Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial"

Transcrição

1 Álgebra de Boole Nikolas Libert Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial

2 Álgebra de Boole Álgebra de Boole Augustus De Morgan ( ) e George Boole ( ). Desenvolvimento de uma álgebra para representação de situações lógicas de forma simples. DAELT Nikolas Libert 2

3 Álgebra de Boole Variáveis booleanas. Representadas através de letras, podendo assumir dois valores (0 ou 1). Expressão booleana. Sentença matemática que opera sobre variáveis booleanas. DAELT Nikolas Libert 3

4 Postulados da Álgebra Booleana Postulados da Álgebra Booleana Postulado da Complementação. A é chamado de complemento de A. Se A = 0 A = 1. Se A = 1 A = 0. Implica na seguinte identidade: A = A. DAELT Nikolas Libert 4

5 Postulados da Álgebra Booleana Postulado da Adição. Define as regras do operador = = = = 1. Estabelece as seguintes identidades. A + 0 = A. A + 1 = A. A + A = A. A + A = 1. DAELT Nikolas Libert 5

6 Postulados da Álgebra Booleana Postulado da Multiplicação. Define as regras do operador = = = = 1. Estabelece as seguintes identidades. A. 0 = 0. A. 1 = A. A. A = A. A. A = 0. DAELT Nikolas Libert 6

7 Propriedades da Álgebra Booleana Propriedades da Álgebra Booleana Propriedade Comutativa. Soma: A + B = B + A. Produto: A. B = B. A. Propriedade Associativa. Soma: A + (B + C) = (A + B) + C = A + B + C. Produto: A. (B. C) = (A. B). C = A. B. C. Propriedade Distributiva. A. (B + C) = A. B + A. C DAELT Nikolas Libert 7

8 Teoremas de De Morgan Teoremas de De Morgan Importantes para simplificação de circuitos lógicos. 1 Teorema. O complemento do produto é a soma dos complementos. A. B = A + B A. B. ( ). N = A + B + ( ) + N A B A. B A + B DAELT Nikolas Libert 8

9 Teoremas de De Morgan 2 Teorema. O complemento da soma é o produto dos complementos. A + B = A. B A + B + ( ) + N = A. B. ( ). N Consequência prática dos teoremas. A B A + B A. B = = 1 Teorema 2 Teorema DAELT Nikolas Libert 9

10 Identidades Auxiliares Identidades Auxiliares A + A.B = A. A + A.B = A.(1 + B) = A.(1) = A (A + B).(A + C) = A + B.C (A + B).(A + C) = A.A + A.C + A.B + B.C = A + A.C + A.B + B.C = A.(1 + B + C) + B.C = A + B.C A + A.B = A + B A + A.B = A + A.B = A. A.B = A. (A+B) = A.A + A.B = A.B = A + B DAELT Nikolas Libert 10

11 Simplificação de Expressões Booleanas Simplificação de Expressões Booleanas A Álgebra de Boole permite a simplificação de expressões lógicas e consequentemente, de circuitos que as representem. Exemplo: Simplifique a expressão S = ABC + AB + AC S = A.(BC + B + C) = A.(BC + (B+C)) = A.(BC + (B+C)) = A.(BC + BC) = A.1 = A DAELT Nikolas Libert 11

12 Expressões que Representam uma Tabela Verdade Expressões que Representam uma Tabela Verdade Dada uma tabela verdade, é possível a obtenção da expressão lógica que a representa analisando-se as condições que tornam a saída verdadeira ou falsa. Quando retiradas da tabela verdade de forma direta, as expressões se encontram num formato chamado de canônico. Expressões canônicas nem sempre se encontram na representação mais simples. DAELT Nikolas Libert 12

13 Expressões que Representam uma Tabela Verdade Análise das condições de saída verdadeira. A B C S C0 C2 C5 A saída será verdadeira se as condições C0 OU C2 OU C5 forem verdadeiras: S = C0 + C2 + C5 O que torna a condição C0 verdadeira? - As entradas A E B E C devem ser falsas. C0 = A.B.C C2 = A.B.C C5 = A.B.C Logo: S = A.B.C + A.B.C + A.B.C Devido ao formato da expressão de saída, este método é chamado de método da soma de produtos ou SOP (Sum of Products). DAELT Nikolas Libert 13

14 Expressões que Representam uma Tabela Verdade Exercício: utilizando Álgebra de Boole simplifique a expressão obtida S = A.B.C + A.B.C + A.B.C. S = A.C + A.B.C DAELT Nikolas Libert 14

15 Expressões que Representam uma Tabela Verdade Análise das condições de saída falsa. A B C S C1 C3 C4 C6 C7 A saída será falsa se as condições C1 OU C3 OU C4 OU C6 OU C7 forem verdadeiras: S = C1 + C3 + C4 + C6 + C7 O que torna a condição C1 verdadeira? - As entradas NÃO A E NÃO B E C devem ser verdadeiras. C1 = A.B.C C3 = A.B.C C4 = A.B.C C6 = A.B.C C7 = A.B.C Logo: S = A.B.C + A.B.C + A.B.C + A.B.C + A.B.C DAELT Nikolas Libert 15

16 Expressões que Representam uma Tabela Verdade Análise das condições de saída falsa. A B C S S = A.B.C + A.B.C + A.B.C + A.B.C + A.B.C Negando os dois lados da expressão obtida: S = A.B.C + A.B.C + A.B.C + A.B.C + A.B.C Aplicando De Morgan: S = (A.B.C).(A.B.C).(A.B.C).(A.B.C).(A.B.C) Aplicando De Morgan: S = (A+B+C).(A+B+C).(A+B+C).(A+B+C).(A+B+C) Devido ao formato da expressão de saída, este método é chamado de método do produto das somas ou POS (Product of Sums). DAELT Nikolas Libert 16

17 Expressões que Representam uma Tabela Verdade Resultado por SOP e POS. Produto das Somas (POS): S = (A+B+C).(A+B+C).(A+B+C).(A+B+C).(A+B+C) A B C S Soma de Produtos (SOP): S = A.B.C + A.B.C + A.B.C Nesse caso, a representação por soma de produtos é vantajosa. DAELT Nikolas Libert 17

18 Expressões que Representam uma Tabela Verdade Exercício: Obtenha as expressões SOP e POS que representam a tabela verdade abaixo e simplifique a SOP. A B C S S = A B + AC + ABC DAELT Nikolas Libert 18

19 Exemplo de Projeto Três aparelhos de som devem ser conectados a um único amplificador. Caso mais de um aparelho esteja ligado, o amplificador deverá receber o sinal de um dos três de acordo com a seguinte lista de prioridades: Prioridade 1: Toca-discos. Prioridade 2: Toca-fitas. Prioridade 3: Rádio FM. Toca-discos Toca-fitas Rádio FM A B C X Y Z Amplificador Escreva a tabela verdade de um sistema digital de três entradas e três saídas que determina qual aparelho é conectado ao amplificador. As variáveis de entrada são A, B e C e indicam quais equipamento estão ligados. As variáveis de saída são X, Y e Z e indicam qual equipamento está conectado ao amplificador. Apenas uma saída pode ser ativada simultaneamente. DAELT Nikolas Libert 19

20 Exemplo de Projeto Toca-discos Toca-fitas Rádio FM A B C X Y Z A B C X Y Z Amplificador A: Toca-discos ligado. B: Toca-fitas ligado. C: Rádio FM ligado. X: Toca-discos conectado ao amplificador. Y: Toca-fitas conectado ao amplificador. Z: Rádio FM conectado ao amplificador. Obtenha as 3 expressões SOP que representam o sistema. DAELT Nikolas Libert 20

21 Exemplo de Projeto A B C X Y Z X = A.B.C + A.B.C + A.B.C + A.B.C Y = A.B.C + A.B.C Z = A.B.C Utilizando Álgebra de Boole, simplifique as expressões encontradas. DAELT Nikolas Libert 21

22 Exemplo de Projeto X = A.B.C + A.B.C + A.B.C + A.B.C X = A.(B.C + B.C + B.C + B.C) X = A.(B.(C + C) + B.(C + C)) X = A.(B + B) X = A Y = A.B.C + A.B.C Y = A.B.(C + C) Y = A.B Z = A.B.C DAELT Nikolas Libert 22

23 Exercício Desenhe o circuito abaixo utilizando apenas portas NÃO E. A B S DAELT Nikolas Libert 23

24 Referências IDOETA, I. V., CAPUANO, F. G. Elementos de Eletrônica Digital, 41ª Edição, Érica, São Paulo, DAELT Nikolas Libert 24

ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES

ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES A aplicação principal da álgebra de Boole é o estudo e a simplificação algébrica de circuitos lógicos. As variáveis booleanas podem assumir apenas dois

Leia mais

Álgebra de Boole. Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes

Álgebra de Boole. Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Álgebra de Boole Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Álgebra de Boole Álgebra Booleana ou Álgebra de Boole Conjunto

Leia mais

Introdução à Informática. Álgebra de Boole. Ageu Pacheco e Alexandre Meslin

Introdução à Informática. Álgebra de Boole. Ageu Pacheco e Alexandre Meslin Introdução à Informática Álgebra de oole geu Pacheco e lexandre Meslin Objetivo da ula: Estudar os conceitos e regras que regem o projeto e funcionamento dos circuitos lógicos dos computadores digitais.

Leia mais

COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24)

COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24) COLÉGIO DO INSTITUTO BATISTA AMERICANO PROF. ABIMAILTON PRATTI DA SILVA Rua Mariana N.º 70 Retiro Volta Redonda Telefone: (24) 33381279 SOLICITAÇÃO Não temos direito autoral reservado para o presente trabalho.

Leia mais

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850.

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850. ÁLGEBRA BOOLEANA Foi um modelo formulado por George Boole, por volta de 1850. Observando a lógica proposicional e a teoria de conjuntos verificamos que elas possuem propriedades em comum. Lógica Proposicional

Leia mais

Representação de Circuitos Lógicos

Representação de Circuitos Lógicos 1 Representação de Circuitos Lógicos Formas de representação de um circuito lógico: Representação gráfica de uma rede de portas lógicas Expressão booleana Tabela verdade 3 representações são equivalentes:

Leia mais

CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008.

CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008. CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro, 23 de setembro de 2008. 1 a LISTA DE EXERCÍCIOS DE ELETRÔNICA DIGITAL Prof. Alessandro Jacoud Peixoto 1. Implemente

Leia mais

ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação

ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação ÁLGEBRA DE BOOLE Operações Fundamentais, Autoavaliação, Indução Perfeita e Simulação OBJETIVOS: a) Conhecer na prática os principais fundamentos da álgebra de Boole; b) Comprovar na prática os teoremas

Leia mais

Eletrônica Digital. Projeto de Circuitos Combinacionais. Prof. Wanderley

Eletrônica Digital. Projeto de Circuitos Combinacionais. Prof. Wanderley Eletrônica igital Projeto de Circuitos Combinacionais Prof. Wanderley Introdução O circuito combinacional é aquele em que a saída depende única e exclusivamente das combinações entre as variáveis de entrada.

Leia mais

Circuitos Lógicos Aula 8

Circuitos Lógicos Aula 8 Circuitos Lógicos Aula 8 Aula passada Portas NAND e NOR Teoremas booleanos Teorema de DeMorgan Universalidade NAND e NOR Aula de hoje Circuitos Combinacionais Expressão SOP Simplificação Construindo circuito

Leia mais

A B f(a, B) = A + B. A f(a ) = A

A B f(a, B) = A + B. A f(a ) = A Álgebra de Boole ESTV-ESI-Sistemas Digitais-Álgebra de Boole 1/7 A Álgebra de Boole é uma ferramenta matemática muito utilizada na representação e simplificação de funções binárias (ou lógicas), sendo

Leia mais

Apostila Mapas de Veitch-Karnaugh

Apostila Mapas de Veitch-Karnaugh Apostila Mapas de Veitch-Karnaugh Álgebra de Boole e Simplificação de Circuitos Lógicos... 3 Variáveis e Expressões na Álgebra de Boole... 3 Postulados... 3 Postulados da Complementação... 3 Postulado

Leia mais

Circuitos Combinacionais

Circuitos Combinacionais Circuitos Combinacionais Nesta apresentação será fornecida uma introdução aos circuitos cuja saída depende exclusivamente das variáveis de entrada: os circuitos combinacionais José ugusto aranauskas Departamento

Leia mais

ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade

ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização de Computadores

Leia mais

Nível da Lógica Digital (Aula 6) Portas Lógicas e Lógica Digital Nível da Lógica Digital Estudar vários aspectos da lógica digital Base de estudo para os níveis mais elevados da hierarquia das máquinas

Leia mais

SCE Elementos de Lógica Digital I

SCE Elementos de Lógica Digital I SCE - Elementos de Lógica Digital I Introdução aos circuitos lógicos Prof. Vanderlei Bonato Tópicos da Aula de Hoje Variáveis e funções lógicas Tabela verdade Álgebra Booleana Diagrama de Venn Processo

Leia mais

Eletrônica Digital para Instrumentação

Eletrônica Digital para Instrumentação G4 Eletrônica Digital para Instrumentação Prof. Márcio Portes de Albuquerque (mpa@cbpf.br) Prof. Herman P. Lima Jr (hlima@cbpf.br) Centro Brasileiro de Pesquisas Físicas Ministério da Ciência e Tecnologia

Leia mais

Eletrônica Digital. Projeto de Circuitos Combinacionais. Alex Vidigal Bastos

Eletrônica Digital. Projeto de Circuitos Combinacionais. Alex Vidigal Bastos Eletrônica Digital Projeto de Circuitos Combinacionais Alex Vidigal Bastos Introdução O circuito combinacional é aquele em que a saída depende única e exclusivamente das combinações entre as variáveis

Leia mais

3. Computadores Industriais

3. Computadores Industriais UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENG. DE PRODUÇÃO E SISTEMAS - DEPS INFORMÁTICA INDUSTRIAL IFD 3. Computadores Industriais Igor Kondrasovas

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos.

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos. Objetivos 4. Álgebra Booleana e Simplificação Lógica Aplicar as leis e regras básicas da álgebra Booleana Aplicar os teoremas de DeMorgan em expressões Booleanas Descrever circuitos de portas lógicas com

Leia mais

Aula 1. Funções Lógicas. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira

Aula 1. Funções Lógicas. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira Aula 1 Funções Lógicas SEL 0414 - Sistemas Digitais Prof. Dr. Marcelo Andrade da Costa Vieira Representação Numérica: l Utilizada na representação de alguma grandeza física l Pode ser Analógica ou Digital

Leia mais

Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Mapas de Karnaugh O mapa de Veitch-Karnaugh, ou simplesmente mapa de Karnaugh, é uma tabela montada de forma a facilitar o processo

Leia mais

Circuitos Digitais. Engenharia de Automação e Controle Engenharia Elétrica. São Paulo 2014. Prof. José dos Santos Garcia Neto

Circuitos Digitais. Engenharia de Automação e Controle Engenharia Elétrica. São Paulo 2014. Prof. José dos Santos Garcia Neto Engenharia de Automação e Controle Engenharia Elétrica Circuitos Digitais Prof. José dos Santos Garcia Neto São Paulo 2014 Prof. José dos Santos Garcia Neto 1 Introdução Esta apostila tem como objetivo

Leia mais

Aula 4: Álgebra booleana

Aula 4: Álgebra booleana Aula 4: Álgebra booleana Circuitos Digitais Rodrigo Hausen CMCC UFABC 01 de fevereiro de 2013 http://compscinet.org/circuitos Rodrigo Hausen (CMCC UFABC) Aula 4: Álgebra booleana 01 de fevereiro de 2013

Leia mais

Sistemas Digitais I LESI :: 2º ano

Sistemas Digitais I LESI :: 2º ano Sistemas Digitais I LESI :: 2º ano - Álgebra António Joaquim Esteves João Miguel Fernandes www.di.uminho.pt/~aje Bibliografia: secções 3. e 4., DDPP, Wakerly DEP. DE INFORMÁTICA ESCOLA DE ENGENHARIA UNIVERSIDADE

Leia mais

Introdução à Computação: Álgebra Booleana

Introdução à Computação: Álgebra Booleana Introdução à Computação: Álgebra Booleana Beatriz F. M. Souza (bfmartins@inf.ufes.br) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes), Vitória, ES

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Circuitos Lógicos e Organização de Computadores

Circuitos Lógicos e Organização de Computadores Circuitos e Organização de Computadores Capítulo 2 Introdução aos Circuitos Ricardo Pannain pannain@puc-campinas.edu.br http://docentes.puc-campinas.edu.br/ceatec/pannain/ VARIÁVEI E FUNÇÕE Chaves de dois

Leia mais

Introdução à Computação: Introdução às Portas Lógicas

Introdução à Computação: Introdução às Portas Lógicas Introdução à Computação: Introdução às Portas Lógicas Beatriz F. M. Souza (bfmartins@inf.ufes.br) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes),

Leia mais

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Dados em Algoritmos Quando escrevemos nossos programas, trabalhamos com: Dados que nós fornecemos ao programa Dados

Leia mais

Álgebra de Boole e Teorema de De Morgan Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Álgebra de Boole e Teorema de De Morgan Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Álgebra de Boole e Teorema de De Morgan Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Álgebra de Boole A Álgebra de Boole é empregada no projeto de circuitos digitais, para: análise - é um

Leia mais

Figura 1 - Display de 7 segmentos

Figura 1 - Display de 7 segmentos Lista de exercicio para revisão Um display de 7 segmentos é um dispositivo eletrônico composto por sete led s com formato de segmento, posicionados de modo a possibilitar a formação de um algarismo decimal

Leia mais

Simplificação de Expressões Booleanas e Circuitos Lógicos

Simplificação de Expressões Booleanas e Circuitos Lógicos Simplificação de Expressões Booleanas e Circuitos Lógicos Margrit Reni Krug Julho/22 Tópicos Revisão Álgebra Booleana Revisão portas lógicas Circuitos lógicos soma de produtos produto de somas Simplificação

Leia mais

Matemática 6ºano. Alunos dos 6º anos, espero que todos estejam bem e com muita disposição para volta às aulas.

Matemática 6ºano. Alunos dos 6º anos, espero que todos estejam bem e com muita disposição para volta às aulas. Matemática 6ºano Alunos dos 6º anos, espero que todos estejam bem e com muita disposição para volta às aulas. Abaixo estão as instruções para que vocês possam retornar às aulas mais interados com a matéria

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS 1.2. ELEMENTOS DE ÁLGEBRA 1.2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

CURSO DE ELETRÔNICA DIGITAL A ÁLGEBRA DE BOOLE

CURSO DE ELETRÔNICA DIGITAL A ÁLGEBRA DE BOOLE LIÇÃO 2 A ÁLGEBRA DE BOOLE Na primeira lição do nosso curso aprendemos o significado das palavras Digital e Lógica empregadas na Eletrônica e nos computadores. Vimos que os computadores são denominados

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

Aula de Polinómios. Faculdade de Ciências e Tecnologias da Universidade de Coimbra. Departamento de Matemática. Ensino da Matemática I

Aula de Polinómios. Faculdade de Ciências e Tecnologias da Universidade de Coimbra. Departamento de Matemática. Ensino da Matemática I Faculdade de Ciências e Tecnologias da Universidade de Coimbra Departamento de Matemática Aula de Polinómios Ensino da Matemática I Professora: Helena Albuquerque (lena@mat.uc.pt) Autor: Tânia Isabel Duarte

Leia mais

Curso Profissional de Técnico de Gestão de Equipamentos Informáticos 10º ANO

Curso Profissional de Técnico de Gestão de Equipamentos Informáticos 10º ANO Planificação Anual 2016/2017 Curso Profissional de Técnico de Gestão de Equipamentos Informáticos SISTEMAS DIGITAIS E ARQUITETURA DE COMPUTADORES 10º ANO 1 MÓDULO 1 - Sistemas de Numeração 32 aulas de

Leia mais

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Portas Lógicas Básicas Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Colegiado de Engenharia da Computação CECOMP Introdução à Algebra de Boole Em lógica tradicional, uma decisão é tomada

Leia mais

3. Portas Lógicas. Objetivos. Objetivos. Introdução. Circuitos Digitais 31/08/2014

3. Portas Lógicas. Objetivos. Objetivos. Introdução. Circuitos Digitais 31/08/2014 Objetivos 3. Portas Lógicas Descrever a operação do inversor, da porta AND e da porta OR Descrever a operação da porta NAND e da porta NOR Expressar a operação da função NOT e das portas AND, OR, NAND

Leia mais

Aula 8 Portas Lógicas. Programação de Computadores

Aula 8 Portas Lógicas. Programação de Computadores Aula 8 Portas Lógicas Programação de Computadores Introdução As portas lógicas são os componentes básicos da eletrônica digital. Elas são usadas para criar circuitos digitais e até mesmo circuitos integrados

Leia mais

Introdução. de Eletrônica Digital (Parte II) Universidade Federal de Campina Grande Departamento de Sistemas e Computação. Carga Horária: 60 horas

Introdução. de Eletrônica Digital (Parte II) Universidade Federal de Campina Grande Departamento de Sistemas e Computação. Carga Horária: 60 horas Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação Conceitos Básicos B de Eletrônica Digital (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo

Leia mais

Universidade Estadual de Maringá Centro de Tecnologia Departamento de Informática. Eletrônica Digital

Universidade Estadual de Maringá Centro de Tecnologia Departamento de Informática. Eletrônica Digital Universidade Estadual de Maringá Centro de Tecnologia Departamento de Informática Eletrônica Digital Disciplina Professor: Flávio Rogério Uber E-mail: flavio.uber@gmail.com Bloco C56 sala 24 Programa )

Leia mais

Elementos de Lógica Digital Aula 1: Introdução 04/08/2011

Elementos de Lógica Digital Aula 1: Introdução 04/08/2011 Elementos de Lógica Digital Aula 1: Introdução 04/08/2011 Website http://www.inf.ufes.br/~pdcosta/ensino/2010-2-elementos-de-logica-digital/ Prof a. Patrícia Dockhorn Costa Objetivos O objetivo desta disciplina

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo

Leia mais

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração Sistemas de Numeração Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Um sistema de numeração

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Circuitos Lógicos Portas Lógicas

Circuitos Lógicos Portas Lógicas Circuitos Lógicos Portas Lógicas Prof.: Daniel D. Silveira 1 Álgebra de Boole George Boole desenvolveu um sistema de análise lógica por volta de 1850 Este sistema é conhecido atualmente como álgebra de

Leia mais

5. Expressões aritméticas

5. Expressões aritméticas 5. Expressões aritméticas 5.1. Conceito de Expressão O conceito de expressão em termos computacionais está intimamente ligado ao conceito de expressão (ou fórmula) matemática, onde um conjunto de variáveis

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR

Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Conforme discutido na última aula, cada operação lógica possui sua própria tabela verdade. A seguir será apresentado o conjunto básico de portas lógicas

Leia mais

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis

Leia mais

Eletrônica Digital I SUMÁRIO INTRODUÇÃO ELETRÔNICA DIGITAL

Eletrônica Digital I SUMÁRIO INTRODUÇÃO ELETRÔNICA DIGITAL SUMÁRIO INTRODUÇÃO ELETRÔNICA DIGITAL 1 SISTEMAS NUMÉRICOS 2 SISTEMA NUMÉRICO BINÁRIO 3 CONVERSÃO DO SISTEMA BINÁRIO PARA O SISTEMA DECIMAL 4 CONVERSÃO DO SISTEMA DECIMAL PARA O SISTEMA BINÁRIO 4 SISTEMA

Leia mais

Funções Lógicas e Portas Lógicas

Funções Lógicas e Portas Lógicas Funções Lógicas e Portas Lógicas Nesta apresentação será fornecida uma introdução ao sistema matemático de análise de circuitos lógicos, conhecido como Álgebra de oole Serão vistos os blocos básicos e

Leia mais

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO DEPARTAMENTO DE MATEMÁTICA E TECNOLOGIAS ÁREA DISCIPLINAR DE MATEMÁTICA PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO CALENDARIZAÇÃO DO ANO LETIVO Período Início Fim Nº Semanas

Leia mais

Aula 4 Expressões e Operadores Cleverton Hentz

Aula 4 Expressões e Operadores Cleverton Hentz Aula 4 Expressões e Operadores Cleverton Hentz Sumário de Aula } Expressões } Operadores } Linearização de Expressões 2 Expressões Uma expressão é composta por variáveis, constantes, ou qualquer combinação

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

Sistemas Digitais Universidade Católica do Salvador Professor Marco Antônio C. Câmara. Aula 03 Simplificação de Expressões Lógicas.

Sistemas Digitais Universidade Católica do Salvador Professor Marco Antônio C. Câmara. Aula 03 Simplificação de Expressões Lógicas. Sistemas Digitais Universidade Católica do Salvador Professor Marco Antônio C. Câmara Aula 03 Simplificação de Expressões Lógicas Roteiro da Aula : Nesta aula conheceremos os métodos mais utilizados para

Leia mais

MATRIZES E DETERMINANTES. a, com índices duplos, onde

MATRIZES E DETERMINANTES. a, com índices duplos, onde MATRIZES E DETERMINANTES Para designar com clareza situações que apresentam um grupo ordenado de números dispostos em tabelas com linhas e colunas, introduziremos o conceito de matriz. Nesse sentido, matrizes

Leia mais

CAPÍTULO 4 - OPERADORES E EXPRESSÕES

CAPÍTULO 4 - OPERADORES E EXPRESSÕES CAPÍTULO 4 - OPERADORES E EXPRESSÕES 4.1 - OPERADORES ARITMÉTICOS Os operadores aritméticos nos permitem fazer as operações matemáticas básicas, usadas no cálculo de expressões aritméticas. A notação usada

Leia mais

Apresentação da Disciplina Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Apresentação da Disciplina Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Apresentação da Disciplina Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Introdução à Eletrônica É ciência que estuda a forma de controlar a energia elétrica por meios elétricos nos quais os

Leia mais

Introdução à Computação

Introdução à Computação Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Introdução à Computação A Informação

Leia mais

Aula 5: determinação e simplificação de expressões lógicas

Aula 5: determinação e simplificação de expressões lógicas Aula 5: determinação e simplificação de expressões lógicas Circuitos Digitais Rodrigo Hausen CMCC UFABC 4 e 6 de Fev. de 2013 http://compscinet.org/circuitos Rodrigo Hausen (CMCC UFABC) Aula 5: determinação

Leia mais

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula 3 - ÁLGEBRA BOOLEANA 1. Introdução O ponto de partida para o projeto sistemático de sistemas de processamento digital é a chamada Álgebra de Boole, trabalho de um matemático inglês que, em um livro

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Ficha Prática nº Parte II. Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/04 Operações com funções. Composição de funções. Função Inversa. ) O gráfico

Leia mais

Sistema Decimal - Permite representar qualquer quantidade por intermédio de uma soma ponderada de potências de base 10.

Sistema Decimal - Permite representar qualquer quantidade por intermédio de uma soma ponderada de potências de base 10. 1 Coelh ho, J.P. @ Sistem mas Digita ais : Y20 Sistemas de Numeração e Códigos Binários sistema de numeração que permitia, através de dez símbolos distintos (algarismos), representar uma determinada grandeza

Leia mais

Cálculo Térmico. Nikolas Libert. Aula 3C Eletrônica de Potência ET53B Tecnologia em Automação Industrial

Cálculo Térmico. Nikolas Libert. Aula 3C Eletrônica de Potência ET53B Tecnologia em Automação Industrial Cálculo Térmico Nikolas Libert Aula 3C Eletrônica de Potência ET53B Tecnologia em Automação Industrial Cálculo Térmico em Regime Permanente A circulação de corrente nos semicondutores produz calor. A junção

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

Aula 5. Mapas de Karnaugh. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira

Aula 5. Mapas de Karnaugh. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira Aula 5 Mapas de Karnaugh EL 44 - istemas Digitais Prof. Dr. Marcelo Andrade da Costa Vieira . Mapa de KARNAUGH ou Mapa K l É uma exposição visual de produtos fundamentais necessários para um solução de

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Aula 10 Matrizes e Determinantes Matrizes e Determinantes se originaram no final do século XVIII, na Alemanha e no Japão, com o intuito de ajudar na solução de sistemas lineares baseados em tabelas formadas

Leia mais

PLANIFICAÇÃO ANUAL DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DE MATEMÁTICA 1.º Período Agrupamento de Escolas António Correia de Oliveira PLANIFICAÇÃO ANUAL DE MATEMÁTICA 7.º ANO ANO LETIVO 2016/17 Números Racionais Números e operações NO7 Números racionais - Simétrico da soma

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

Notas de Aula - Álgebra de Boole Parte 1

Notas de Aula - Álgebra de Boole Parte 1 Universidade de Brasília Departamento de Engenharia Elétrica Sistemas Digitais 1 Prof. Dr. Alexandre Romariz Revisado em 27/4/06 Notas de Aula - Álgebra de Boole Parte 1 1 Introdução Fundamentos, Teoremas

Leia mais

7º ANO. Lista extra de exercícios

7º ANO. Lista extra de exercícios 7º ANO Lista extra de exercícios 1. Um famoso problema de lógica consiste na seguinte situação. Um viajante precisava pagar sua estadia de uma semana (7 dias) em um hotel, sendo que só possuía uma barra

Leia mais

Período: 4º Disciplina: Técnicas e Sistemas Digitais

Período: 4º Disciplina: Técnicas e Sistemas Digitais Período: 4º Disciplina: Técnicas e Sistemas Digitais Carga Horária Semestral: 60 h/a Carga Horária Semanal: 3 h/a Núcleo Profissionalizante Pré-requisito: Não há Correquisito: Não há Disciplina Obrigatória

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO DE MATEMÁTICA - 7.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n.

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n. Matrizes noções gerais e notações Definição Designa-se por matriz de números reais a um quadro do tipo a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn onde os elementos a ij (i = 1, 2,...,

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho joao.carvalho@inesc.pt Álgebra de Boole Binária A Álgebra de Boole binária através do recurso à utiliação

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO DE MATEMÁTICA 7.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

CONCEITOS DE ALGORITMOS

CONCEITOS DE ALGORITMOS CONCEITOS DE ALGORITMOS Fundamentos da Programação de Computadores - 3ª Ed. 2012 Editora Prentice Hall ISBN 9788564574168 Ana Fernanda Gomes Ascênsio Edilene Aparecida Veneruchi de Campos Algoritmos são

Leia mais

ALGORITMOS 3ª Aula. 3. Introdução Tipos de dados, variáveis e operadores Tipos de dados

ALGORITMOS 3ª Aula. 3. Introdução Tipos de dados, variáveis e operadores Tipos de dados 3. Introdução Segundo alguns especialistas, qualquer programa de computador pode ser escrito utilizando apenas três estruturas básicas: Seqüência, Condição e Repetição. Isto significa que, na construção

Leia mais

Fábio Rodrigues / Israel Lucania

Fábio Rodrigues / Israel Lucania Fábio Rodrigues / Israel Lucania Variável é um local na memória principal, isto é, um endereço que armazena um conteúdo. Em linguagem de alto nível nos é permitido dar nomes a esse endereço, facilitando

Leia mais

ARITMÉTICA BINÁRIA. Adão de Melo Neto

ARITMÉTICA BINÁRIA. Adão de Melo Neto ARITMÉTICA BINÁRIA Adão de Melo Neto 1 Sumário Adição Multiplicação Subtração Divisão Complemento de 1 Complemento de 2 Representação de um número com sinal Sinal magnitude Complemento de 2 Valor em decimal

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Departamento de Ciências da Computação

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT. Departamento de Ciências da Computação UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT Departamento de Ciências da Computação Nota importante: Existem materiais incluídos neste texto de outros autores e fontes bibliográficas

Leia mais

MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a +

MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a + ITA_Modulos 3a6 prof 03/03/0 4:9 Página I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 3 Fatoração. Prove que se a e b são dois números reais então a + b ab a, b (a b) (a b) 0

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn

a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn Matrizes Definição Definição Uma matriz m n é uma tabela de mn números dispostos em m linhas e n colunas a 11 a 1 a 1n a 1 a a n a m1 a m a mn Embora a rigor matrizes possam ter quaisquer tipos de elementos,

Leia mais