Raciocínio Lógico - Parte II

Tamanho: px
Começar a partir da página:

Download "Raciocínio Lógico - Parte II"

Transcrição

1 Apostila escrita pelo professor José Gonçalo dos Santos Contato: Raciocínio Lógico - Parte II

2 Sumário 1. Operações Lógicas sobre Proposições Tautologia, contradição e contigência Referências Bibliográficas

3 1. Operações Lógicas sobre Proposições As principais operações lógicas sobre as proposições são: negação, conjunção, disjunção, condicional e bi-condicional. Cada uma delas será apresentada em detalhes nesta aula. A partir deste momento usaremos mais a linguagem simbólica. Negação (~) Esta operação é considerada unária, pois se aplica a apenas uma proposição simples ou composta, e tem a função de inverter o valor da proposição, ou seja, se uma proposição for falsa, passa a ser verdadeira e se for verdadeira passa a ser falsa. Simbolicamente temos: p (proposição) e ~p (a sua negação lê-se não p). Se V(p) = 1, então V(~p) = 0 e se V(p) = 0, então V(~p) = 1. Podemos representar essa operação em forma de tabela-verdade, como mostrado a seguir. Conjunção (^) p ~p A operação conjunção é binária (aplica-se duas proposições simples ou compostas) e é equivalente à operação interseção da teoria de conjuntos, o que equivale dizer que o valor lógico de uma conjunção só será verdadeiro se ambas as proposições forem verdadeiras. Em símbolos, a conjunção das proposições p e q é p^q (lê-se p e q) e sua tabela-verdade é a seguinte: Disjunção (v) p q p^q Também binária, é equivalente à operação união da teoria de conjuntos, isto quer dizer que o valor de uma disjunção só será falso se ambos o forem. Em símbolos, a disjunção das proposições p e q é pvq (lê-se p ou q) e sua tabela-verdade é a seguinte: Condicional (->) p q pvq As operações apresentadas até agora são simples de entender porque é algo intuitivo. Porém, o condicional não é tão simples, por isso requer uma explicação adicional. Como as duas anteriores, é uma operação binária e o seu valor lógico só será falso se a primeira (antecedente) for verdadeira e a segunda (conseqüente) for falsa. Em símbolos, condicional das proposições p e q é p->q (lê-se se p, então q) e sua tabela-verdade é a seguinte:

4 p q p->q A tabela-verdade do condicional é, no mínimo, intrigante, a princípio, porque parece estranho que falso com falso dá verdadeiro e falso com verdadeiro dá verdadeiro. Mas, se prestarmos atenção nas explicações a seguir, tudo ficará claro. Seja a seguinte situação: o pai de Maria, João, Paulo e Júlia diz para cada um deles que se for aprovado no vestibular ganha um carro. Analisando a situação podemos deduzir que a condição suficiente para Maria ganhar um carro é ser aprovada no vestibular, o mesmo ocorre com os demais. Façamos as seguintes suposições: 1 Maria não passou no vestibular e não ganhou o carro; 2 Paulo não passou no vestibular, mas ganhou o carro; 3 Julia passou no vestibular, mas não ganhou o carro; 4 Paulo passou no vestibular e ganhou o carro. A pergunta é: em qual das situações o pai pode ser chamado de mentiroso? Na primeira situação não, porque para fazer jus ao presente seria necessário passar no vestibular, o que não aconteceu. Na segunda também não, pois ele nada disse a respeito de quem não passasse. Já na terceira, sim, porque a condição suficiente se verificou e não houve a premiação. Na última, também a condição suficiente se verificou e a premiação aconteceu. Logo, só há uma situação em que o valor lógico de um condicional é falso, só quando o antecedente (lado esquerdo do condicional) é verdadeiro e o conseqüente (lado direito) é falso. Bi-condicional (<->) Esta operação é semelhante à condicional, é como se uníssemos um condicional de p para q (p->q) com um de q para p (q->p). Neste caso, dizemos que p é condição necessária e suficiente para que q ocorra, ou seja, vai ocorrer q se e somente se p ocorrer. E se p não ocorrer? Bom, q não deve ocorrer. Em símbolos, bi-condicional das proposições p e q é p<->q (lê-se p se e somente se q) e sua tabela-verdade é a seguinte: p q P<->q Em resumo: o valor lógico de um bi-condicional só será verdadeiro se ambos forem iguais. Valor lógico de proposições compostas Para se calcular o valor lógico de uma proposição composta, é necessário sabermos o valor lógico de cada de seus componentes (proposição simples) e fazer as 2

