Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Tamanho: px
Começar a partir da página:

Download "Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II"

Transcrição

1 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia Aula extra de laboratório no dia , às 8h. 1 2 Planejamento Planejamento Os método estatísticos são essenciais para um bom experimento. Todos os experimentos são planejados; infelizmente, alguns deles são pobremente planejados. Fontes valiosas são usadas ineficientemente. 3 Experimentos estatisticamente planejados permitem eficiência e economia no processo experimental e o uso de métodos estatísticos no exame de dados resulta na objetividade científica quando da retirada de conclusões. 4 A análise da variância (ou ANOVA, de ANalysis Of VAriance) é uma poderosa técnica estatística desenvolvida por R. A. Fisher. 5 A ANOVA é uma extensão do testetde Student que compara duas e só duas médias. A análise de variância permite que o pesquisador compare qualquer número de médias e visa identificar a existência de ao menos uma diferença grupos, se alguma existir. 6

2 Além de o cálculo de uma série de razõest envolver trabalho considerável, há também uma limitação estatística, porque aumenta a probabilidade de cometermos um erro tipo I. Pearson (1942) mostrou que a probabilidade (P) de se cometer um erro do tipo I aumenta com o número de médias que estão sendo comparadas (α = 0,05). H o : µ 1 = µ 2 H o : µ 1 = µ 2 = µ 3 P = 0,05 P = 0,14 7 H o : µ 1 = µ 2 = µ 3 = µ 4 P = 0,26 8 Para superar esse problema necessitamos de um teste estatístico que mantenha o erro do tipo I constante tomando uma única decisão global sobre a existência de uma diferença significativa três ou mais médias amostrais que procuramos comparar. 9 Para fazer uma análise de variância, tratamos a variação total de um conjunto de valores como divisível em dois componentes: a distância ou desvio dos valores brutos em relação a sua média grupal, conhecida como variação de grupos, e a distância ou desvio das médias de cada grupo em relação às médias dos grupos, chamada variação grupos. 10 Nota Experimentos inteiramente ao acaso, fator único. Esse modelo que estudaremos é o mais simples de ANOVA e é sempre unilateral. No caso particular de um experimento com dois tratamentos, tanto se pode aplicar um teste t como a ANOVA

3 Procedimentos para a ANOVA Construindo um problema A ANOVA só deve ser realizada se forem satisfeitas algumas pressuposições que serão discutidas posteriormente. 13 O dano ecológico devido ao despejo de substâncias produzidas por certa fábrica foi medido em quatro pontos de um curso d água: antes da saída do efluente da fábrica (ponto A), na saída do efluente (B) e em dois outros pontos situados após o local B (C e D). 14 Com os dados da Tabela 3 teste a hipótese de que há diferentes índices de dano ecológico nos locais examinados (α = 0,05). Valores maiores indicam danos ecológicos maiores. Tabela 3 Índices de dano ecológico. Ponto A Ponto B Ponto C Ponto D Procedimentos para a ANOVA Antes de proceder às etapas da ANOVA, é importante analisar graficamente os dados de um experimento planejado. Por quê? Etapa 1: Formular a hipótese nula e a hipótese alternativa. H 0 : µ 1 = µ 2 = µ 3 = µ 4 17 H 1 : nem todas as médias das populações são iguais. 18

4 Procedimentos para a ANOVA Etapa 2: Especificar o nível de significância a ser utilizado. α = 0,05 Etapa 3: Determinar o valor crítico do teste. Encontrar os graus de liberdade, gl N = gl Entre: (k 1) gl D = gl Dentro: (Σn i ) k 19 k representa o número de tratamentos. 20 O valor crítico de F depende do nível de significância (α) e dos graus de liberdade do numerador e denominador, sendo indicado por F α ; gl N ; gl D gl N significa graus de liberdade da variância do numerador e gl D, o mesmo para o denominador. 21 Etapa 4: Determinar o valor calculado do teste. As fórmulas apresentadas a seguir são válidas tanto para delineamentos em que as amostras têm tamanhos iguais quanto nos casos nos quais os tamanhos variam Termo de correção C: 4.2 A soma de quadrados total: C= ( x) n i 2 total = x 2 C 23 24

