Máquinas de Indução - Características Operacionais

Tamanho: px
Começar a partir da página:

Download "Máquinas de Indução - Características Operacionais"

Transcrição

1 Máquinas de Indução - Características Operacionais 1. Introdução As máquinas de corrente alternada, em particular as máquinas de indução foram inventadas no século XIX por Nikola Tesla em torno do ano O seu desenvolvimento foi financiado originalmente por George Westinghouse (U.S.A.). A evolução foi bastante rápida e logo as máquinas de indução se tornaram o principal tipo de conversor eletromecânico e favoreceu enormemente a proliferação dos sistemas de corrente alternada. Essa posição de liderança das máquinas de indução nos mais diversos setores de atividade, particularmente na indústria é mantida ainda hoje e deverá perdurar por bastante tempo. As máquinas de indução são robustas construtivamente, apresentam elevado rendimento e custo inicial baixo. Sua vida útil é projetada para período em torno de 20 anos, mas se for utilizada dentro das especificações de projeto podem durar muito mais tempo. As máquinas de indução possuem enrolamentos estatóricos distribuídos e localizados em ranhuras ao longo do perímetro do entreferro de forma que a força magnetomotriz de cada enrolamento é senoidalmente distribuída e se manifesta principalmente no entreferro. A combinação das forças magnetomotrizes das diferentes fases é tal que produz uma fmm resultante, também senoidalmente distribuída, de amplitude constante e que gira com velocidade constante em relação à superfície do estator. A velocidade de rotação das fmms e de todas as quantidades espacialmente distribuidas giram à velocidade síncrona, que é definida pelo número de pólos do estator e a frequência das tensões/correntes da fonte que alimenta o motor. Assim, a máquina de indução alimentada diretamente de uma rede de frequência fixa possui velocidade praticamente constante. A Fig. 01 1

2 apresenta uma vista esquemática em corte de uma máquina de indução de 4 pólos, indicando a distribuição teórica de fluxo magnético ao longo do entreferro. A parte móvel das máquinas de indução, o rotor, apresenta duas formas construtivas distintas: o rotor enrolado, e o rotor em gaiola. ω s t 1 ω s t 2 ω s t 3 ω s t 4 Fig. 1 Caminhos de fluxo teórico em um motor de indução de 4 pólos 2

3 Nos rotores enrolados a superfície do rotor é ranhurada e enrolamentos também distribuídos são inseridos nas ranhuras. Quando circula corrente em um enrolamento do rotor, a força magnetomotriz resultante é senoidalmente distribuída no espaço. Nas máquinas trifásicas, as mais comuns, existem três enrolamentos no rotor, isolados elétricamente do núcleo. Esses enrolamentos são normalmente conectados em estrela e se fazem acessíveis por meio de anéis deslizantes. Nos rotores em gaiola, que representam a esmagadora maioria de máquinas de indução, o rotor também é ranhurado, onde são inseridos condutores na forma de barras, que não possuem isolamento elétrico em relação ao material do núcleo magnético e são curto-circuitados nas duas laterais, formando assim uma gaiola condutora sem terminais de acesso externo à máquina, daí o nome rotor gaiola. Os rotores do tipo gaiola são muito robustos devido a sua construção e suportam elevados esforços elétricos e mecânicos. 2. O Princípio de Operação da Máquina de Indução. Seja a figura a seguir que mostra o estator e o rotor de uma máquina de indução genérica de forma extendida. Os condutores dos enrolamentos do estator não estão representados, mas a força magnetomotriz resultante do estator é representada por Fs. A força magnetomotriz resultante do estator Fs gira com a velocidade ws na direção indicada. A ação da fmm Fs provoca o aparecimento de fluxo magnético cujo caminho se completa envolvendo o rotor e atravessando o entreferro. 3

4 E r F s B s ω s estator s rotor Fig. 2 - Distribuição espacial de força magnetomotriz de estator, densidade de fluxo e tensão induzida no rotor. Observe que a onda de distribuição de densidade de fluxo gira em sincronismo e está em fase com a onda de fmm, isto é, o máximo da fmm provoca máxima densidade de fluxo. A onda de densidade de fluxo atravessando o rotor, e girando em relação a ele, corta os condutores do rotor, gerando aí uma tensão que é proporcional à velocidade relativa entre a fmm e o rotor. Isto vai causar tensões induzidas nas barras do rotor. Observe que a tensão induzida é proporcional à velocidade relativa entre fmm de estator e o rotor. Como os vetores velocidade dos condutores do rotor, densidade de fluxo magnético e o comprimento da barra do rotor estão em quadratura no espaço, a tensão induzida em cada barra é simplesmente o produto das amplitudes dessas três grandezas, isto é, vbarra= v barra = vel.b.l. Observe que para um observador fixo no (ou no referencial do) rotor a tensão induzida nas barras sofrerá uma variação senoidal ao longo do tempo. Como a velocidade relativa entre a fmm do estator e o comprimento das diversas barras ao longo da superfície do rotor são constantes, a tensão induzida em cada barra em um dado instante de tempo é diretamente proporcional ao valor de indução magnética a que a barra está sujeita. Ocorre portanto uma distribuição senoidal de tensão induzida ao longo da superfície do rotor. Essa distribuição 4

5 espacial senoidal de tensão induzida está em fase espacial e gira em sincronismo com a distribuição espacial de fmm do estator, bem como com a distribuição espacial de densidade de fluxo, conforme representado na Fig. 3. F r F s ω s Fig. 3 Relação especial entre as fmms de estator e rotor. Com o circuito do rotor fechado, as tensões induzidas vão provocar a circulação de correntes. Dado que a tensão em cada barra do rotor é senoidal ao longo do tempo, também será a corrente induzida. Assim verifica-se que uma distribuição espacial de fluxo, de amplitude constante, girando com velocidade constante ao longo entreferro e cortando os condutores do rotor induz nestes o aparecimento de tensões cujas amplitudes variam senoidalmente no tempo. Levando em conta que o circuito do rotor é indutivo, em cada barra a corrente vai estar atrasada da tensão correspondente de um determinado ângulo. Ainda, da mesma forma que no estator onde se tem uma distribuição senoidal de corrente formando uma distribuição senoidal de fmm, também no rotor a distribuição senoidal de corrente induzida vai provocar o aparecimento da força magnetomotriz do rotor. Esta é senoidalmente distribuída no espaço, está atrasada da fmm do estator de um ângulo correspondente a 90 o elétricos mais um ângulo dependente da reatância de dispersão do rotor conforme mostrado na Fig. 3. A interação da fmm do estator 5