5 operações conforme visto na página anterior. O exemplo a seguir mostra como efetuar esse cálculo. Seja V(p) = V(q) = 1 e V(r) = 0, calcule o valor lógico da proposição ~(p^q)v~r. Resolução: ~(1^1)v~0 ~(1)v1 0v1 = 1 Logo, o valor lógico da proposição apresentada é VEREDADEIRO (0). Um pouco de prática Sabendo-se que V(p) = V(q) = 1 e V(r) = v(s) = 0, determinar o valor lógico das seguintes proposições: a) (p ^ (q v r)) -> (p -> (r v q)) b) (q -> r) <-> (~q v r) c) ~p v ~(r ^ s) d) ~(q <-> (~p ^ s)) e) (p <-> q) v (q -> ~p) f) (p <-> q) ^ (~r -> s) g) ~(~q ^ (p ^ ~s)) h) ~p v (q ^ (r -> ~s)) i) (~p v r) -> (q -> s) j) ~(~p v (q ^ s)) -> (r -> ~s) k) ~q ^ ((~r v s) <-> (p -> ~q)) l) ~(p -> (q -> r)) -> s Respostas a) Substituindo as proposições componentes pelos seus valores lógicos dados, temos: (1 ^ (1 v 0)) -> (1 -> (0 v 1)) como 1 v 0 = 1 e 0 v 1 = 1, temos: (1 ^ 1) -> (1 -> 1) sabendo que 1 ^ 1 = 1 e 1 -> 1 = 1, temos: 1 -> 1 dado que 1 -> 1 = 1, o valor lógico é 1, ou seja, é verdadeiro. Procedendo da mesma forma para os demais, temos: b) (1 -> 0) <-> (~1 v 0) (0) <-> (0 v 0) (0) <-> (0) c) ~1 v ~(0 ^ 0) 0 v ~0 3

6 0 v 1 d) ~(1 <-> (~1 ^ 0)) ~(1 <-> (0 ^ 0)) ~(1 <-> 0) ~(0) e) (1 <-> 1) v (1 -> ~1) (1) v(1 -> 0) (1) v (0) f) (1 <-> 1) ^ (~0 -> 0) (1) ^ (1 -> 0) (1) ^ (0) 0 (falso) g) ~(~1 ^ (1 ^ ~0)) ~(0 ^ (1 ^ 1)) ~(0 ^ 1) ~(0) h) ~1 v (1 ^ (0 -> ~0)) 0 v (1 ^ (0 -> 1)) 0 v (1 ^ 1) 0 v (1) i) (~1 v 0) -> (1 -> 0) (0 v 0) -> (0) (0) -> (0) j) ~(~1 v (1 ^ 0)) -> (0 -> ~0) ~(0 v 0) -> (0 -> 1) ~(0) -> (1) 1 -> 1 k) ~1 ^ ((~0 v 0) <-> (1 -> ~1)) 0 ^ ((1 v 0) <-> (1 -> 0)) 0 ^ (1 <-> 0) 0 ^ (0) 0(falso) l) ~(1 -> (1 -> 0)) -> 0 ~(1 -> 0) -> 0 ~(0) -> 0 1 -> 0 0 (falso) Como foi visto na página anterior, o valor lógico da proposição composta foi calculado para um caso específico. Se quisermos saber para todas as possibilidades, devemos construir a sua tabela-verdade, onde cada linha 4

7 corresponde a uma situação específica. Podemos verificar isso ao resolver os exercícios a seguir. Construa a tabela-verdade das seguintes proposições: m) (p ^ (q v r)) -> (p -> (r v q)) n) (q -> r) <-> (~q v r) o) ~p v ~(r ^ s) p) ~(q <-> (~p ^ s)) q) (p <-> q) v (q -> ~p) r) (p <-> q) ^ (~r -> s) s) ~(~q ^ (p ^ ~s)) t) ~p v (q ^ (r -> ~s)) u) (~p v r) -> (q -> s) v) ~(~p v (q ^ s)) -> (r -> ~s) Respostas a) (p ^ (q v r)) -> (p -> (r v q)) p q r q v r p ^ (q v r) r v q p -> (r v q) (p ^ (q v r)) -> (p -> (r v q)) Como pode ser visto na tabela acima, para todas as possibilidades, o valor será sempre. b) (q -> r) <-> (~q v r) q r q -> r ~q ~q v r (q -> r) <-> (~q v r) Vide comentário anterior c) ~p v ~(r ^ s) p r s ~p r ^ s ~(r ^ s) ~p v ~(r ^ s) O valor lógico da proposição acima só será 0 (falso), se todas as componentes tiverem valor lógico. d) ~(q <-> (~p ^ s)) p q s ~p ~p ^ s q <-> (~p ^ s) ~(q <-> (~p ^ s))

8 Para esta proposição, temos quatro casos em ela tem valor lógico verdadeiro (1) e quatro casos, falso (0). e) (p <-> q) v (q -> ~p) p q p <-> q ~p q -> ~p (p <-> q) v (q -> ~p) Vide comentário da a). f) (p <-> q) ^ (~r -> s) p q r s p <-> q ~r ~r -> s (p <-> q) ^ (~r -> s) Para esta proposição, temos seis casos em ela tem valor lógico verdadeiro (1) e vinte e seis casos, falso (0). g) ~(~q ^ (p ^ ~s)) p q s ~q ~s p ^ ~s ~q ^ (p ^ ~s) ~(~q ^ (p ^ ~s))