5 4.3 A soma de quadrados tratamentos: 4.4 A soma de quadrados (resíduo): Ti ni = 2 C = total T representa o total de cada tratamento O quadrado médio tratamentos: 4.6 O quadrado médio de resíduos: = k 1 = ( n ) k i O valor de F: F = Tabela 4 Análise de variância de um experimento inteiramente ao acaso. Causas de Variação GL F cal F α;gln;gld Entre tratamentos (k 1) Dentro (resíduo) (Σn i ) k Total total (Σn i )

6 Importante Etapa 5 : Tomar a decisão. Rejeita-se H 0 se o valor calculado de F for maior que o valor crítico, ao nível de significância estabelecido e com os mesmos graus de liberdade. Etapa 6 : Concluir. 31 É extremamente importante que o pesquisador entenda o que o teste de hipóteses pode fazer por ele. O teste não comprova nenhuma das hipóteses. Se o resultado do teste for significante, existe evidência contra a hipótese da nulidade (de que as médias são iguais). Então se rejeita essa hipótese. 32 Muito Importante Importantíssimo O experimento precisa ser bem delineado. No caso de experimentos inteiramente ao acaso, é essencial que as unidades experimentais utilizadas no experimento sejam, de início, similares e que a designação dos tratamentos às unidades Se isso não for feito não se deve concluir que os tratamentos são diferentes, mesmo diante de um teste F significante. tenha sido ao acaso Considerações Considerações Os dados variam em torno da média geral, mas boa parte dessa variação é explicada pelo fato de os tratamentos darem respostas muito diferentes. Geralmente é o que queremos ver comprovado. 35 Se as médias de tratamentos fossem iguais, toda a variação seria aleatória (casual) porque os tratamentos não seriam uma causa (ou fator) de variação. 36

7 Coeficiente de Determinação Coeficiente de Determinação Para ANOVA, coeficiente de determinação, que se indica por R 2, é a razão a soma de quadrados tratamentos e a soma de quadrados total, 2 R = total 37 Portanto, R 2 é uma medida da proporção da variação total explicada pela variação devida aos tratamentos. Como o valor de R 2 varia 0 e 1, pode ser interpretado como uma porcentagem. 38 Rememorando Encontre o R 2 para a situação-problema 22 e explique. 39 Para ter ideia da dispersão (ou inversamente, da precisão) dos dados em relação à grandeza da média, o pesquisador deve dividir o desvio padrão pela média. 40 Dados muito dispersos são pouco precisos, ou seja, quanto maior é a variância dos dados, menor é a precisão. Por definição, coeficiente de variação, que se indica por CV, é a razão o desvio padrão (que, na ANOVA é dado pela raiz quadrada do quadrado médio do resíduo) e a média geral (de todos os dados), 41 CV = x

8 O conhecimento da precisão relativa ajuda na avaliação dos resultados de um experimento. Experimentos feitos em laboratório Experimentos de campo O importante é comparar o valor de CV obtido em determinado experimento com o resultado de outros autores. Se os dados foram obtidos de maneira idêntica, diferenças muito grandes do padrão comum exigem explicações. CV não exceder 10% CV não exceder 30% Situação-problema 23 Encontre o CV para a situação-problema 22 e explique. Em um estudo sobre a resitência do concreto à compressão foram investigadas quatro técnicas diferentes de mistura, os resultados encontram-se na Tabela Situação-problema 23 Situação-problema 23 Tabela 5 Resistência à compressão (psi) do concreto de acordo com a técnica de mistura. Técnica 1 Técnica 2 Técnica 3 Técnica a. Construa um gráfico. b. Teste a hipótese de que as técnicas de mistura afetam a resistência do concreto. Use α = 0,05. Explique o resultado. 47 c. Calcule R 2 e CV e explique. 48

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I)

Aula 6. Testes de Hipóteses Paramétricos (I) Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Hipóteses. Hipótese. É uma pressuposição de um determinado problema.

Hipóteses. Hipótese. É uma pressuposição de um determinado problema. Bioestatística Aula 7 Teoria dos Teste de Hitóteses Prof. Tiago A. E. Ferreira 1 Hipóteses Hipótese É uma pressuposição de um determinado problema. Uma vez formulada, a hipótese estará sujeita a uma comprovação

Leia mais

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão Prof. Dr. Guanis de Barros Vilela Junior Relembrando!!! Não é uma CIÊNCIA EXATA!!! É UMA CIÊNCIA PROBABILÍSTICA!!!!!!! Serve

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E Exercícios para Revisão de Teste de Hipótese Material retirado do site http://adm.online.unip.br/ Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E 1) Um revendedor de lâmpadas recebeu

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Objetivo: Determinar experimentalmente a resistência elétrica de um resistor a partir da curva V x I.

Objetivo: Determinar experimentalmente a resistência elétrica de um resistor a partir da curva V x I. Determinação da resistência elétrica de um resistor Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Teste U Teste de Mann-whitney. Karla szczypkovski Silva Lilian Sayuri Sakamoto

Teste U Teste de Mann-whitney. Karla szczypkovski Silva Lilian Sayuri Sakamoto Teste U Teste de Mann-whitney Karla szczypkovski Silva Lilian Sayuri Sakamoto Testes Não-paramétricos VANTAGENS DOS MÉTODOS NÃO- PARAMÉTRICOS 1. Aplicado a uma grande variedade de situações ; 2. Não exige

Leia mais

CÁLCULO DA INCERTEZA

CÁLCULO DA INCERTEZA CÁLCULO DA INCERTEZA O resultado de uma medição é somente um valor aproximado ou uma estimativa do Mensurando. ele é completo somente quando acompanhado do valor declarado de sua incerteza. A incerteza

Leia mais

APONTAMENTOS DE SPSS

APONTAMENTOS DE SPSS Instituto de Ciências Biomédicas de Abel Salazar APONTAMENTOS DE SPSS Rui Magalhães 2010-1 - - 2 - Menu DATA Opção SPLIT FILE Permite dividir, de uma forma virtual, o ficheiro em diferentes ficheiros com

Leia mais

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana:

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana: Medidas de Tendência Central. Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências que essa pesquisa revela. Assim, se a pesquisa envolve muitos dados,

Leia mais

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de Hipóteses Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de hipóteses O Teste de Hipótese é uma regra de decisão para aceitar ou rejeitar uma hipótese

Leia mais

LABORATÓRIO DE ELETRICIDADE BÁSICA ROTEIRO 1 INSTRUMENTOS DE MEDIDAS

LABORATÓRIO DE ELETRICIDADE BÁSICA ROTEIRO 1 INSTRUMENTOS DE MEDIDAS Nome: Nota: LABORATÓRIO DE ELETRICIDADE BÁSICA ROTEIRO 1 INSTRUMENTOS DE MEDIDAS OBJETIVOS O objetivo deste experimento é orientar os alunos quanto à utilização correta de instrumentos de medidas elétricas,

Leia mais

Objetivo: Determinar a eficiência de um transformador didático. 1. Procedimento Experimental e Materiais Utilizados

Objetivo: Determinar a eficiência de um transformador didático. 1. Procedimento Experimental e Materiais Utilizados Eficiência de Transformadores Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi Objetivo: Determinar

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

APLICAÇÃO DA TÉCNICA DE TERMOGRAFIA ATIVA NA INSPEÇÃO NÃO-DESTRUTIVA DE TAMBORES DE REJEITO NUCLEAR

APLICAÇÃO DA TÉCNICA DE TERMOGRAFIA ATIVA NA INSPEÇÃO NÃO-DESTRUTIVA DE TAMBORES DE REJEITO NUCLEAR APLICAÇÃO DA TÉCNICA DE TERMOGRAFIA ATIVA NA INSPEÇÃO NÃO-DESTRUTIVA DE TAMBORES DE REJEITO NUCLEAR Aluno: Igor Szczerb Orientador: Marcos Venicius Soares Pereira Introdução A termografia ativa é um método

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

6 Intervalos de confiança

6 Intervalos de confiança 6 Intervalos de confiança Estatística Aplicada Larson Farber Seção 6.1 Intervalos de confiança para a média (amostras grandes) Estimativa pontual DEFINIÇÃO: Uma estimativa pontual é a estimativa de um

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA

USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA F. M. A. S. COSTA 1, A. P. SILVA 1, M. R. FRANCO JÚNIOR 1 e R.

Leia mais

Estimando probabilidades

Estimando probabilidades A UA UL LA Estimando probabilidades Introdução Nas aulas anteriores estudamos o cálculo de probabilidades e aplicamos seu conceitos a vários exemplos. Assim, vimos também que nem sempre podemos calcular

Leia mais

CENTRO EDUCACIONAL MARUINENSE

CENTRO EDUCACIONAL MARUINENSE CENTRO EDUCACIONAL MARUINENSE JOSANA DE MELLO DANTAS RELATÓRIO DE AULA SOBRE VISCOSIDADE Relatório apresentado a disciplina Química como um dos pré-requisitos para obtenção parcial da nota da 2ª unidade.

Leia mais

4-Teste de Hipóteses. Teste de Hipóteses

4-Teste de Hipóteses. Teste de Hipóteses Teste de Procedimentos Gerais Teste de média Z para 1 amostra Teste de média t para 1 amostra Teste de variância para 2 amostras A Distribuição de Fisher Teste de média t para 2 amostras Teste de média

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Medidas Estatísticas NILO FERNANDES VARELA

Medidas Estatísticas NILO FERNANDES VARELA Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar

Leia mais

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 03. Física Geral e Experimental III 2012/1

Diretoria de Ciências Exatas. Laboratório de Física. Roteiro 03. Física Geral e Experimental III 2012/1 Diretoria de Ciências Exatas Laboratório de Física Roteiro 03 Física Geral e Experimental III 2012/1 Experimento: Dilatação Térmica de um Líquido 1. Dilatação Térmica de um Líquido Nesta tarefa será abordado

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

Introdução à pesquisa clínica. FACIMED Investigação científica II 5º período Professora Gracian Li Pereira

Introdução à pesquisa clínica. FACIMED Investigação científica II 5º período Professora Gracian Li Pereira Introdução à pesquisa clínica FACIMED 2012.1 Investigação científica II 5º período Professora Gracian Li Pereira Questão de pesquisa x relevância Questão PICO FINER Literatura existente Como fazer? Delineamento

Leia mais

Testes t para médias

Testes t para médias Testes t para médias 1-1 Testes t para médias Os testes t aplicam-se tanto a amostras independentes como a amostras emparelhadas. Servem para testar hipóteses sobre médias de uma variável quantitativa

Leia mais

Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014

Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Objetivo: Decidir se um conjunto de dados segue uma determinada distribuição de probabilidades. Exemplo 1: Uma emissora

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução Ministério da Ciência, Tecnologia e Ensino Superior Exame de Acesso ACFES Maiores de 23; Acesso Específico Matemática PROVA MODELO - proposta de resolução - INSTRUÇÕES - Deverá responder à prova na folha

Leia mais

AT = Maior valor Menor valor

AT = Maior valor Menor valor UNIVERSIDADE FEDERAL DA PARAÍBA TABELAS E GRÁFICOS Departamento de Estatística Luiz Medeiros DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente interesse resumir as informações

Leia mais

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03)

P R O G R A M A TERCEIRA FASE. DISCIPLINA: Estatística Aplicada à Pesquisa Educacional Código: 3EAPE Carga Horária: 54h/a (crédito 03) UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS DA SAÚDE E DO ESPORTE - CEFID DEPARTAMENTO DE EDUCAÇÃO FÍSICA - DEF CURSO: LICENCIATURA EM EDUCAÇÃO FÍSICA CURRÍCULO: 2008/2 P R O G

Leia mais

8 Testes de Hipóteses e Comparação entre Modelos

8 Testes de Hipóteses e Comparação entre Modelos 8 Testes de Hipóteses e Comparação entre Modelos 8.1 Testes de Hipóteses No Capítulo 3 foram levantadas diversas hipóteses relacionando os principais fatores estudados ao desempenho das alianças ou à realização

Leia mais

Módulo 4 Ajuste de Curvas

Módulo 4 Ajuste de Curvas Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência Tabelas e Diagramas de Freqüência Probabilidade e Estatística I Antonio Roque Aula 2 O primeiro passo na análise e interpretação dos dados de uma amostra consiste na descrição (apresentação) dos dados

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Vença o relógio Redes de Ordenação

Vença o relógio Redes de Ordenação Atividade 8 Vença o relógio Redes de Ordenação Sumário Mesmo os computadores sendo rápidos, há um limite na sua velocidade de resolução de problemas. Uma forma de acelerar as coisas é usar vários computadores

Leia mais

Número: Dois. Lista de Exercícios Estatística

Número: Dois. Lista de Exercícios Estatística Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação Ciências Contábeis Q1.

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Os conceitos de erro e incerteza. uma medida que permita verificar quão bom é o valor da medição. Para isso dois novos

Os conceitos de erro e incerteza. uma medida que permita verificar quão bom é o valor da medição. Para isso dois novos Os conceitos de erro e incerteza Por mais que o sujeito que faz as medidas em um laboratório seja competente e caprichoso, os dados experimentais nunca terão precisão e exatidão absoluta; porém, alguns

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Objetivos da aula Resolver exercícios do livro-texto com o auxílio do R. 1) Exercício 29 Uma amostra de dez casais e seus respectivos salários anuais (em salários mínimos)

Leia mais

Materiais de Construção II

Materiais de Construção II Pontifícia Universidade Católica de Goiás Escola de Engenharia Materiais de Construção II Professora: Mayara Moraes Pontifícia Universidade Católica de Goiás Escola de Engenharia Materiais de Construção

Leia mais

Estrutura Eletrônica dos átomos

Estrutura Eletrônica dos átomos Estrutura Eletrônica dos átomos 3- Os espectros de emissão dos gases Como a equação de Rydberg poderia ser explicada? Os estados de energia do átomo de hidrogênio Se n f é menor que n i, o e- move-se para

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Conteúdo. 1 Introdução. Histograma do Quarto Sorteio da Nota Fiscal Paraná 032/16. Quarto Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do Quarto Sorteio da Nota Fiscal Paraná 032/16. Quarto Sorteio Eletrônico da Nota Fiscal Paraná Quarto Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este documento apresenta a análise dos resultados

Leia mais

Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 )

Geometria (X 6 ) Português (X 3 ) Álgebra (X 4 ) ROTAÇÃO E INTERPRETAÇÃO DAS COMPONENTES PRINCIPAIS Consideremos o seguinte exemplo (exercício 6): 15 alunos de uma determinada escola foram sujeitos a testes de 6 disciplinas e os resultados obtidos encontram-se

Leia mais

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo PROGRAMA e Metas Curriculares Matemática A Estatística António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo O tema da Estatística nos Cursos Científico-Humanísticos de

Leia mais

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Camila Gomes de Souza Andrade 1 Denise Nunes Viola 2 Alexandro Teles de Oliveira 2 Florisneide

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

FÍSICA EXPERIMENTAL 3001

FÍSICA EXPERIMENTAL 3001 FÍSICA EXPERIMENTAL 300 EXPERIÊNCIA 6 TRANSFERÊNCIA DE POTÊNCIA. OBJETIVOS.. Objetivo Geral Familiarizar os acadêmicos com fontes de tensão (baterias) na condição de máxima transferência de potência para

Leia mais

NÚMEROS E ÁLGEBRA FUNÇÕES

NÚMEROS E ÁLGEBRA FUNÇÕES Professores: Josiane Caroline Protti Disciplina: Matemática Ano: 1º ano E Período: 1º Bimestre - Atividades com os alunos para - Atividades dos livros didáticos e - Correção das atividades na lousa e individual.

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Olimpíadas de Física Prova experimental A. Sociedade Portuguesa de Física

Olimpíadas de Física Prova experimental A. Sociedade Portuguesa de Física Olimpíadas de Física 2003 Prova experimental A Sociedade Portuguesa de Física 30/Maio/2003 Olimpíadas Internacionais de Física 2003 Prova Experimental A Campo magnético terrestre Duração da prova: 2h 1

Leia mais

Matemática e Cidadania

Matemática e Cidadania Matemática e Cidadania Eleições representam um dos momentos mais significativos da Democracia. E como qualquer atividade humana, eleições estão sujeitas a diversas interpretações: históricas, filosóficas,

Leia mais

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias CHICARELI, L.S 1 ; OLIVEIRA, M.C.N. de 2 ; POLIZEL, A 3 ; NEPOMUCENO, A.L. 2 1 Universidade Estadual de Londrina

Leia mais

Medidas e Escalas: Fundamentos e Escalas Comparativas Prentice Hall

Medidas e Escalas: Fundamentos e Escalas Comparativas Prentice Hall Medidas e Escalas: Fundamentos e Escalas Comparativas 1-1 Sumário 1) Visão Geral; 2) Medidas e Escalas; 3) Principais ; i. Escala Nominal ii. Escala Ordinal iii. Escala Intervalar iv. Escala de Razão 1-2

Leia mais

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8]

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8] .. - Medida de Diperão O objetivo da medida de diperão é medir quão próximo un do outro etão o valore de um grupo (e alguma menuram a diperão do dado em torno de uma medida de poição). Intervalo É a medida

Leia mais

Relatório de análise estatística Bairro : Dois Irmãos Recife/PE

Relatório de análise estatística Bairro : Dois Irmãos Recife/PE Relatório de análise estatística Bairro : Dois Irmãos Recife/PE 1 INTRODUÇÃO O objetivo deste relatório é determinar fatores de risco e proteção para a ocorrência de ovos do mosquito Aedes aegypti para

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Pesquisa Operacional II. Professor: Roberto César

Pesquisa Operacional II. Professor: Roberto César Pesquisa Operacional II Professor: Roberto César POPULAÇÃO E AMOSTRA População: refere-se ao grupo total. Amostra: é toda fração obtida de uma população (independente de seu tamanho). Quando usar Amostragem?

Leia mais

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média.

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média. UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Teóricas Curso Eng. Electrotécnica ECTS 5 Teóricopráticas Distribuição das horas de contacto Trabalho Práticas e de Seminário Estágio Laboratoriais campo Orientação tutória Outras

Leia mais

Considere os portfolios X, Y e Z, abaixo, caracterizados pelas respectivas distribuições de probabilidades:

Considere os portfolios X, Y e Z, abaixo, caracterizados pelas respectivas distribuições de probabilidades: Fundação Getulio Vargas Curso de Graduação Disciplina: Estatística Professor: Moisés Balassiano 1. Investidores geralmente constroem portfolios, ou carteiras, contendo diversas aplicações financeiras.

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

1. Métodos de prova: Construção; Contradição.

1. Métodos de prova: Construção; Contradição. Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.

Leia mais

Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula

Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula 1. SOMATÓRIO 1.1 Índices ou notação por índices O símbolo Xi (lê-se X índice

Leia mais

Utilização de testes de comparações múltiplas na análise de experimentos unifatoriais com tratamentos quantitativos

Utilização de testes de comparações múltiplas na análise de experimentos unifatoriais com tratamentos quantitativos Utilização de testes de comparações múltiplas na análise de experimentos unifatoriais com tratamentos quantitativos Josiane Rodrigues 1 Sônia Maria De Stefano Piedade 1 1 Introdução O objetivo de experimentos

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

1 Teorema de Thévenin

1 Teorema de Thévenin 1 Teorema de Thévenin O teorema de Thévenin afirma que, do ponto de vista de um qualquer par de terminais, um circuito linear pode sempre ser substituído por uma fonte de tensão com resistência interna.

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem

Leia mais

Metodologias de Pesquisa em Ciências: análises quantitativa e qualitativa

Metodologias de Pesquisa em Ciências: análises quantitativa e qualitativa Metodologias de Pesquisa em Ciências: análises quantitativa e qualitativa 2ª Edição MAKILIM NUNES BAPTISTA DINAEL CORRÊA DE CAMPOS SUMÁRIO PARTE I - CIÊNCIA E PESQUISA... 1 1 OS DILEMAS DO PRESENTE...

Leia mais