6 com a fmm induzida no rotor resulta em conjugado eletromagnético que tende a arrastar o rotor no sentido de rotação da força magnetomotriz do estator. A esta altura é importante observar que a) A força magnetomotriz induzida no rotor possui o mesmo número de pólos e se desloca à mesma velocidade que a fmm do rotor, isto é, a velocidade síncrona; b) Todas as outras grandezas são senoidalmente distribuídas e se deslocam à velocidade síncrona devido a ação da fmm do estator. Isto leva à conclusão de que a fmm do estator governa o funcionamento da máquina de indução. A Fig. 4 mostra um diagrama de como as forças magnetomotrizes de estator e rotor se comportam no espaço. Matemáticamente o conjugado produzido por dois enrolamentos senoidalmente distribuídos interagindo na mesma região do espaço é expresso por: C e = KF F sin ξ s r F s ω s Essa figura indica a condição onde o escorregamento é muito elevado. A frequência das correntes e tensões induzidas no rotor é quase igual à tensão da rede e portanto a reatância de dispersão do rotor é elevada fazendo com que a defasagem espacial entre as duas componentes de fmm seja grande. Mesmo que as correntes sejam elevadas o conjugado será pequeno. F r 6

7 ω s F s Essa figura indica uma condição de escorregamento intermediário, mas não muito baixo. A defasagem entre as duas componentes de fmm já se torna menor porque a reatância do rotor diminuiu em função da diminuição da frequência das tensões e correntes do rotor. F r F s F r ω s Essa figura indica a condição de funcionamento nominal do motor de indução. A frequência das correntes e tensões induzidas no rotor agora é bem baixa, levando a uma reatância de dispersão menos significante. Nesse caso o fator de potência do rotor é quase unitário. O ângulo espacial de defasagem é pouco maior que 90 o e conjugado nominal é produzido com correntes menores. Fig. - Conforme mencionado no texto, as tensões induzidas nos condutores do rotor e consequentemente as correntes rotóricas são função da velocidade relativa entre o campo magnético girante (que gira à velocidade síncrona) e a velocidade mecânica do rotor. Essa velocidade relativa, normalizada pela velocidade síncrona recebe o nome de escorregamento, e é uma das grandezas mais importantes na compreensão da operação da máquina de indução. O escorregamento é dado por 7

8 ωs ω s = ω s r Quando se trata de acionamento de motores de indução muitas vezes é utilizado o termo velocidade de escorregamento. A velocidade de escorregamento ( ω ) é a diferença absoluta entre a velocidade síncrona e a velocidade do rotor, isto é sr ω sr = ω s ω r 3. O circuito equivalente do motor de indução trifásico O circuito equivalente de um motor de indução trifásico simétrico, balanceado, que possui parâmetros de fases idênticos é apresentado na figura abaixo. No circuito equivalente V s corresponde à tensão aplicada à fase do motor, E 1 é a força contraeletromotriz e R r /s corresponde a uma resistência fictícia que representa toda a potência manipulada pelo rotor da máquina. R s e R r são respectivamente as resistências dos enrolamentos de estator e rotor por fase, X ls e X lr correspondem às reatâncias de dispersão do estator e do rotor, X m corresponde à reatância de magnetização da máquina e R c representa as perdas no núcleo da máquina (Histerese e Foucault). Uma forma alternativa do circuito equivalente é apresentada na Fig. 6, onde a resistência fictícia do rotor R r /s é explicitada em duas componentes. I as I r R s j X ls j X lr I 0 I m I c V as E 1 j X m R c R r s Fig. 5 Circuito equivalente de um motor de indução polifásico, simétrico. 8

9 I as I r R s j X ls j X lr I 0 R r V as E 1 I m j Xm I c R c (1-s) R r s Fig. 6 Circuito equivalente do motor de indução explicitando a resistência rotórica e a resistência fictícia cuja potência corresponde à potência convertida em mecânica. Essa apresentação é usual para separar as perdas joule do rotor da potência convertida em potência mecânica pela máquina. A partir do circuito equivalente o diagrama fasorial das grandezas da máquina é obtido. O diagrama fasorial para um dado ponto de operação é mostrado na Fig. 7. Assim, dado o circuito equivalente com os seus parâmetros, se a máquina estiver conectada em delta, a tensão de fase é igual à tensão de linha aplicada e este é o valor de tensão utilizado nos cálculos. As correntes determinadas correspondem às correntes de fase, portanto para se determinar as correntes de linha as correntes de fase determinadas devem ser multiplicadas pelo fator 3. No caso de uma máquina conectada em estrela, deve-se considerar o valor da tensão de fase, portanto dividindo o valor da tensão de linha pelo fator 3. As correntes determinadas já 9

10 V as j X ls I as I as R s Ε 1 I as φ I r I c I 0 λ m I m Fig. 7 Diagrama fasorial do motor de indução. correspondem às correntes de linha dado que neste tipo de ligação corrente de linha é igual à corrente de fase. O circuito equivalente se presta para análise de regime permanente somente. Permite determinar as correntes de estator, rotor e magnetização, rendimento, fator de potência, conjugado eletromagnético desenvolvido para um determinado escorregamento e outras grandezas relativas a operação da máquina. As seguintes relações são importantes na análise de regime permanente da máquina de indução: Potência que atravessa o entreferro: R P a = 3 s r I 2 r Potência perdida na resistência do rotor: Potência interna (P a - P jr ) Conjugado interno P i C i = R 3 P = 3R I = sp r jr R r = 3 s ω (1 s) I s s I 2 r 2 r r 2 r a Conjugado no eixo Ci C av (av - atrito e ventilação) 10

11 O fator de potência é determinado por meio da impedância equivalente. Para cada escorregamento a máquina possui um valor de impedância equivalente diferente. A impedância do circuito do rotor magnetização Z jx R R = jxlr, a impedância do ramo de s r Z r + m c m = e a impedância de dispersão do estator Z s = R s + jxls Rc + jx m formam a impedância equivalente é dado pelo cosseno do ângulo ϕ. Z eq ZrZm = Zs + = Zeq Z + Z r m ϕ. O fator de potência 4. Aspectos relevantes na operação de motores de indução. Conforme se observa pelo circuito equivalente, a corrente de estator corresponde à soma fasorial entre a corrente do rotor e a corrente de excitação (I 0 ) da máquina. A figura a seguir mostra as amplitudes das correntes de estator, rotor e magnetização calculadas em função da velocidade do rotor para um motor de 4 pólos, 60 Hz. 120 Motor de indução - circuito equivalente 100 Is Correntes, A Ir 20 Im velocidade do rotor - rpm Fig. 7 Amplitude das correntes de estator, rotor e magnetização vs. velocidade 11

12 Tipicamente um motor de indução de 4 pólos opera no ponto nominal com escorregamento em torno de 2-5%. Um escorregamento de 10% corresponde para um motor de 4 pólos, 60 Hertz, a uma velocidade rotórica de 1620 rpm, enquanto 2% corresponde a 1764 rpm. Um zoom da figura acima é mostrado abaixo para esse intervalo de escorregamentos. Observa-se que as correntes são bastante sensíveis ao escorregamento. Dado que as perdas joule rotóricas são diretamente proporcionais ao escorregamento, motores de indução sempre devem operar com o menor escorregamento possível. Outro aspecto relevante da análise pelo circuito equivalente é que na região de operação normal a corrente de magnetização permanece aproximadamente constante. Entretanto, ao longo de todo o intervalo de velocidades esse valor varia bastante devido ao fato de que para tensão nominal aplicada e elevados escorregamentos a corrente rotórica tem amplitude elevada e consequentemente a corrente de estator provoca uma considerável queda de tensão na resistência do enrolamento do estator, dessa forma reduzindo a capacidade de produção de fluxo da máquina, o que se manifesta por uma menor corrente de magnetização e menor força contraeletromotriz. Esse aspecto pode ser observado na figura 9. 12

13 50 Motor de indução - circuito equivalente Is Correntes, A Ir Im velocidade do rotor - rpm Fig. 8 Zoom da figura 7 mostrando a região de escorregamento de 0-10% 250 Motor de indução - circuito equivalente 200 Tensões, V E1 50 Rs*Is velocidade do rotor - rpm Fig. 9 Força contra eletromotriz e queda na resistência do estator. 5. A característica de conjugado por velocidade. A característica de saída mais importante do motor de indução é a sua curva de conjugado por velocidade. A Fig. 9 mostra a curva típica de conjugado em função da velocidade para um motor de indução. 13

14 3 Curva de conjugado por velocidade Conjugado - p.u operação instável 0.5 operação estável velocidade - rpm Fig. 10 Curva de conjugado por velocidade do motor de indução. Quando acionando uma carga mecânica, em regime permanente, a uma determinada velocidade, o conjugado no eixo do motor é exatamente igual ao conjugado que a carga acionada exige. Se o conjugado motor for maior que o da carga ocorre aceleração até que uma velocidade superior seja atingida e o equilíbrio de conjugados ocorra. Se o conjugado da carga se tornar maior que o do motor ocorre uma redução na velocidade, com o respectivo aumento do conjugado do motor para que o conjugado da carga seja contrabalançado. A Fig. 10 mostra a região de conjugado do motor onde é possível este tipo de operação. Observa-se que operação estável ocorre para velocidades compreendidas entre a velocidade síncrona e a velocidade correspondente ao conjugado máximo que o motor pode fornecer. Para velocidades abaixo dessa a operação se torna instável e se o ponto de operação ocorrer nessa região o motor é levado a velocidade zero ou situação de bloqueio do rotor. A curva de conjugado se extendendo ao segundo e quarto quadrantes é apresentada na figura abaixo. Nos segundo e quarto quadrantes o motor opera em regeneração. Quando a máquina opera como gerador a porção da curva correspondente se situa no quarto quadrante. Nessa condição o fluxo de corrente 14

15 fica invertido, e portanto a queda de tensão na impedância do estator fica invertida. Isto indica que a força eletromotriz (E1) durante a geração é maior que durante a 3 Circuito equivalente - Conjugado por velocidade C 2 1 Conjugado - pu n - rpm Velocidade - rpm Fig. 11 Curva de conjugado por velocidade se extendendo às regiões de frenagem e regeneração operação motora para mesmos escorregamentos. Portanto o fluxo de entreferro também fica maior e isto é o que justifica o maior pico de conjugado quando operando como gerador conforme observado na figura. 5.1 Fatores que influenciam a curva de conjugado por velocidade. Diversos elementos influenciam a curva de conjugado por velocidade. Entre eles os mais importantes são a resistência rotórica e a tensão aplicada. A Fig. 10 mostra as curvas de conjugado por velocidade para resistência rotórica igual a 1 p.u. e 3 p.u. respectivamente 15

16 3 Curvas de conjugado por velocidade Rr1 Rr Conjugado - p.u Rr1 = 3.Rr velocidade - rpm Fig. 12 Curvas de conjugado por velocidade para diferentes valores de resistência rotórica O efeito é de levar o pico de conjugado para valores de velocidade rotórica mais baixos, ou seja para escorregamentos maiores. O valor do pico de conjugado não se altera. Essa característica foi muito explorada no passado utilizando motores de indução de rotor bobinado com resistência externa sendo conectada em série com os enrolamentos do rotor para propiciar conjugados de partida elevados. Elevar a resistência rotórica apresenta também a vantagem de diminuir o valor da corrente de partida. Enquanto a resistência rotórica elevada é benéfica para a partida, durante a operação normal em velocidade de regime o seu valor deve ser baixo. Isto porque as perdas joule no rotor são diretamente proporcionais ao escorregamento. A outra grandeza que influencía acentuadamente a curva de conjugado por velocidade é a tensão aplicada. O conjugado é proporcional ao quadrado da corrente rotórica. Como para escorregamentos determinados a corrente de rotor é proporcional à tensão aplicada segue que o conjugado é proporcional ao quadrado da tensão. A figura abaixo mostra as curvas de conjugado por velocidade para tensões de 1 p.u, 0,7 pu e 0,5 pu. 16

17 3 Curvas de conjugado por velocidade 2.5 Vs = 1 pu Conjugado - pu Vs=0.707 pu 0.5 Vs=0.5 pu velocidade - rpm Fig Curvas de T vs. n para diferentes tensões de estator. A redução da tensão também é conveniente para reduzir os elevados picos de corrente de partida dos motores. Entretanto, enquanto a corrente cai proporcionalmente à redução da tensão terminal, o conjugado cai com o quadrado. A figura a seguir mostra como fica a redução de correntes e de conjugado quando a tensão de estator é reduzida. Este é o motivo pelo qual sempre se usa a partida do motor com tensão reduzida. Ocorre a partida com tensão (e conjugado) reduzid0, e na sequência, quando motor atinge determinada velocidade as tensões nos enrolamentos são comutadas para o valor nominal. 17

18 5 4.5 Curvas de conjugado e corrente por velocidade Ia1 Conjugado, corrente - pu Ia2 Ia velocidade - rpm Fig Curvas de conjugado, corrente vs. velocidade para diferentes valores de tensão de estator. Ainda, a partir do circuito equivalente é possível também determinar outras grandezas de interesse da máquina tais como fator de potência e rendimento. A curva de rendimento e do fator de potência do motor em estudo é apresentada na figura abaixo. 18

19 0.9 Motor de indução - Rendimento e fator de potência fator de potência rendimento velocidade - rpm Fig. 15 Curva de rendimento e fator de potência Um zoom da região de operação estável mostrando o rendimento e o fator de potência juntamente com o conjugado é apresentado na figura a seguir 3 Motor de indução - Rendimento e fator de potência 2.5 conjugado fator de potência rendimento velocidade - rpm Fig Fator de potência e rendimento para região de operação estável do motor de indução. 6. Acionamento do motor de indução - A partida. 19

20 Quando o motor aciona uma carga mecânica, na velocidade de equilíbrio o conjugado que o motor produz é equilibrado pelo conjugado resistente da carga. A equação diferencial que rege o movimento do conjunto motor-carga é dada por onde Te Tcg dω dt m T e Tcg = J + Bω Conjugado produzido pelo motor - Nm, Conjugado resistente ou de carga - Nm, J Momento de inércia das massas girantes Kg.m 2 B ω m Coeficiente de atrito viscoso Nms, Velocidade do eixo em rad/s m Para facilidade de análise, desprezamos a parcela do atrito viscoso na equação acima, então T T e cg = dω J dt m A diferença entre os conjugados motor e de carga é chamada de conjugado de aceleração. Quando o conjugado motor é maior que o de carga, ocorre variação de velocidade no tempo (aceleração). Se o conjugado motor é menor que o conjugado da carga o resultado é negativo indicando que a taxa de variação de velocidade no tempo é negativa, ou seja, ocorre uma desaceleração. Quando os dois conjugados são iguais o lado esquerdo da equação se torna igual a zero, como do lado direito o momento de inércia não pode ser zero, então o termo em derivada é igual a zero. Quando a derivada é igual a zero significa que a grandeza envolvida não varia no tempo, ou seja, a velocidade permanece constante. A figura a seguir mostra as curvas de conugado por velocidade de um acionamento típico. Nota-se que o conjugado motor é sempre maior que o conjugado da carga, e portanto o sistema vai acelerar a partir de zero. Quanto maior a diferença entre o conjugado motor e o conjugado de carga mais rápido a velocidade de equilíbrio é atingida. Na curva a 20

21 velocidade de equilíbrio corresponde ao ponto de intersecção entre as duas curvas de conjugado. 180 Conjugado motor e conjugado de carga conjugado motor 120 Conjugado - Nm conjugado da carga Velocidade - rpm Fig Conjugado motor e conjugado de carga em um acionamento. As curvas de conjugado de carga podem tomar diferentes formas. A curva apresentada na figura 17 acima, corresponde tipicamente a uma bomba ou ventilador onde o conjugado resistente da carga varia com o quadrado da velocidade. Quando a diferença entre o conjugado motor e o conjugado de carga fica muito grande na região de aceleração, métodos para redução da corrente de partida podem ser utilizados. 21

22 Partida Estrela-Triângulo Fig. 18 Partida com chave estrela triângulo motor em vazio 22

23 Partida estrela-triângulo com carga Fig. 19 Partida com chave estrela triângulo motor com carga 23

24 Partida com chave compensadora motor em vazio Fig. 20 Partida com chave compensadora motor em vazio 24

25 Partida com chave compensador motor com carga Fig. 21 Partida com chave compensadora motor com carga 25

26 Partida suave ou soft switching Motor sem carga Fig. 22 Partida suave. Motor sem carga 26

27 Fig Detalhes das formas de onda da corrente e da tensão. Partida suave. 27

28 Partida suave Motor com carga no eixo Fig. 24 Partida suave. Motor com carga no eixo 28

29 Fig Partida suave. Detalhe da corrente de fase 29

Máquinas elétricas. Máquinas Síncronas

Máquinas elétricas. Máquinas Síncronas Máquinas síncronas Máquinas Síncronas A máquina síncrona é mais utilizada nos sistemas de geração de energia elétrica, onde funciona como gerador ou como compensador de potência reativa. Atualmente, o

Leia mais

CIRCUITO EQUIVALENTE MAQUINA

CIRCUITO EQUIVALENTE MAQUINA CIRCUITO EQUIVALENTE MAQUINA Se o circuito do induzido for fechado sobre uma carga, vai circular por ele uma corrente que será responsável por perdas por efeito de Joule na resistência do próprio enrolamento,

Leia mais

MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA

MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA As máquinas de corrente alternada são geradores que convertem energia mecânica em energia elétrica e motores que executam o processo inverso. As duas maiores

Leia mais

PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS

PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS Resumo das notas de aula 1 A1 PROGRAMA: 1 MÁQUINAS ASSÍNCRONAS: Caracterização e classificação das máquinas assíncronas - Aspectos construtivos Princípio de funcionamento

Leia mais

Acionamento de motores de indução

Acionamento de motores de indução Acionamento de motores de indução Acionamento de motores de indução Vantagens dos motores de indução Baixo custo Robustez construtiva 1 Controle da velocidade de motores de indução Através de conversores

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 20

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 20 SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 20 Aula de Hoje Introdução à máquina síncrona trifásica Características Básicas de uma Máquina Síncrona O enrolamento de campo é posicionado no rotor; O

Leia mais

Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição)

Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) Universidade Federal de Minas Gerais Escola de Engenharia Curso de Graduação em Engenharia Elétrica Disciplina: Conversão da Energia Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) 5.3) Cálculos

Leia mais

Departamento de Engenharia Elétrica Conversão de Energia II Lista 3

Departamento de Engenharia Elétrica Conversão de Energia II Lista 3 Departamento de Engenharia Elétrica Conversão de Energia II Lista 3 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.

Leia mais

Mecânica de Locomotivas II. Aula 9 Motores Elétricos de Tração

Mecânica de Locomotivas II. Aula 9 Motores Elétricos de Tração Aula 9 Motores Elétricos de Tração 1 A utilização de motores de corrente contínua apresenta inúmeras desvantagens oriundas de suas características construtivas, que elevam seu custo de fabricação e de

Leia mais

PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima:

PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima: 13 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 35 É característica que determina a um transformador operação com regulação máxima: a) A soma do ângulo de fator de potência interno do transformador com o

Leia mais

Máquinas Elétricas. Máquinas Indução Parte I. Motores

Máquinas Elétricas. Máquinas Indução Parte I. Motores Máquinas Elétricas Máquinas Indução Parte I Motores Motor indução Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 4.1 Motores Monofásicos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Máquina de Indução - Lista Comentada

Máquina de Indução - Lista Comentada Máquina de Indução - Lista Comentada 1) Os motores trifásicos a indução, geralmente, operam em rotações próximas do sincronismo, ou seja, com baixos valores de escorregamento. Considere o caso de alimentação

Leia mais

Partes de uma máquina síncrona

Partes de uma máquina síncrona Oque são geradores síncronos Um dos tipos mais importantes de máquinas elétricas rotativas é o Gerador Síncrono, que é capaz de converter energia mecânica em elétrica quando operada como gerador. Os Geradores

Leia mais

Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO

Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO 1. PARTES PRINCIPAIS As Máquinas elétricas tem duas partes principais (Figuras 1): Estator Parte estática da máquina. Rotor Parte livre para girar Figura

Leia mais

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila.

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Ex. 0) Resolver todos os exercícios do Capítulo 7 (Máquinas

Leia mais

O MOTOR DE INDUÇÃO - 1

O MOTOR DE INDUÇÃO - 1 PEA 2211 Introdução à Eletromecânica e à Automação 1 O MOTOR DE INDUÇÃO - 1 PARTE EXPERIMENTAL Conteúdo: 1. Introdução. 2. Observando a formação do campo magnético rotativo. 3. Verificação da tensão e

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 6.1 Máquinas Síncronas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

O campo girante no entreferro e o rotor giram na mesma velocidade (síncrona); Usado em situações que demandem velocidade constante com carga variável;

O campo girante no entreferro e o rotor giram na mesma velocidade (síncrona); Usado em situações que demandem velocidade constante com carga variável; Gerador Síncrono 2. MÁQUINAS SÍNCRONAS Tensão induzida Forma de onda senoidal Número de pólos Controle da tensão induzida Fases de um gerador síncrono Fasores das tensões Circuito elétrico equivalente

Leia mais

MOTOR DE INDUÇÃO TRIFÁSICO

MOTOR DE INDUÇÃO TRIFÁSICO MOTOR DE INDUÇÃO TRIFÁSICO Joaquim Eloir Rocha 1 As máquinas de corrente alternada podem ser síncronas ou assíncronas. São síncronas quando a velocidade no eixo estiver em sincronismo com a frequência.

Leia mais

LABORATÓRIO INTEGRADO II

LABORATÓRIO INTEGRADO II FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO II Experiência 05: MOTOR TRIFÁSICO DE INDUÇÃO ENSAIOS: VAZIO E ROTOR BLOQUEADO Prof. Norberto Augusto Júnior

Leia mais

Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono

Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono Máquinas Síncronas Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono Aula Anterior Circuito Equivalente por fase O Alternador gerava

Leia mais

1- INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos:

1- INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos: MOTORES DE INDUÇÃO 1- INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos: a) geradores, que transformam energia mecânica oriunda de uma fonte externa (como a

Leia mais

MOTOR DE INDUÇÃO TRIFÁSICO (continuação)

MOTOR DE INDUÇÃO TRIFÁSICO (continuação) MOTOR DE INDUÇÃO TRIFÁSICO (continuação) Joaquim Eloir Rocha 1 A produção de torque em um motor de indução ocorre devido a busca de alinhamento entre o fluxo do estator e o fluxo do rotor. Joaquim Eloir

Leia mais

MÁQUINA SÍNCRONA FUNDAMENTOS DE MÁQUINAS SÍNCRONAS

MÁQUINA SÍNCRONA FUNDAMENTOS DE MÁQUINAS SÍNCRONAS FUNDAMENTOS DE MÁQUINAS SÍNCRONAS 1. Máquina síncrona de campo fixo De forma semelhante às máquinas de corrente contínua, o enrolamento de campo é excitado por uma fonte CC. O enrolamento de armadura colocado

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 6.3 Máquinas Síncronas Prof. João Américo Vilela Máquina Síncrona Representação Fasorial Motor síncrono operando sobre-excitado E af > V t (elevada corrente de

Leia mais

Máquinas Elétricas. Máquinas CA Parte I

Máquinas Elétricas. Máquinas CA Parte I Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,

Leia mais

UNIVERSIDADE DO ESTADO DO MATO GROSSO UNEMAT FACET FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS ENGENHARIA ELÉTRICA TRABALHO DE

UNIVERSIDADE DO ESTADO DO MATO GROSSO UNEMAT FACET FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS ENGENHARIA ELÉTRICA TRABALHO DE UNIVERSIDADE DO ESTADO DO MATO GROSSO UNEMAT FACET FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS ENGENHARIA ELÉTRICA TRABALHO DE Maquinas Elétricas SINOP/MT 2016 UNIVERSIDADE DO ESTADO DO MATO GROSSO UNEMAT

Leia mais

Capítulo 1 Introdução aos princípios de máquinas 1. Capítulo 2 Transformadores 65. Capítulo 3 Fundamentos de máquinas CA 152

Capítulo 1 Introdução aos princípios de máquinas 1. Capítulo 2 Transformadores 65. Capítulo 3 Fundamentos de máquinas CA 152 resumido Capítulo 1 Introdução aos princípios de máquinas 1 Capítulo 2 Transformadores 65 Capítulo 3 Fundamentos de máquinas CA 152 Capítulo 4 Geradores síncronos 191 Capítulo 5 Motores síncronos 271 Capítulo

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 2.2 Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 2. Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De

Leia mais

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ 17/09/2016 1 / 26 PRESENCIAL MARINGÁ Professor CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10

Leia mais

AULAS UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied

AULAS UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied Universidade do Estado de Santa Catarina Departamento de Engenharia Elétrica Curso de Graduação em Engenharia Elétrica AULAS 03-04 UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied ademir.nied@udesc.br

Leia mais

A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A.

A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A. 53.(ALERJ/FGV/2017) Um motor CC do tipo shunt que possui uma potência mecânica de 6 HP é alimentado por uma fonte de 200 V. Sabendo-se que o seu rendimento é de 80 % e que a corrente de excitação é de

Leia mais

Departamento de Engenharia Elétrica Conversão de Energia II Lista 7

Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.

Leia mais

Máquinas Elétricas. Máquinas CA Parte I

Máquinas Elétricas. Máquinas CA Parte I Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,

Leia mais

PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO

PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO 1 UNIVERSIDADE DO ESTADO DE MATO GROSSO FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE BACHARELADO EM ENGENHARIA ELÉTRICA PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO UNEMAT Campus de Sinop 2016

Leia mais

Motores Elétricos. Conteúdo. 1. Motor Síncrono 2. Motor Assíncrono 3. Motor CC

Motores Elétricos. Conteúdo. 1. Motor Síncrono 2. Motor Assíncrono 3. Motor CC Motores Elétricos Conteúdo 1. Motor Síncrono 2. Motor Assíncrono 3. Motor CC Motores Elétricos 2 1.0 MOTOR SÍNCRONO Os motores síncronos são motores de velocidade constante e proporcional com a frequência

Leia mais

Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético;

Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético; Relembrando... Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético; Como o rotor é girado por uma força mecânica, se produz um campo magnético

Leia mais

Introdução às máquinas CA

Introdução às máquinas CA Introdução às máquinas CA Assim como as máquinas CC, o princípio de funcionamento de máquinas CA é advindo, principalmente, do eletromagnetismo: Um fio condutor de corrente, na presença de um campo magnético,

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 3.4 Motor de Indução Trifásico Prof. João Américo Vilela Torque x velocidade Rotores de Barras Profundas e Dupla Gaiola de Esquilo Com o rotor parado a frequência

Leia mais

Características Básicas dos Transformadores

Características Básicas dos Transformadores Características Básicas dos Transformadores (Roteiro No 2) Universidade Federal de Juiz de Fora Departamento de Energia Elétrica Juiz de Fora, MG 36036-900 Brasil 2018 (UFJF) Lab Maq I 2018 1 / 35 Introdução

Leia mais

lectra Material Didático COMANDOS ELÉTRICOS Centro de Formação Profissional

lectra Material Didático  COMANDOS ELÉTRICOS Centro de Formação Profissional lectra Centro de Formação Profissional Material Didático COMANDOS ELÉTRICOS WWW.ESCOLAELECTRA.COM.BR COMANDOS ELÉTRICOS ÍNDICE INTRODUÇÃO 1. MOTORES ELÉTRICOS 1.1. Classificação de motores 1.1.1. Motores

Leia mais

26/11/ Agosto/2012

26/11/ Agosto/2012 26/11/2012 1 Agosto/2012 Motores Elétricos 26/11/2012 2 Motores Elétricos Conceitos Motor elétrico é uma máquina destinada a transformar energia elétrica em mecânica. É o mais usado de todos os tipos de

Leia mais

PEA MÁQUINAS ELÉTRICAS E ACIONAMENTOS 58 MÁQUINAS ASSÍNCRONAS MONOFÁSICAS

PEA MÁQUINAS ELÉTRICAS E ACIONAMENTOS 58 MÁQUINAS ASSÍNCRONAS MONOFÁSICAS PEA 404 - MÁQUINAS ELÉTRICAS E ACIONAMENTOS 58 MÁQUINAS ASSÍNCRONAS MONOFÁSICAS PEA 404 - MÁQUINAS ELÉTRICAS E ACIONAMENTOS 59 FUNCIONAMENTO DOS MOTORES DE INDUÇÃO MONOFÁSICOS ENROLAMENTO MONOFÁSICO PRODUZ

Leia mais

Experiência I Lab. de Conv. Eletrom. de Energia B Prof. N.SADOWSKI GRUCAD/EEL/CTC/UFSC 2005/2

Experiência I Lab. de Conv. Eletrom. de Energia B Prof. N.SADOWSKI GRUCAD/EEL/CTC/UFSC 2005/2 Experiência I Obtenção Experimental dos Parâmetros do Circuito Equivalente do Motor de Indução Trifásico Ensaio com o Rotor Travado e Ensaio a Vazio O Laboratório de Máquinas Elétricas do Departamento

Leia mais

Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa.

Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa. Questão 1 Uma indústria tem uma carga de 1000 kva com fator de potência indutivo de 95% alimentada em 13800 V de acordo com medições efetuadas. A maneira mais fácil de representar a carga da indústria

Leia mais

Máquinas Elétricas. Máquinas CC Parte III

Máquinas Elétricas. Máquinas CC Parte III Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo

Leia mais

16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS

16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍICOS 6. Um condutor conduz uma corrente contínua constante de 5mA. Considerando-se que a carga de 19 um elétron é 1,6x1 C, então o número de elétrons que passa pela seção reta do condutor

Leia mais

MOTORES DE INDUÇÃO. Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo. Rotor: Armadura Cilindro de ferro com conductores: Gaiola

MOTORES DE INDUÇÃO. Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo. Rotor: Armadura Cilindro de ferro com conductores: Gaiola MOTORES DE INDUÇÃO Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo Rotor: Armadura Cilindro de ferro com conductores: Gaiola Cortocircuito Conductores CAMPOS MAGNÉTICOS GIRANTES

Leia mais

Máquinas Elétricas. Máquinas CC Parte IV

Máquinas Elétricas. Máquinas CC Parte IV Máquinas Elétricas Máquinas CC Parte IV Máquina CC eficiência Máquina CC perdas elétricas (perdas por efeito Joule) Máquina CC perdas nas escovas Máquina CC outras perdas a considerar Máquina CC considerações

Leia mais

MÁQUINAS ELÉTRICAS ROTATIVAS. Fonte: logismarket.ind.br

MÁQUINAS ELÉTRICAS ROTATIVAS. Fonte: logismarket.ind.br MÁQUINAS ELÉTRICAS ROTATIVAS Fonte: logismarket.ind.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender e aplicar conhecimentos relativos a Máquinas Elétricas Rotativas As máquinas elétricas

Leia mais

Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda

Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***

Leia mais

MÁQUINAS ELÉTRICAS. MÁQUINAS ELÉTRICAS Motores Síncronos Professor: Carlos Alberto Ottoboni Pinho MÁQUINAS ELÉTRICAS

MÁQUINAS ELÉTRICAS. MÁQUINAS ELÉTRICAS Motores Síncronos Professor: Carlos Alberto Ottoboni Pinho MÁQUINAS ELÉTRICAS Motores Síncronos Ementa: Máquinas de corrente contínua: características operacionais; acionamento do motor CC; aplicações específicas. Máquinas síncronas trifásicas: características operacionais; partida

Leia mais

Máquinas Elétricas. Introdução Parte III

Máquinas Elétricas. Introdução Parte III Máquinas Elétricas Introdução Parte III Conversão eletromecânica de energia A energia é convertida para a forma elétrica por ser fácil a transmissão e o processamento. Raramente a energia será utilizada

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 5.1 Acionamento e Controle dos Motores de Indução Trifásico Prof. João Américo Vilela Porque em muitos casos é necessário utilizar um método para partir um motor

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 5.2 Acionamento e Controle dos Motores de Indução Trifásico Prof. João Américo Vilela Exercício 1 Para o motor de indução trifásico que tem as curva de torque,

Leia mais

campo em 2 A e a velocidade em 1500 rpm. Nesta condição qual o valor do torque

campo em 2 A e a velocidade em 1500 rpm. Nesta condição qual o valor do torque Um alternador síncrono de pólos lisos possui quatro pólos, está ligado em estrela e apresenta potência nominal igual a 20kVA. Em vazio a tensão entre os terminais é igual a 440 V, quando o rotor da máquina

Leia mais

Máquinas CA são ditas: 1. Síncronas: quando a velocidade do eixo estiver em sincronismo com a freqüência da tensão elétrica de alimentação;

Máquinas CA são ditas: 1. Síncronas: quando a velocidade do eixo estiver em sincronismo com a freqüência da tensão elétrica de alimentação; AULA 10 MÁQUINAS DE INDUÇÃO (ou assíncronas) Descrição e construção da máquina Formação do campo magnético rotativo Tensões, frequências e correntes induzidas Produção de conjugado no eixo Máquinas Elétricas

Leia mais

Temática Máquinas Eléctricas Capítulo Máquina Síncrona Secção LIGAÇÃO À REDE INTRODUÇÃO

Temática Máquinas Eléctricas Capítulo Máquina Síncrona Secção LIGAÇÃO À REDE INTRODUÇÃO Temática Máquinas Eléctricas Capítulo Máquina Síncrona Secção LIGAÇÃO À REDE INTRODUÇÃO Esta primeira página contém uma apresentação genérica do recurso. pré-requisitos: nível : Bases de Engenharia Electrotécnica

Leia mais

CAPÍTULO 1 CONTROLE DE MÁQUINAS ELÉTRICAS (CME) Prof. Ademir Nied

CAPÍTULO 1 CONTROLE DE MÁQUINAS ELÉTRICAS (CME) Prof. Ademir Nied Universidade do Estado de Santa Catarina Programa de Pós-Graduação em Engenharia Elétrica Doutorado em Engenharia Elétrica CAPÍTULO 1 MÁQUINAS DE CORRENTE CONTÍNUA CONTROLE DE MÁQUINAS ELÉTRICAS (CME)

Leia mais

CONTROLE TRADICIONAL

CONTROLE TRADICIONAL CONTROLE TRADICIONAL Variação da tensão do estator Os acionamentos de frequência e tensão variáveis são os mais eficientes Existem também acionamentos com tensão variável e frequência fixa Para um acionamento

Leia mais

Motores Elétricos de Indução Trifásicos. Prof. Sebastião Lauro Nau, Dr. Eng. Set17

Motores Elétricos de Indução Trifásicos. Prof. Sebastião Lauro Nau, Dr. Eng. Set17 Motores Elétricos de Indução Trifásicos Prof. Sebastião Lauro Nau, Dr. Eng. Set17 SUMÁRIO (aproximado): Transdutores elétricos, mecânicos e eletromecânicos; Circuitos Magnéticos; Introdução aos Motores

Leia mais

Eng. Everton Moraes. Método LIDE - Máquinas Elétricas

Eng. Everton Moraes. Método LIDE - Máquinas Elétricas Eng. Everton Moraes Eng. Everton Moraes Método LIDE - Máquinas Elétricas 1 Método LIDE - Máquinas Elétricas Sumário 1. Ligação dos motores de indução trifásico (MIT)... 3 1.1. Ligação de Motores de Indução

Leia mais

CONSTRUÇÃO E FUNCIONAMENTO

CONSTRUÇÃO E FUNCIONAMENTO Temática Máquinas Eléctricas Capítulo Máquina Assíncrona CONSTRUÇÃO E FUNCIONAMENTO INTRODUÇÃO Relativamente à construção, apresentam-se os aspectos fundamentais da construção de máquinas assíncronas.

Leia mais

Motores de Alto Rendimento. - Utilizam chapas magnéticas de aço silício que reduzem as correntes de magnetização;

Motores de Alto Rendimento. - Utilizam chapas magnéticas de aço silício que reduzem as correntes de magnetização; 1 Motores de Alto Rendimento - Utilizam chapas magnéticas de aço silício que reduzem as correntes de magnetização; - Mais cobre nos enrolamentos, diminuindo as perdas por efeito Joule; - Alto fator de

Leia mais

APÊNDICE C. Ensaio da Performance do Protótipo. MATRBGC-HGW560-75kW

APÊNDICE C. Ensaio da Performance do Protótipo. MATRBGC-HGW560-75kW APÊNDICE C Ensaio da Performance do Protótipo MATRBGC-HGW560-75kW 298 LABORATÓRIO DE ENSAIOS ELÉTRICOS - BAIXA TENSÃO WEG MÁQUINAS RELATÓRIO DE ENSAIO DE PROTÓTIPO MATRBGC 560 POTÊNCIA: 75KW / 25KW TENSÃO

Leia mais

Projeto Elétrico Industrial drb-m.org 30

Projeto Elétrico Industrial drb-m.org 30 8 - MOTOR ELÉTRICO 8.1 - Placa de identificação do motor Motor Elétrico É uma máquina que transforma energia elétrica em energia mecânica. Há vários tipos, mas devido a simplicidade de construção, custo

Leia mais

Laboratório de Conversão Eletromecânica de Energia B

Laboratório de Conversão Eletromecânica de Energia B Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Característica de Magnetização da Máquina de Corrente Contínua 1.1 Introdução Máquinas de corrente contínua (MCC) devem

Leia mais

EXP 05 Motores Trifásicos de Indução - MTI

EXP 05 Motores Trifásicos de Indução - MTI EXP 05 Motores Trifásicos de Indução - MTI Funcionamento e Ligações Objetivos: Compreender o funcionamento e as ligações do motor de indução; Analisar os diferentes tipos de construção e as principais

Leia mais

Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores

Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores Máquinas Elétricas Máquinas Síncronas Parte I Geradores Introdução Em um gerador síncrono, um campo magnético é produzido no rotor. través de um ímã permanente ou de um eletroímã (viabilizado por uma corrente

Leia mais

Princípios de máquinas elétricas força induzida Um campo magnético induz uma força em um fio que esteja conduzindo corrente dentro do campo

Princípios de máquinas elétricas força induzida Um campo magnético induz uma força em um fio que esteja conduzindo corrente dentro do campo Princípios de máquinas elétricas Uma máquina elétrica é qualquer equipamento capaz de converter energia elétrica em energia mecânica, e vice-versa Principais tipos de máquinas elétricas são os geradores

Leia mais

ELETRICIDADE INDUSTRIAL. Introdução aos Acionamentos Elétricos

ELETRICIDADE INDUSTRIAL. Introdução aos Acionamentos Elétricos ELETRICIDADE INDUSTRIAL Introdução aos Acionamentos Elétricos Introdução 2 Acionamentos elétricos 3 Acionamento elétricos importância da proteção... Do operador Contra acidentes; Das instalações Contra

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 3.4 Máquinas de Corrente Contínua Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução

Leia mais

Trabalho de maquinas elétricas

Trabalho de maquinas elétricas ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS Trabalho de maquinas elétricas

Leia mais

07/08/2017. Força motriz corresponde ao consumo de equipamentos tais como, bombas, ventiladores e compressores. Perfil do consumo de energia elétrica

07/08/2017. Força motriz corresponde ao consumo de equipamentos tais como, bombas, ventiladores e compressores. Perfil do consumo de energia elétrica O setor industrial é o maior consumidor de energia do país. Respondeu por 37,2 % de todo o consumo no ano de 2009 (BEN 2010). Motores de indução Eletricidade e bagaço de cana são as duas principais fontes

Leia mais

Experimento Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade

Experimento Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade - 1 o Semestre de 2011 Prof. Rubens H. Korogui Experimento 03 1 Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade 1.1 Objetivo Verificação do comportamento freqüência

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA MOTOR SÍNCRONO. Joaquim Eloir Rocha 1

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA MOTOR SÍNCRONO. Joaquim Eloir Rocha 1 MOTOR SÍNCRONO Joaquim Eloir Rocha 1 Os motores síncronos são usados para a conversão da energia elétrica em mecânica. A rotação do seu eixo está em sincronismo com a frequência da rede. n = 120 p f f

Leia mais

APÊNDICE A. Ensaio da Performance do Protótipo. MATRGDA-FAF315-15kW

APÊNDICE A. Ensaio da Performance do Protótipo. MATRGDA-FAF315-15kW APÊNDICE A Ensaio da Performance do Protótipo MATRGDA-FAF315-15kW 262 LABORATÓRIO DE ENSAIOS ELÉTRICOS - BAIXA TENSÃO WEG MÁQUINAS RELATÓRIO DE ENSAIO DE PROTÓTIPO MATRGDA 315 POTÊNCIA: 15KW / 5KW TENSÃO:

Leia mais

Motores de indução e ligações

Motores de indução e ligações Motores de indução e ligações Os motores elétricos são máquinas elétricas bastante simples cuja finalidade é converter a energia elétrica em energia mecânica, e com isso obter movimento. As máquinas elétricas

Leia mais

6 Motores de indução. capítulo OBJETIVOS DE APRENDIZAGEM

6 Motores de indução. capítulo OBJETIVOS DE APRENDIZAGEM capítulo 6 Motores de indução OBJETIVOS DE APRENDIZAGEM Compreender as diferenças fundamentais entre um motor síncrono e um motor de indução. Compreender o conceito de escorregamento de rotor e sua relação

Leia mais

Principais Tipos de Máquinas Elétricas

Principais Tipos de Máquinas Elétricas Principais Tipos de Máquinas Elétricas Máquina de Corrente Contínua Possibilita grande variação de velocidade, com comando muito simples. Também requer fonte de corrente contínua para alimentação do circuito

Leia mais

PEA 2504 LABORATÓRIO DE MÁQUINAS ELÉTRICAS 1º. Semestre 2006 Profs. Ivan Chabu e Viviane

PEA 2504 LABORATÓRIO DE MÁQUINAS ELÉTRICAS 1º. Semestre 2006 Profs. Ivan Chabu e Viviane PEA 2504 LABORATÓRIO DE MÁQUINAS ELÉTRICAS 1º. Semestre 2006 Profs. Ivan Chabu e Viviane MÁQUINAS SÍNCRONAS Parte II - Troca de Potências Ativa e Reativa I - Objetivos - Observação da operação da máquina

Leia mais

Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente

Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente Experiência V Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente 1. Introdução A mesma máquina de corrente contínua de fabricação ANEL utilizada no ensaio precedente

Leia mais

2. Análise do Estado Atual da Máquina Assíncrona Trifásica Duplamente Alimentada Sem Escovas

2. Análise do Estado Atual da Máquina Assíncrona Trifásica Duplamente Alimentada Sem Escovas 2. Análise do Estado Atual da Máquina Assíncrona Trifásica Duplamente Alimentada Sem Escovas 2.1. Introdução Quando se fala em motor elétrico, logo surge à mente o motor de gaiola trifásico. Isto se deve

Leia mais

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)

Leia mais

Acionamento de máquinas elétricas

Acionamento de máquinas elétricas Acionamento de máquinas elétricas Botoeiras Fim de curso e pressostato Relés Temporizadores Contatores Fusíveis Disjuntores Relé térmico ou de sobrecarga Partida direta de motores trifásicos Chave

Leia mais

PEA MÁQUINAS ELÉTRICAS I 86 PARTE 2 MÁQUINAS SÍNCRONAS

PEA MÁQUINAS ELÉTRICAS I 86 PARTE 2 MÁQUINAS SÍNCRONAS PEA 2400 - MÁQUINAS ELÉTRICAS I 86 PARTE 2 MÁQUINAS SÍNCRONAS PEA 2400 - MÁQUINAS ELÉTRICAS I 87 MÁQUINAS SÍNCRONAS - CARACTERIZAÇÃO E APLICAÇÃO MÁQUINAS SÍNCRONAS : OPERAÇÃO NO MODO MOTOR ( MOTORES DE

Leia mais

Circuitos trifásicos

Circuitos trifásicos MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Motores de Relutância Chaveados

Motores de Relutância Chaveados Máquinas Elétricas Especiais Motores de Relutância Chaveados Switched Reluctance Motors Prof. Sebastião Lauro Nau, Dr. Eng. Set 2017 1 Definição - São também chamados de motores de relutância variável.

Leia mais

Universidade Paulista Unip

Universidade Paulista Unip As máquinas de corrente contínua podem ser utilizadas tanto como motor quanto como gerador. 1 Uma vez que as fontes retificadoras de potência podem gerar tensão contínua de maneira controlada a partir

Leia mais

Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente Perdas elétricas e Rendimento

Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente Perdas elétricas e Rendimento Faculdade Pitágoras de Betim Engenharia Elétrica / Controle e Automação Máquinas Elétricas II Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente

Leia mais

Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz:

Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz: Análise de circuitos de corrente alternada Chama-se corrente ou tensão alternada aquela cuja intensidade e direção variam periodicamente, sendo o valor médio da intensidade durante um período igual a zero.

Leia mais

PRINCÍPIO DE FUNCIONAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS

PRINCÍPIO DE FUNCIONAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS ESTADO DO MATO GROSSO SECRETÁRIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS: CURSO DE ENGENHARIA ELÉTRICA

Leia mais

Acionamentos Elétricos

Acionamentos Elétricos Engenharia Elétrica - 9o período Hélio Marques Sobrinho hmarx@linuxtech.com.br http://linuxtech.com.br/downloads 1 / 58 Horários das aulas Segunda e Quarta 19:00 às 20:40 2 / 58 Bibliografia Referências

Leia mais

CHAVES DE PARTIDA PARA MOTORES TRIFÁSICOS DE INDUÇÃO

CHAVES DE PARTIDA PARA MOTORES TRIFÁSICOS DE INDUÇÃO DIRETORIA ACADÊMICA COORDENAÇÃO DO CURSO DE ELETROTÉCNICA CHAVES DE PARTIDA PARA MOTORES TRIFÁSICOS DE INDUÇÃO Disciplina: Máquinas e Acionamentos Elétricos Prof.: Hélio Henrique PARTIDA DIRETA O motor

Leia mais

Apostila 8. Máquina de Corrente Contínua

Apostila 8. Máquina de Corrente Contínua Apostila Máquina CC - Prof. Luís Alberto Pereira - PUCRS-DEE 1 Apostila 8 Máquina de Corrente Contínua A máquina CC é um dos 3 tipos básicos de máquinas elétricas (eistem ainda máquinas síncronas e máquinas

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA CLÉBERTON REIZ JORDAN LUIZ DOURADO FILGUEIRAS LUCAS IOHAN

Leia mais

Inversores de Frequência e Softstarter. Prof.: Regis Isael

Inversores de Frequência e Softstarter. Prof.: Regis Isael Inversores de Frequência e Softstarter Prof.: Regis Isael Motores Motores Revisão Motor CA Rotor de Gaiola Rotor Bobinado Motor Trifásico de Indução Estator Rotor Motor de Indução Trifásico de Gaiola

Leia mais

MOTOR A RELUTÂNCIA CHAVEADO

MOTOR A RELUTÂNCIA CHAVEADO MOTOR A RELUTÂNCIA CHAVEADO Joaquim Eloir Rocha 1 Introdução O Motor a Relutância Chaveado (MRC) ou SRM (Switched Reluctance Motor) é conhecido desde meados de 1940 quando seu primeiro protótipo foi desenvolvido

Leia mais