9 O valor lógico da proposição acima só será 0 (falso), se a primeira componentes tiver valor lógico e as outras, 0 (falso). h) ~p v (q ^ (r -> ~s)) p q r s ~p ~s r -> ~s q ^ (r -> ~s) ~p v (q ^ (r -> ~s)) Para esta proposição, temos cinco casos em ela tem valor lógico falso (0) e vinte e sete casos, verdadeiro (1). i) (~p v r) -> (q -> s) p q r s ~p ~p v r q -> s (~p v r) -> (q -> s) Para esta proposição, temos três casos em ela tem valor lógico falso (0) e vinte e nove casos, verdadeiro (1). 2. Tautologia, contradição e contigência Dizemos que uma proposição composta é uma tautologia quando o seu valor lógico é sempre verdadeiro (1), não importando os valores lógicos de cada uma de suas componentes. Ao contrário da tautologia, quando o valor lógico de uma proposição composta for sempre falso (0), não importando os valores lógicos de suas 7

10 componentes, essa proposição é uma contradição. Já, se a proposição (composta) não for tautologia e nem contradição, ela é uma contingência. Exemplos: As letras a), b) e e) da página anterior são exemplos de tautologia. Como pode ser notado, todas linhas de sua tabela-verdade (última coluna) resultam em valor lógico verdadeiro. Todas as demais são exemplos de contingência, pois não são tautologias e nem contradições. Abaixo são apresentados alguns exemplos de proposições compostas que são contradição. 1) ~(~(p^q)) <-> (~p v ~q) p q p^q ~p ~q ~p v ~q (p^q) <-> (~p v ~q) ) ~p^(p^~q) p q ~p ~q p^~q ~p^(p^~q) Nesta aula foi apresentada uma série de exemplos de operações com proposições compostas, bem como as suas tabelas-verdades. Na aula seguinte faremos uso dessa ferramenta (tabela-verdade) para trabalharmos outros assuntos a relacionados ao raciocínio lógico. 3. Referências Bibliográficas CURY, Márcia Xavier. Introdução à Lógica. São Paulo: Érica, RUSSEL, Stuart & NORVING, Peter. Inteligência Artificial. São Paulo: Campus, NOLT, John & RHOATYN, Dennis. Lógica. São Paulo: Makron Books, NDC. Lógica na Wikipedia. Documento on-line disponível em [http://ndpc.subtom.com.br/l%c3%b3gica_na_wikipedia]. Acesso em: 23/06/

11 BABYLON. Definição de Tabela Verdade. Documento on-line disponível em [http://dicionario.babylon.com/tabela%20verdade]. Acesso em: 26/06/2009. WIKIPÉDIA. Regra de Inferência. Documento on-line disponível em [http://pt.wikipedia.org/wiki/regra_de_infer%c3%aancia]. Acesso em: 06/08/

Raciocínio Lógico - Parte IV

Raciocínio Lógico - Parte IV Apostila escrita pelo professor José Gonçalo dos Santos Contato: jose.goncalo.santos@gmail.com Raciocínio Lógico - Parte IV Sumário 1. Argumentação... 1 2. Regras de Inferência... 2 3. Regras de inferência...

Leia mais

Construção de tabelas verdades

Construção de tabelas verdades Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais

Leia mais

OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL. APOSTILA 4 Construção de Tabelas-Verdade

OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL. APOSTILA 4 Construção de Tabelas-Verdade OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 4 Construção de Tabelas-Verdade Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva juliocesar@eloquium.com.br Alterações eventuais

Leia mais

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

Aula 05 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 05 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 05 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Outras Traduções; Valor Lógico de Operações sobre proposições. Tabela da Verdade

Leia mais

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas

Leia mais

José Luiz de Morais. RACiOCÍNIO LÓGICO

José Luiz de Morais. RACiOCÍNIO LÓGICO RACIOCÍNIO LÓGICO José Luiz de Morais RACiOCÍNIO LÓGICO RACIOCÍNIO LÓGICO Prof José Luiz de Morais PROPOSIÇÕES Proposições Simples Proposições Simples Proposição simples átomo ou partícula atômica É a

Leia mais

PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA

PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA EQUIPE DE MATEMÁTICA 1) Sejam as proposições: p : Marcos é alto. q : Marcos é elegante. r : Marcos é inteligente.

Leia mais

Definição. Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo.

Definição. Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. Proposições Definição. Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. Vitória é a capital do Espírito Santo π < 15 José é alto Princípios I.

Leia mais

Noções de Lógica - Teoria e Exercícios

Noções de Lógica - Teoria e Exercícios ALUNO(A) C O L É G I O PROFESSOR (A) Alan Jefferson Série 1º ano Noções de Lógica - Teoria e Exercícios PROPOSIÇÃO Chama-se proposição ou sentença toda oração declarativa que pode ser classificada em verdadeira

Leia mais

EXERCÍCIOS DE LÓGICA MATEMÁTICA

EXERCÍCIOS DE LÓGICA MATEMÁTICA EXERCÍCIOS DE LÓGICA MATEMÁTICA 1. Determine se as formulas a seguir são bem formuladas. (a) a (b) (a b) c (c) b (c d)) (d) b c d 2. Traduza para a linguagem simbólica as seguintes proposições: 1 (e) ~(a

Leia mais

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme Ló gica Para Concursos Públicos Professor Luiz Guilherme 2014 1 Lógica Para Concursos Públicos Proposição... 2 Valor Lógico das Proposições... 2 Axiomas da Lógica... 2 Tabela Verdade:... 3 Conectivos:...

Leia mais

MODÚLO 1. INTRODUÇÃO A LÓGICA MATEMÁTICA 1.1 SENTENÇA X PROPOSIÇÃO 1.2 NEGAÇÃO SIMPLES

MODÚLO 1. INTRODUÇÃO A LÓGICA MATEMÁTICA 1.1 SENTENÇA X PROPOSIÇÃO 1.2 NEGAÇÃO SIMPLES MODÚLO 1. INTRODUÇÃO A LÓGICA MATEMÁTICA 1.1 SENTENÇA X PROPOSIÇÃO Proposição: Permite ser julgado verdadeiro ou falso. Possui um valor lógico. Exemplos: Morro do Alemão só tem bandido A presidenta anulou

Leia mais

Representação de Conhecimento. Lógica Proposicional

Representação de Conhecimento. Lógica Proposicional Representação de Conhecimento Lógica Proposicional Representação de conhecimento O que éconhecimento? O que érepresentar? Representação mental de bola Representação mental de solidariedade Símbolo como

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

SIMULADO MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015

SIMULADO MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015 SIMULADO MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015 Simulado Comentado Matemática e Raciocínio Lógico EBSERH 2015 Página 1 SIMULADO 01 MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015 Cargo: Todos

Leia mais

AULA SEIS: Diagramas Lógicos

AULA SEIS: Diagramas Lógicos 1 AULA SEIS: Diagramas Lógicos Olá, amigos! Iniciamos nossa presente aula com uma notícia: hoje trataremos de um assunto que estava previsto para ser estudado em um encontro futuro. Todavia, melhor analisando,

Leia mais

Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional

Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 1: Soluções Fundamentos da Lógica Lógica Proposicional Ciências Exatas & Engenharias 2 o Semestre de 2015 1. Construa a tabela da verdade para

Leia mais

Aula 3 Lógica Matemática

Aula 3 Lógica Matemática UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira 1 Aula 3 Lógica Matemática Construção de tabelas-verdade 1) Proposições compostas e tabelas-verdade Várias proposições simples podem ser combinadas

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

n. 3 Construção de Tabelas-Verdade

n. 3 Construção de Tabelas-Verdade n. 3 Construção de Tabelas-Verdade Dadas várias proposições simples: p, q, r, s,..., podemos combiná-las pelos conectivos lógicos: Negação (~) ou ( ) Conjunção ( ) Disjunção ( ) Condicional ( ) Bicondicional

Leia mais

C U R S O D E R A C I O C Í N I O L Ó G I C O E M A T E M Á T I C O P A R A O I N S S

C U R S O D E R A C I O C Í N I O L Ó G I C O E M A T E M Á T I C O P A R A O I N S S C U R S O D E R A C I O C Í N I O L Ó G I C O E M A T E M Á T I C O P A R A O I N S S www.profranciscojunior.com.br p. 1 de 80 S U M Á R I O 1. APRESENTAÇÃO... 2 2. INTRODUÇÃO... 5 3. PROPOSIÇÕES... 7

Leia mais

Exercícios de Lógica para Programação

Exercícios de Lógica para Programação Exercícios de Lógica para Programação Ana Cardoso-Cachopo Maio de 2014 CONTEÚDO 1 Conteúdo 1 Argumentos e Validade 5 2 Lógica Proposicional Sistema de Dedução Natural 17 3 Lógica Proposicional Tabelas

Leia mais

A LÓGICA NA MATEMÁTICA

A LÓGICA NA MATEMÁTICA A LÓGICA NA MATEMÁTICA 1. BREVE HISTÓRICO O pensamento lógico teve forte presença no cerne da Civilização Grega. Aristóteles (384-322 A.C) é tido como o primeiro sistematizador do conhecimento lógico da

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO AULA CINCO: Estruturas Lógicas (Continuação)

CURSO ONLINE RACIOCÍNIO LÓGICO AULA CINCO: Estruturas Lógicas (Continuação) Olá, amigos! CURSO ONLINE RACIOCÍNIO LÓGICO AULA CINCO: Estruturas Lógicas (Continuação) Iniciaremos nossa aula de hoje com a resolução do dever de casa da semana passada! Esperamos que todos tenham resolvido

Leia mais

A LÓGICA DO RACIOCÍNIO MATEMÁTICO. GT 02 Educação matemática no ensino médio e ensino superior

A LÓGICA DO RACIOCÍNIO MATEMÁTICO. GT 02 Educação matemática no ensino médio e ensino superior A LÓGICA DO RACIOCÍNIO MATEMÁTICO GT 02 Educação matemática no ensino médio e ensino superior Aline Brum Ottes, UFSM, alinebrumottes@hotmail.com Ricardo Fajardo, UFSM, rfaj@ufsm.br Samuel Sonego Zimmermann,

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

Raciocínio Lógico Quantitativo

Raciocínio Lógico Quantitativo Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática Raciocínio Lógico Quantitativo Notas de Aula Prof. a

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Lógica. Everson Santos Araujo everson@por.com.br

Lógica. Everson Santos Araujo everson@por.com.br Lógica Everson Santos Araujo everson@por.com.br Conceitos Coerência de raciocínio, de idéias, ou ainda a sequência coerente, regular e necessária de acontecimentos, de coisas Dicionário Aurélio 2 Conceitos

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 1 8 de março de 2010. Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 1 8 de março de 2010. Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 8 de março de 2010 Aula 1 Pré-Cálculo 1 Conteúdo do curso Apresentação do curso Conjuntos

Leia mais

RACIOCÍNIO LÓGICO. 1. Compreensão de estruturas lógicas

RACIOCÍNIO LÓGICO. 1. Compreensão de estruturas lógicas Mas, uma proposição pode ser qualquer outro tipo de expressão, tais como as matemáticas, conjunto de símbolos que possuam um significado, e que pode ser valorada em verdadeiro ou falso. Exemplo: 4 > 7

Leia mais

Lógica Binária. Princípios

Lógica Binária. Princípios Lógica Binária Lógica Binária Proposição é toda a expressão da qual faz sentido dizer que é verdadeira ou falsa. Cada proposição tem um e um só valor lógico, Verdadeiro (1) ou Falso (0). Princípios Princípio

Leia mais

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas

APOSTILA DE LÓGICA. # Proposições Logicamente Equivalentes. # Equivalências Básicas INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. Fone (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

REDES BAYESIANAS. Palavras-chave: Redes bayesianas, Grafo, Estrutura de Dados, Inteligência artificial.

REDES BAYESIANAS. Palavras-chave: Redes bayesianas, Grafo, Estrutura de Dados, Inteligência artificial. REDES BAYESIANAS Gabriel Rigo da Cruz Jacobsen gabrielrigoj@gmail.com Prof. Leonardo Sommariva, Estrutura de Dados RESUMO: Uma rede bayesiana é uma forma de representar o conhecimento de um domínio onde

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

Raciocínio Lógico Matemático Modulo Geral

Raciocínio Lógico Matemático Modulo Geral Raciocínio Lógico Matemático Modulo Geral CONCURSO: Ministério do Trabalho e Emprego CARGO: Auditor-Fiscal do Trabalho PROFESSOR: Alex Lira Este curso é protegido por direitos autorais (copyright), nos

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

A linguagem da Lógica Proposicional (Capítulo 1)

A linguagem da Lógica Proposicional (Capítulo 1) A linguagem da Lógica Proposicional (Capítulo 1) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Alfabeto 3. Fórmulas bem formadas (FBF) 4. Exemplos

Leia mais

Questões de raciocínio lógico Aula 2

Questões de raciocínio lógico Aula 2 Questões de raciocínio lógico Aula 2 Tópicos abordados: Lógica da argumentação Diagramas lógicos Emerson Marcos Furtado* 1. (ESAF-adap.) Pedro toca piano se e somente se Vítor toca violino. Ora, Vítor

Leia mais

Lógica Formal. Unidade I:

Lógica Formal. Unidade I: Lógica ormal Unidade I: 0 Lógica ormal Lógica ormal 1) Lógica Simbólica No século XII Leibniz (1646-1716) demonstrará a relação entre Lógica e Linguagem utilizando a Álgebra para ilustrar a possibilidade

Leia mais

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO

Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

EXERCÍCIOS DE LÓGICA DE 1ª ORDEM

EXERCÍCIOS DE LÓGICA DE 1ª ORDEM QUANTIFICADORES EXERCÍCIOS DE LÓGICA DE 1ª ORDEM 1 {9.3} Tornar as frases verdadeiras. Abra Bozo s Sentences e Leibniz s World. Algumas das expressões não são wffs, algumas são wffs mas não são frases

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times:

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times: Raciocínio Lógico- Vinicius Werneck 1. Em um campeonato de futebol, a pontuação acumulada de um time é a soma dos pontos obtidos em cada jogo disputado. Por jogo, cada time ganha três pontos por vitória,

Leia mais

INTRODUÇÃO LÓGICA MATEMÁTICA

INTRODUÇÃO LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Prof. Antonio A. Pinho Rio de Janeiro Julho de 1999 INTRODUÇÃO À LÓGICA MATEMÁTICA 2 ÍNDICE I. INTRODUÇÃO 1. Lógica Formal. 2 2. Dedução e Indução. 3 3. Lógica Clássica e

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

01. Considere as seguintes proposições:

01. Considere as seguintes proposições: 01. Considere as seguintes proposições: p: O restaurante está fechado. q: O computador está ligado. A sentença O restaurante não está fechado e o computador não está ligado assume valor lógico verdadeiro

Leia mais

RACIOCÍNIO LÓGICO INSS. Condições de existência:

RACIOCÍNIO LÓGICO INSS. Condições de existência: RACIOCÍNIO LÓGICO Sentenças: Na linguagem natural utilizamos vários tipos de sentenças em nossa comunicação: - Afirmativas Curitiba é a capital do Paraná. O dia está ensolarado. - Interrogativas Qual time

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Prof. Dr. Silvio do Lago Pereira slago@ime.usp.br 1 Introdução A lógica proposicional é um formalismo matemático através do qual podemos abstrair a estrutura de um argumento, eliminado

Leia mais

INTELIGÊNCIA OPERATÓRIA CONCRETA E OPERATÓRIA FORMAL

INTELIGÊNCIA OPERATÓRIA CONCRETA E OPERATÓRIA FORMAL INTELIGÊNCIA OPERATÓRIA CONCRETA E OPERATÓRIA FORMAL Prof. Dr. Wilson da Silva 1 A INTELIGÊNCIA OPERATÓRIA CONCRETA (± de 7 a 11/12 anos) Por volta dos sete anos ocorre um fato decisivo no desenvolvimento

Leia mais

Faculdades Pitágoras de Uberlândia. Lógica Matemática e Computacional

Faculdades Pitágoras de Uberlândia. Lógica Matemática e Computacional Faculdades Pitágoras de Uberlândia Sistemas de Informação Apostila de Lógica Matemática e Computacional Prof. Walteno Martins Parreira Júnior www.waltenomartins.com.br waltenomartins@yahoo.com 2014 Sumário

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos

Leia mais

#ConstruçãoDeTabelasVerdade

#ConstruçãoDeTabelasVerdade INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE Fundamentos de Lógica e Algoritmos #ConstruçãoDeTabelasVerdade Eliezio Soares eliezio.soares@ifrn.edu.br

Leia mais

Prof. Weber Campos webercampos@gmail.com. Agora Eu Passo - AEP www.cursoagoraeupasso.com.br

Prof. Weber Campos webercampos@gmail.com. Agora Eu Passo - AEP www.cursoagoraeupasso.com.br Apostila de Raciocínio Lógico POLÍCIA FEDERAL - CESPE Prof. Weber Campos webercampos@gmail.com Agora Eu Passo - AEP www.cursoagoraeupasso.com.br ÍNDICE 1. LÓGICA PROPOSICIONAL 3 Proposição 3 Conectivos

Leia mais

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2. Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório

Leia mais

Uma proposição condicional sempre pode ser escrita da forma se p, então q, e é denotada por p q. Se amanhã é domingo, então hoje é sábado.

Uma proposição condicional sempre pode ser escrita da forma se p, então q, e é denotada por p q. Se amanhã é domingo, então hoje é sábado. Proposições condicionais e bicondicionais Proposições condicionais Num debate sobre algum tema importante, é comum utilizarmos ideias que procuram sustentar nossos argumentos. Essa sustentação, muitas

Leia mais

Fundamentos de Lógica e Algoritmos

Fundamentos de Lógica e Algoritmos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE Fundamentos de Lógica e Algoritmos #EquivalênciaLógica Eliezio Soares elieziosoares@ifrn.edu.br

Leia mais

Exercícios de Lógica

Exercícios de Lógica Universidade Estadual de Maringá Centro de Ciências Exatas Departamento de Matemática Exercícios de Lógica = ƒ abril de 007 Maringá PR Organizador: João Roberto Gerônimo Introdução O objetivo deste material

Leia mais

( ) ( ) RACIOCÍNIO LÓGICO. A p n = C p n C 2 20 = = = = 190 ANÁLISE COMBINATÓRIA. PERMUTAÇÃO SIMPLES (anagramas)

( ) ( ) RACIOCÍNIO LÓGICO. A p n = C p n C 2 20 = = = = 190 ANÁLISE COMBINATÓRIA. PERMUTAÇÃO SIMPLES (anagramas) ANÁLISE COMBINATÓRIA PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PFC) n 1.n 2.n 3...= total de possibilidades Ex: Supondo que 5 colegas vão sair de carro, sentados nos 5 lugares disponíveis. De quantos modos podemos

Leia mais

CONTEÚDO PROGRAMÁTICO

CONTEÚDO PROGRAMÁTICO CONTEÚDO PROGRAMÁTICO ÍNDICE INSS - RLM...2 Proposições Conceitos Iniciais...2 1 Proposições Conceitos Iniciais Conceito: AlfaCon Concursos Públicos INSS - RLM _ Características: _ Valores: _ Princípios

Leia mais

QUESTÕES. t = 7, o valor de t é o número: SIMULADO. Olá pessoal! Como vocês estão?

QUESTÕES. t = 7, o valor de t é o número: SIMULADO. Olá pessoal! Como vocês estão? Olá pessoal! Como vocês estão? Nesse artigo apresento a vocês um simulado com questões de Raciocínio Lógico, Matemática e Matemática Financeira. Para os candidatos aos cargos de Auditor e Analista Tributário

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Lógica Computacional. Argumentos válidos e sólidos. Métodos de Demonstração. Demonstrações formais. Regras de Inferência Igualdade

Lógica Computacional. Argumentos válidos e sólidos. Métodos de Demonstração. Demonstrações formais. Regras de Inferência Igualdade Lógica Computacional Argumentos válidos e sólidos Métodos de Demonstração Demonstrações formais Regras de Inferência Igualdade Não-consequências lógicas 6 Março 2013 Lógica Computacional 1 Argumentos Exemplo:

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

RACIOCÍNIO LÓGICO SEMANA 04

RACIOCÍNIO LÓGICO SEMANA 04 1) (FCC/TRT-PR) Considere a seguinte proposição: Na eleição para a prefeitura, o candidato A será eleito ou não será eleito. Do ponto de vista lógico, a afirmação da proposição caracteriza: (A) um silogismo;

Leia mais

Para que o NSBASIC funcione corretamente em seu computador, você deve garantir que o mesmo tenha as seguintes características:

Para que o NSBASIC funcione corretamente em seu computador, você deve garantir que o mesmo tenha as seguintes características: Cerne Tecnologia www.cerne-tec.com.br Conhecendo o NSBASIC para Palm Vitor Amadeu Vitor@cerne-tec.com.br 1. Introdução Iremos neste artigo abordar a programação em BASIC para o Palm OS. Para isso, precisaremos

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase I 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase I 2014 1 2 Questão 1 Em uma biblioteca em cada estante existem 5 prateleiras, em uma destas estantes foram colocados 27 livros ao todo. Seis livros não foram colocados abaixo de nenhum outro livro. Cinco destes

Leia mais

CONCEITOS BÁSICOS DE RACIOCÍNIO LÓGICO PARA OS CONCURSOS DE NÍVEL MÉDIO

CONCEITOS BÁSICOS DE RACIOCÍNIO LÓGICO PARA OS CONCURSOS DE NÍVEL MÉDIO CONCEITOS BÁSICOS DE RACIOCÍNIO LÓGICO PARA OS CONCURSOS DE NÍEL MÉDIO Ana Carolina Sakamoto 1* ábio Crivelli de Ávila 2 ; Luciane de átima Rodrigues de Souza 2 João Paulo Crivellaro de Menezes 2 1 Departamento

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

Conhecendo um pouco de matrizes e determinantes

Conhecendo um pouco de matrizes e determinantes Módulo 3 Unidade 29 Conhecendo um pouco de matrizes e determinantes Para início de conversa... Frequentemente em jornais, revistas e também na Internet encontramos informações numéricas organizadas na

Leia mais

Resoluções de questões- Tropa de Elite Raciocínio Lógico Questões Pedro Evaristo

Resoluções de questões- Tropa de Elite Raciocínio Lógico Questões Pedro Evaristo Resoluções de questões- Tropa de Elite Raciocínio Lógico Questões Pedro Evaristo 2012 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. ESTRUTURA LÓGICA (CESPE) Na última corrida

Leia mais

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.

Leia mais

A CASA DO SIMULADO DESAFIO QUESTÕES MINISSIMULADO 17/360

A CASA DO SIMULADO DESAFIO QUESTÕES MINISSIMULADO 17/360 1 DEMAIS SIMULADOS NO LINK ABAIXO CLIQUE AQUI REDE SOCIAL SIMULADO 17/360 RLM INSTRUÇÕES TEMPO: 30 MINUTOS MODALIDADE: CERTO OU ERRADO 30 QUESTÕES CURTA NOSSA PÁGINA MATERIAL LIVRE Este material é GRATUITO

Leia mais

S U M Á R I O. Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo Revisão 4 Bateria de questões CONTEÚDO DA AULA 01

S U M Á R I O. Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo Revisão 4 Bateria de questões CONTEÚDO DA AULA 01 Olá pessoal! Este é o nosso quarto encontro. Nele faremos uma abordagem das mais variadas questões de Raciocínio Lógico. Assunto muito querido pela banca FCC. Aqui fiz uma seleção de muitas questões de

Leia mais

Parece claro que há uma, e uma só, conclusão a tirar destas proposições. Esa conclusão é:

Parece claro que há uma, e uma só, conclusão a tirar destas proposições. Esa conclusão é: Argumentos Dedutivos e Indutivos Paulo Andrade Ruas Introdução Em geral, quando se quer explicar que géneros de argumentos existem, começa-se por distinguir os argumentos dedutivos dos não dedutivos. A

Leia mais

Raciocínio Lógico Matemático Cap. 2 Lógica Matemática

Raciocínio Lógico Matemático Cap. 2 Lógica Matemática Raciocínio Lógico Matemático Cap. 2 Lógica Matemática Capítulo2 1. Lógica Matemática No primeiro capítulo, discutimos uma série de conceitos atrelados à lógica de uma forma geral, mas de forma tendenciosa

Leia mais

Prova de Raciocínio Lógico Edição Junho 2006

Prova de Raciocínio Lógico Edição Junho 2006 Prova de Raciocínio Lógico Edição Junho 2006 1. Considere a seguinte seqüência, da esquerda para a direita: Dentre as alternativas abaixo, o próximo elemento que obedece à regra de formação até então seguida

Leia mais

RACIOCÍNIO LÓGICO ÍNDICE

RACIOCÍNIO LÓGICO ÍNDICE RACIOCÍNIO LÓGICO ÍNDICE CAPÍTULO 01 2 Proposições 2 Definições 2 Tabela-Verdade e Conectivos Lógicos 3 Equivalências Lógicas 5 Tautologias, Contradições e Contingências 6 Relação entre Todo, Algum e Nenhum

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

Proposições compostas

Proposições compostas Proposições compostas Nesta aula iremos rever o que são proposições e aplicar algumas regras que facilitarão o desenvolvimento de aplicações futuras. Negação de uma proposição composta Já sabemos negar

Leia mais

Lógica Formal. Lógica Proposicional. Lógica Proposicional. Enigma motivador. Visão geral do estudo da Lógica

Lógica Formal. Lógica Proposicional. Lógica Proposicional. Enigma motivador. Visão geral do estudo da Lógica Enigma motivador Lógica Formal Lógica Proposicional UNIVERSIDADE FEDERAL DE ALAGOAS Lógica, Informática e Comunicação Prof. Rômulo Nunes de Oliveira O Sr. Justino, apesar de trabalhador, não estava indo

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA 1 DOCÊNCIA UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA Fabio da Costa Rosa Fernanda Machado Greicy Kelly Rockenbach da Silva

Leia mais

ESTRUTURA CONDICIONAL

ESTRUTURA CONDICIONAL AULA 6 ESTRUTURA CONDICIONAL 130 Tem como objetivo executar um conjunto de comandos caso uma condição lógica seja atendida. Quando a resposta lógica for falsa, nada será executado. Sintaxe Se CONDIÇÃO

Leia mais

ACADEMIA DO CONCURSO

ACADEMIA DO CONCURSO ACADEMIA DO CONCURSO Aulão de Lógica - 2015 Prof. Quilelli ( TCU Auditor Federal - CESPE ) As cidades Alfa e Beta estão com suas contas de obras sob análise. Sabe-se que algumas dessas obras são de responsabilidade

Leia mais

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a

Considerando-se a expressão trigonométrica x = 1 + cos 30, um dos possíveis produtos que a representam é igual a Comentadas pelo professor: Vinicius Werneck Raciocínio Lógico 1- Prova: ESAF - 2012 - Receita Federal - Auditor Fiscal da Receita Federal Sabendo-se que o conjunto X é dado por X = {x R x² 9 = 0 ou 2x

Leia mais

Artificial Intelligence, 14-15 1

Artificial Intelligence, 14-15 1 Artificial Intelligence, 14-15 1 Cap. 14: Incerteza Falta de informação suficiente. Conhecimento não completo ou não correto. Planos condicionais podem lidar com incerteza de forma limitada. Ex: Plano

Leia mais

AULA DEMONSTRATIVA 1. APRESENTAÇÃO... 2 2. PROPOSIÇÃO... 3 3. QUESTÕES COMENTADAS NA AULA DE HOJE:... 49 4. SIMULADO 01... 56

AULA DEMONSTRATIVA 1. APRESENTAÇÃO... 2 2. PROPOSIÇÃO... 3 3. QUESTÕES COMENTADAS NA AULA DE HOJE:... 49 4. SIMULADO 01... 56 1 1. APRESENTAÇÃO... 2 2. PROPOSIÇÃO... 3 3. QUESTÕES COMENTADAS NA AULA DE HOJE:... 49 4. SIMULADO 01... 56 Concurso: MINISTÉRIO DO TRABALHO E EMPREGO Cargo: AUDITOR FISCAL DO TRABALHO Matéria: RACIOCÍNIO

Leia mais

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo   11 de outubro de 2016 Lógica Proposicional Parte I e-mail: raquel@ic.uff.br 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.

Leia mais

(Lógica) Fundamentando Proposições. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.

(Lógica) Fundamentando Proposições. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html aula 06 - Revisão (Lógica) Fundamentando Proposições Interruptores Aula de Lógica - Professor

Leia mais

Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação

Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação LP: Laboratório de Programação Apontamento 7 Prof. ISVega Março de 2004 Controle de Execução: Seleção Simples CONTEÚDO

Leia mais

OLIMPÍADA BRASILEIRA DE MATEMÁTICA DAS ESCOLAS PÚBLICAS (OBMEP): EXPERIÊNCIAS VIVENCIADAS A PARTIR DO PIBID UEPB MONTEIRO

OLIMPÍADA BRASILEIRA DE MATEMÁTICA DAS ESCOLAS PÚBLICAS (OBMEP): EXPERIÊNCIAS VIVENCIADAS A PARTIR DO PIBID UEPB MONTEIRO OLIMPÍADA BRASILEIRA DE MATEMÁTICA DAS ESCOLAS PÚBLICAS (OBMEP): EXPERIÊNCIAS VIVENCIADAS A PARTIR DO PIBID UEPB MONTEIRO Cícero Félix da Silva; Izailma Nunes de Lima; Ricardo Bandeira de Souza; Manoela

Leia mais

Complemento III Noções Introdutórias em Lógica Nebulosa

Complemento III Noções Introdutórias em Lógica Nebulosa Complemento III Noções Introdutórias em Lógica Nebulosa Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Lógica para Computação Prof. Celso Antônio Alves Kaestner, D.E.E. celsokaestner (at) utfpr (dot) edu (dot) br Introdução Lógica para Computação (IF61B) Três citações extraídas de Logique: Méthodes pour

Leia mais

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais