmetros esttísticos como: o seu vlor méio, o seu esvio experimentl méio, o seu esvio soluto méio e o seu esvio qurático méio. N Toginho Filho, D. O., Anrello, A.C., Ctálogo e Experimentos o Lortório Integro e Físic Gerl Deprtmento e Físic Universie Estul e Lonrin, Mrço e 009.

4 Meição e propgção e erros Tel I - Prâmetros esttísticos e um conjunto e os otios com meição mss e um cilinro metálico, utilizno um lnç e rço. Prâmetro Definição esulto 00 Vlor x = méio x i 00 i= x = 43, g 00 s = soluto xi x 00 i= s = 0,0 364 g s rel = rel = 0,0006 reltivo x % = 00 rel percentul % = 0,06088% 00 prão s = ( x i x 00 s = 0,050 g i= A prtir os resultos presentos n Tel I, supõese que s meis form relizs com muito cuio pois o esvio percentul tem um vlor muito ixo e %. Os resultos form trtos com ígitos epois vírgul, ms lnç permiti otenção os vlores té o primeiro ígito. Est prente irregulrie result o fto e que o seguno ígito foi otio trvés inferênci ns meis. O resulto numérico só poe ser escrito té o terceiro ígito epois vírgul, evio às regrs sore lgrismos significtivos. N expressão (, é present efinição o esvio prão x. N ( xi x i= m x = ( N( N Est expressão é que present mior interesse, pois el inic mior ou menor incertez méi x em relção um méi mis gerl, que seri méi e iverss méis. Um méi mis gerl seri méi e K conjuntos, c um com M meis. Ovimente, x < Assim, o resulto e um série e N meições poe ser escrit como: x = x ± (3-47 x A c vlor meio isolo iciono os N vlores previmente utilizos, moific o vlor méio x resultnte. Porém, x será tnto menor qunto mior o número N, ou qunto mior o número K, e conjuntos com N meis. Com isto, oscilções irregulres (δx j,são c vez menores, fzeno com que o vlor méio se proxime ssintoticmente e um vlor finl quno N. Um número e meições excessivo não compens o tempo gsto, pois, o invés e se repetir mis e mis vezes s meições, é preferível um relizção cuios e um série, e ums 0 meições, pr ssegurr qulie o resulto. De coro com teori e erros, se forem relizs N meições, o esvio ( iminuirá pr N o vlor inicil. Portnto, poe ser utiliz relção (, especilmente em trlhos e Lortório e Ensino, one não são exigis grnes precisões. 8 Intervlo e confinç O esvio prão é um mei, que permite fornecer intervlos que quntificm qulie s meis, inicno qul é proilie mis provável e encontrr s meis nesse intervlo, conforme os esvios vão se fstno o ponto e vlor méio. Poemos ver quntificção o ftor e confinç em relção os intervlos limitos por vlores inteiros e esvio prão, no quro ixo: Tel II elção entre o intervlo vriável, o ftor e confinç, e proilie e encontrr mei entro o intervlo. Intervlo Ftor e confinç Proilie [, + ] α = 0, ,3% [, + ] α = 0, ,4% [ 3, + 3 ] α = 0, ,7% Assim, prticmente quse tos s flutuções letóris os vlores meios se situm n fix e { x ± 3}, ou sej, o ftor e confinç α = 0, 997. Isto signific que pens 3 entro e 000 meis poem estr for fix. Normlmente, é prxe rejeitr os erros que excem est fix, consierno, que eles não sejm mis erros letórios, ms sim engnos. Toginho Filho, D. O., Anrello, A.C., Ctálogo e Experimentos o Lortório Integro e Físic Gerl Deprtmento e Físic Universie Estul e Lonrin, Mrço e 009.

5 Meição e propgção e erros 9 Propgção e erros ou esvios N miori os experimentos, meição e um grnez e interesse é feit e mneir iniret, seno est grnez oti prtir e meis e n grnezs primáris {,, 3, K, k, K, n }. O cálculo e é feito prtir e um função conheci s grnezs primáris. Ests grnezs são tmém enomins grnezs e entr, enqunto grnez é enomin grnez e sí. Um exemplo é o cálculo ensie e um ojeto (grnez, no qul se mee mss e o volume o corpo. As grnezs mss e volume são chms grnezs e entr. Os vlores s grnezs e entr provêm, toos ou em prte, e meições irets. Em lingugem forml escrevemos: =,,,..., A ( ( 3 n Utilizno proximções e um grne número e meis (mostrs, poemos mitir que o vlor méio sej consiero o vlor vereiro. D mesm form, incertez prão poe ser consier como o esvio prão vereiro. Fzeno um esenvolvimento mtemático proprio, temos um expressão pr o cálculo incertez prão grnez e sí. ( ( ( = n ( n Est expressão pr incertez prão grnez e sí, tmém chm e incertez prão comin, é utiliz quno s grnezs e entr {,,..., n } são meis repetis vezes, gerno vlores méios k e esvios prão s méis k. Em muits situções não é necessário muito rigor qunto à extião nos vlores s incertezs comins, seno ceitável que sejm uss expressões pr oter vlores proximos s grnezs e interesse. Neste cso, quno é reliz pens um meição isol (e não um série e meições evemos usr o conceito e limite máximo e erro. Consieremos o cso em que se esej clculr incertez prão propg no vlor e um grnez e sí, com relção funcionl o tipo = +. São relizs meições irets s grnezs e entr e, com sus respectivs incertezs prão e. Neste cso, s grnezs e são equivlentes às grnezs e, contis n equção (, qul se otém: = ( + ( = + ( ( Seno form finl pr grnez comin e su incertez prão comin escrit como: ± = + ( + ± ( ( N Tel são presents s expressões pr o cálculo incertez prão em grnezs comins, utilizno propgção e erro pr iverss relções funcionis. eferêncis Biliográfics. Domicino, J. B., Jurltis K.., Introução o lortório e Físic Experimentl, Deprtmento e Físic, Universie Estul e Lonrin, Vuolo, J. H. Funmentos Teori e Erros E. Egr Blücher, São Pulo, 99. Toginho Filho, D. O., Anrello, A.C., Ctálogo e Experimentos o Lortório Integro e Físic Gerl Deprtmento e Físic Universie Estul e Lonrin, Mrço e 009.

6 Meição e propgção e erros Tel III - Expressões pr cálculos s incertezs comins ou propgs e lgums grnezs que possuem forms funcionis simples. elção funcionl Erro propgo (,, =, K n ± =. ou n n = L = ( = r = ln = e = + ( ( = ( = ( + ( = r = = Toginho Filho, D. O., Anrello, A.C., Ctálogo e Experimentos o Lortório Integro e Físic Gerl Deprtmento e Físic Universie Estul e Lonrin, Mrço e 009.

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Conceitos de medidas e teoria de erros

Conceitos de medidas e teoria de erros Conceitos de medids e teori de erros - Introdução o curso de Lortório de Físic I nosso ojetivo será fmilirizção com o método científico, utilizndo-o n oservção de fenômenos descritos pel Mecânic clássic.

Leia mais

Circuitos simples em corrente contínua resistores

Circuitos simples em corrente contínua resistores Circuitos simples em corrente contínu resistores - Conceitos relciondos esistênci elétric, corrente elétric, tensão elétric, tolerânci, ssocição em série e prlelo, desvio, propgção de erro. Ojetivos Fmilirizr-se

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Circuitos simples em corrente contínua resistores

Circuitos simples em corrente contínua resistores Circuitos simples em corrente contínu resistores - Conceitos relciondos esistênci elétric, corrente elétric (DC, tensão elétric (DC, tolerânci, ssocição de resistores (série, prlelo e mist, desvio, propgção

Leia mais

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados.

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados. LIMÍD DE FÍSIC Resoluções 01 0 E 03 D r o sistem vetoril cito n questão, tem-se o seguinte: + + c S c Inverteno qulquer um os vetores, tem-se seguinte situção: S S vetor som o inverter qulquer um os vetores,

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

CURSO DE MATEMÁTICA ÁLGEBRA AULA

CURSO DE MATEMÁTICA ÁLGEBRA AULA CURSO DE MATEMÁTICA ÁLGEBRA AULA 7 POLINÔMIOS & EQUAÇÕES POLINOMIAIS PROF. MARCELO RENATO Outuro/8 mrcelorento.com RESUMO TEÓRICO Prof. Mrcelo Rento. SOMA DOS COEFICIENTES DE UM POLINÔMIO Pr clculr som

Leia mais

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955):

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955): VI.. IFUSÃO EM FSE LÍQUI: - SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIS ILUÍS: EQUÇÃO E Wilke e Chang (955): 0 B B 8 M 7,4 0 T V B IFUSIVIE. O SOLUTO( ) NO SOLVENTE B 0,6 b 0,5 cm 2 s ; T TEMPERTUR O MEIO

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Pré-Universitário Professor(a)

Pré-Universitário Professor(a) Série Rumo o ITA Ensino ré-universitário rofessor() Aluno() Teixeir Jr. See Nº TC Turm Turno t / / ísic Neste mteril e revisão iremos trblhr o fenômeno interferênci luz, relizo por Thoms Young, e outro

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na 1 2 Cálculo Numérico List numero 04 Curvs com gnuplot trcisio.prcino@gmil.com T. Prcino-Pereir Dep. e Computção lun@: 17 e bril e 2013 Univ. Estul Vle o Acrú Documento escrito com L A TEX sis. op. Debin/Gnu/Linux

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Exercícios 3. P 1 3 cm O Q

Exercícios 3. P 1 3 cm O Q Eercícios 3 1) um ponto e um cmpo elétrico, o vetor cmpo elétrico tem ireção horizontl, sentio ireit pr esquer e intensie 10 5 /C. Coloc-se, nesse ponto, um crg puntiforme e -2C. Determine intensie, ireção

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Móulo e Rzões e Proporções Proporção e Conceitos Relcionos 7 no E.F. Professores Tigo Mirn e Cleber Assis Rzões e Proporções Proporção e Conceitos Relcionos Exercícios Introutórios Exercício. Dos os números

Leia mais

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A]

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A] . (Ufrgs 0) Assinle lterntiv ue preenche corretmente s lcuns no fim o enuncio ue segue, n orem em ue precem. Três esfers metálics iêntics, A, B e C, são monts em suportes isolntes. A esfer A está positivmente

Leia mais

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Móulo e Rzões e Proporções Proporção e Conceitos Relcionos 7 no E.F. Professores Tigo Mirn e Cleber Assis Rzões e Proporções Proporção e Conceitos Relcionos Exercícios Introutórios Exercício. Dos os números

Leia mais

Algarismo Correto e Algarismo Duvidoso

Algarismo Correto e Algarismo Duvidoso Algrismo Correto e Algrismo Duvidoso Vmos supor que gor você está efetundo medição de um segmento de ret, utilizndo pr isso um régu grdud em milímetros. Você oserv que o segmento de ret tem um pouco mis

Leia mais

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I

Diagrama de Blocos. Estruturas de Sistemas Discretos. Grafo de Fluxo. Sistemas IIR Forma Directa I Estruturs de Sistems Discretos Luís Clds de Oliveir Digrm de Blocos As equções às diferençs podem ser representds num digrm de locos com símolos pr:. Representções gráfics ds equções às diferençs som de

Leia mais

Física 3. 1 a lista de exercícios. Prof Carlos Felipe

Física 3. 1 a lista de exercícios. Prof Carlos Felipe Físic 3. 1 list e eercícios. Prof Crlos Felipe 1) Fosse convenção e sinl s crgs elétrics moific, e moo que o elétron tivesse crg positiv e o próton crg negtiv, lei e Coulomb seri escrit mesm form ou e

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças

Resumo. Estruturas de Sistemas Discretos. A Explosão do Ariane 5. Objectivo. Representações gráficas das equações às diferenças Resumo Estruturs de Sistems Discretos Luís Clds de Oliveir lco@ist.utl.pt Instituto Superior Técnico Representções gráfics ds equções às diferençs Estruturs ásics de sistems IIR Forms trnsposts Estruturs

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Conjuntos Numéricos. Conjuntos Numéricos

Conjuntos Numéricos. Conjuntos Numéricos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Física A Semiextensivo V. 2

Física A Semiextensivo V. 2 GRIO Físic Semiextensio V. Exercícios 01) Menino em relção o trilho: V = 3 + 3 = 6 m/s Menino em relção o trilho: V = 3 3 = 0 04) subi 0) E R,0 m/s elocie o rio elocie o brco esci R = 16 = = 16 + R = +

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidde Federl do Rio Grnde do Sul Escol de Engenhri de Porto Alegre Deprtmento de Engenhri Elétric ANÁLISE DE CIRCUITOS II - ENG04031 Aul 2 - Teorems de Thévenin e Norton Sumário Algrismos significtivos

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Aos pais e professores

Aos pais e professores MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens. 136 + 5 = (100 + 30 + 6) + (00 + 50 + ) 300 + 80 + 8 MAT3_015_F0.indd

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

Retomada dos conceitos

Retomada dos conceitos etom os conceitos rofessor: s resoluções estes exercícios estão isponíveis no lno e uls este móulo. onsulte tmbém o nco e uestões e incentive os lunos usr o imulor e Testes. 1 N esc figur, os egrus istm

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

NOTA DE AULA. Tópicos em Matemática

NOTA DE AULA. Tópicos em Matemática Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis

Leia mais

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB? 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio

Leia mais

Medidas de Associação.

Medidas de Associação. Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular.

LRE LSC LLC. Autômatos Finitos são reconhecedores para linguagens regulares. Se não existe um AF a linguagem não é regular. Lingugens Formis Nom Chomsky definiu que s lingugens nturis podem ser clssificds em clsses de lingugens. egundo Hierrqui de Chomsky, s lingugens podem ser dividids em qutro clsses, sendo els: Regulres

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

4 SISTEMAS DE ATERRAMENTO

4 SISTEMAS DE ATERRAMENTO 4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 6 ) RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 0 De 869 té hoje, ocorrerm s seguintes munçs e moe no Brsil: () em 94, foi crio o cruzeiro, c cruzeiro

Leia mais

Questão 01. Determine os valores reais de x que satisfazem a inequação: log 1. Questão 02 Encontre as soluções reais da equação: Resolução: log 1

Questão 01. Determine os valores reais de x que satisfazem a inequação: log 1. Questão 02 Encontre as soluções reais da equação: Resolução: log 1 Questão 0 etermine os vlores reis e que stisfzem inequção: 4 log log 9 4 log 9 log * 0 0 conição e eistênci: 0 ou Fzeno log e log, temos: 4. 0 0... 0 0 + + + Portnto: 0 ou log 0 ou log ou 9 omo, poemos

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2.

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2. Mtemátic I Elordo por Prof. Gerson Lchtermcher, Ph.D. Prof. Rodrigo Leone, D.Sc. Seção Colorção Prof. Wlter Pulette Versão 009-1 ADM 01004 Mtemátic I Prof. d Disciplin Luiz Gonzg Dmsceno, M. Sc. Seção

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004 Prov de F-8 urms do Diurno Segundo semestre de 004 8/0/004 ) No instnte em que luz de um semáforo fic verde, um utomóvel si do repouso com celerção constnte. Neste mesmo instnte ele é ultrpssdo por um

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Exame Nacional de 2006 1. a chamada

Exame Nacional de 2006 1. a chamada 1. Muitos os estuntes que usm mochils trnsportm irimente peso mis pr su ie. 1.1. Pr evitr lesões n colun verterl, o peso e um mochil e o o mteril que se trnsport entro el não evem ultrpssr 10% o peso o

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29

Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29 Sumário Volt às uls. Vmos recordr?... 7 1 Números... 10 Números... ej como tudo começou... 11 Os números de 0 10... 13 A dezen... 18 Os números de 0 1... 1 Números e dinheiro... 23 Ordem nos números...

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação:

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação: . Determine os vores reis e x que stisfzem inequção: x IR e X og x og 9 x² x og x og Fzeno x og, temos: ( ) ( ) ( ) ² ² ² ² + + + + + + - - - - - - - - - - - - - - - - - - + + + - + + + - - - + + + + +

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais