Aula 5. Números decimais. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 5. Números decimais. Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental"

Transcrição

1 Números decimais Aula 5 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental

2 Metas Apresentar o conceito de números decimais e demonstrar como realizar as operações elementares, envolvendo esse tipo de número. Objetivos Após esta aula, você deverá ser capaz de: 1. realizar a leitura dos números decimais; 2. transformar um número decimal em uma fração e viceversa; 3. comparar números decimais; 4. realizar operações de adição e subtração com números decimais; 5. realizar operações de multiplicação e divisão com números decimais. Pré-requisitos Para melhor compreensão desta aula, você deverá rever os conceitos sobre conjuntos e operações com números inteiros. É importante também ter em mão uma régua e um papel milimetrado.

3 O mundo dos números decimais 107 Atualmente, os números são usados para tudo, mas já houve uma época em que os homens não tinham a noção de número. Então, foi preciso um longo período para o surgimento dele e para que ele começasse a ser escrito, inicialmente de forma primitiva, e, posteriormente, até se escrever os números naturais como fazemos hoje em dia: no sistema de numeração decimal. Os números decimais estão relacionados com várias situações do cotidiano. São utilizados, por exemplo, para representar unidades monetárias. Quantas vezes você já foi ao supermercado fazer compras? Provavelmente, antes de comprar qualquer coisa você faz uma pesquisa de preços, certo? Assim, você economiza seu rico dinheirinho. Aula 5 Números decimais Os números decimais estão presentes nas transações bancárias, na compra de móveis a prazo, nas medidas e em muitas outras situações. Por isso, dominar esse assunto significa, também, não ser enganado. Os números decimais na medida certa Lembra-se dos números naturais? Você aprendeu que o sucessor de 34 é 35 e que não existem números naturais entre 34 e 35. Como fazer para escrever um número maior que 34 e menor que 35, sem usar frações? Depois de um longo período, surgiu a idéia de colocar uma vírgula no final de um número natural e continuar escrevendo algarismos também depois dela. Então, um número que está entre 34 e 35, e que não é fracionário, pode ser, por exemplo, o número decimal 34,6. Como você já percebeu, o que caracteriza os números decimais é a vírgula. Jason Antony Figura 5.1: Quando trabalhamos com medidas ou dinheiro, geralmente nos deparamos com números decimais. Fonte: Afonso Lima

4 108 e-tec Brasil Matemática Instrumental Quando falamos em números com qualquer pessoa que não seja um estudioso de Matemática, como, por exemplo, os números com os quais lidamos na nossa vida diária, na padaria, no ônibus, no posto de gasolina, estamos nos referindo a uma classe bem especial de números racionais os chamados números decimais. Esses números podem representar medidas de comprimento, preços de objetos, notas de provas, índices dos mais diversos e muito mais. Saiba mais... Bailey-Mortimer Sisi Fili Matthieu Huguet Fonte: Nigel Clarke Figura 5.2: Cada salto em distância de algumas espécies de cangurus corresponde a 10 metros. Já algumas espécies de sapos pulam 5,5 metros. Quanto à altura, o canguru alcança 2,7 metros, menos que o puma (3,1 metros) e mais que a raposa (1,2 metros).

5 Os números decimais são todos os números que podem ser escritos na forma de uma fração decimal. Nessa fração, como o próprio nome diz, o denominador é múltiplo de 10, ou seja, 10, 100, 1000, 10000, e assim por diante. Veja os exemplos: , 20 = 4, 20 = 1, 75 = 5, 5 = As casas decimais são os espaços ocupados pelos números depois da vírgula, ou seja, o número 4,20 tem duas casas decimais; o número 5,5 tem apenas uma casa decimal. 109 Aula 5 Números decimais Observando os exemplos anteriores, você pode conferir que o número de casas decimais, em todas as situações, é igual ao número de zeros do denominador. Não se preocupe, veremos isso com mais detalhe adiante. Décimos, centésimos, milésimos... Você já sabe que uma fração decimal tem, no denominador, um número múltiplo de dez, mas qual é o significado disso? Vamos, mais uma vez, usar os dados para que você possa entender melhor esse conceito. Uros Kotnik Fonte: Figura 5.3: Cubos - usando material concreto na construção dos conceitos sobre os números decimais.

6 110 Observe a configuração desses dados e veja a relação existente entre eles: e-tec Brasil Matemática Instrumental A seguir, você pode ver que a coluna formada pelos dados é dez vezes maior que um único dado. Esta coluna de dez dados é dez vezes menor que a placa formada por cem dados, como é mostrado na figura a seguir.

7 Ou ainda, podemos dizer que um cubo formado por mil dados é dez vez maior do que esta placa de cem dados. Veja: 111 Aula 5 Números decimais A relação é dez vezes menor que... que acabamos de ilustrar, que também pode ser entendida como é a décima parte de..., é escrita como a fração 1 10 e representada na forma decimal por 0,1 (lê-se um décimo). E como você representaria a relação é cem vezes menor que... e é mil vezes menor que...? é 100 vezes menor que é 1000 vezes menos que A relação é cem vezes menor que..., também pode ser entendida como é a 1 centésima parte de..., é escrita como a fração e representada na forma 100 decimal por 0,01 (lê-se um centésimo). Já a relação é mil vezes menor que..., que também pode ser entendida como é 1 a milésima parte de... é escrita como a fração e representada na forma 1000 decimal por 0,001 (lê-se um milésimo).

8 112 O esquema a seguir resume bem as relações explicadas anteriormente. e-tec Brasil Matemática Instrumental Unidade 1 Décimo 1 ou 0,1 10 Décimo 1 ou 0, Milésimo 1 ou 0, Décimo de milésimo 1 ou 0, E assim por diante Na figura a seguir, considere a placa formada pelos dados como uma unidade. Você consegue escrever a representação decimal correspondente? Vejamos: Uma placa formada por cem dados deve ser considerada como uma unidade. A figura tem três placas; então, são três unidades, certo? Na figura, também existem duas colunas formadas por dez dados cada uma. Lembre-se de que essas colunas são dez vezes menor que a placa; como a figura apresenta duas colunas, então, são dois décimos. Agora, precisamos unir essas informações, ou seja, representar de forma completa o número decimal correspondente, que é 3,2. Na forma de fração, temos que 3,2 = Achou complicado? Calma! Vamos ver outro exemplo? Observe esta outra figura, ainda considerando a placa como unidade, e veja como é fácil descobrir o número decimal correspondente.

9 113 Aula 5 Números decimais Em primeiro lugar, você deve verificar quantas placas existem na figura. Tem alguma? Não tem nenhuma placa. Isso significa que não existe unidade nesse número, ou seja, a casa das unidades é zero. Essa figura também nos mostra cinco colunas e mais dois dados solitários, certo? Como devemos analisar essas informações? Rodrigo Vieira Fonte: Figura 5.4: Cronômetro - os cronômetros são instrumentos de grande precisão, pois medem intervalos de tempo com aproximação de décimo de segundo ou menos. As cinco colunas representam os décimos, cinco décimos. Já os dois dados solitários representam os centésimos, dois centésimos, pois cada dado é cem vezes menor que a unidade (que é a placa com cem dados). Com isso, o número decimal que estamos procurando é 0,52. Na forma de fração, temos que 0,52 = Na próxima figura, você vai considerar o cubo maior como uma unidade e proceder da mesma forma que nos exemplos anteriores para achar o número decimal correspondente.

10 114 e-tec Brasil Matemática Instrumental Fazendo isso, o número decimal correspondente será 1,123. Não entendeu? Ora, a placa agora representa 1 décimo, pois ela é dez vezes menor que o cubo maior. As colunas agora representam 2 centésimos; cada coluna é cem vezes menor que o cubo maior. Os três dados solitários representam 3 milésimos, pois cada um deles é mil vezes menor que o cubo maior. Na forma de fração, temos que 1,123 = Agora, que tal tomar um dado solitário como uma unidade? Veja a figura a seguir e vamos descobrir o número que ela representa.

11 Observe que cada coluna é dez vezes maior que a unidade e que a placa também é dez vezes maior que cada coluna, ou seja, a placa é 100 vezes maior que a unidade. Com isso, temos: ( 1x100) + ( 2x10) + ( 1) { = 121 Uma centena Duas dezenas uma unidade Ainda considerando um dado solitário como uma unidade, observe a figura a seguir e tente descobrir o número representado. 115 Aula 5 Números decimais Perceba que o cubo maior é mil vezes a unidade e novamente as colunas representam as dezenas. Ou seja: ( x1000) + ( 0 x100) + ( 5x10) { = 1053 Um milhar Zero centena Cinco dezenas TrŒs unidades Três unidades Na tabela a seguir, que resume bem o que foi explicado até aqui, estão mais alguns exemplos. Tabela 5.1: O lugar ocupado pelo algarismo indica a ordem em que ele se encontra. Milhar Centena Dezena Unidade Décimo Centésimo Milésimo , , Ordens inteiras Ordens decimais

12 116 e-tec Brasil Matemática Instrumental Saiba mais... Aprendendo a ler um número decimal Devemos ler a parte inteira, seguida da parte decimal, acompanhada das palavras: Décimos... Quando houver uma casa décimal; Centésimos... Quando houver duas casas decimais. Milésimos... Quando houver três casas decimais. Décimos de milésimo... Centésimos de milésimos... Quando houver quatro casas decimais. Quando houver cinco casas decimais. e assim sucessivamente. Veja alguns exemplos: I. 1,5 Lê-se um inteiro e cinco décimos. II. 7,02 Lê-se sete inteiros e 2 centésimos. III. 3, 28 Lê-se três inteiros e vinte e oito centésimos. IV. 0,147 Lê-se cento e quarenta e sete milésimos. Quando a parte inteira for zero, lemos somente a parte decimal, acompanhada de décimos, centésimos, milésimos... Os números decimais possuem algumas características importantes, mais precisamente três propriedades. Cada uma delas tem conseqüências sobre o seu cálculo e a sua representação.

13 1ª propriedade: Um número decimal não se altera quando retiramos ou acrescentamos um ou mais zeros à direita da sua parte decimal. Isso significa que dois números decimais quaisquer podem ser representados com o mesmo número de CASAS DECIMAIS. Exemplo: 0,12 e 52,068 podem ser escritos: 0,1200 e 52,0680 (ambos com quatro casas decimais). CASA DECIMAL Nos números com vírgula, as casas decimais ficam à direita da vírgula. Por exemplo, o número 0,00001 tem 5 casas decimais. 117 Aula 5 Números decimais Atenção! Todo número natural pode ser escrito na forma decimal, bastando colocar a vírgula após o último algarismo e acrescentar zero(s). Exemplos: I. 7 = 7,0 II. 193 = 193,000 2ª propriedade: Para multiplicar um número decimal por 10, por 100, por 1000, etc basta deslocar a vírgula uma, duas, três etc. casas decimais para a direita. Exemplos: a. 10,2 x 10 = 102 b. 0, x 1000 = 0,379 3ª propriedade: Para dividir um número decimal por 10, por 100, por 1000 etc. basta deslocar a vírgula uma, duas, três etc. casas decimais para a esquerda. Exemplos: a. 57,21 10 = 5,721 b. 9, = 0, Conhecendo as propriedades fica mais fácil trabalhar com esses números.

14 118 Transformando os números decimais e-tec Brasil Matemática Instrumental Agora você vai aprender a transformar números decimais em frações decimais e vice-versa. I. Transformação de números decimais em frações decimais Veja os números a seguir: (i) 0,7 = (ii) 0,07 = 100 (iii) 2,37 = (iv) 7,132= Podemos notar que para transformar um número decimal numa fração decimal basta tomar como numerador o número decimal sem a vírgula e como denominador a unidade (1) seguida de tantos zeros quantas forem as casas decimais do número dado. Veja outros exemplos: 10 (v) 0{, 010 = 3 casas decimais 1000 { 3 zeros no denominador Já vimos anteriormente que essa fração é lida como dez milésimos. (vi) 4{, 79 2 casas decimais = 479 { zeros no denominador Como você já sabe, essa fração é lida como quatro inteiros e setenta e nove centésimos. II. Transformação de fração decimal em número decimal Veja os exemplos: (i) =1,70 (ii) = 0,732 (iii) = 0,002

15 Como você já deve ter percebido, para transformar uma fração decimal em um número decimal fazemos com que o numerador da fração tenha o mesmo número de casas decimais que o número de zeros do denominador. Comparando números decimais Para comparar dois números decimais, devemos situá-los sobre a reta real. Veja a seguir o passo-a-passo para representar os números decimais sobre a reta. 119 Aula 5 Números decimais 1º passo: Representamos os números inteiros como indicado a seguir: º passo: Dividindo a unidade em dez partes iguais, obtemos os décimos e podemos representar os números com uma ordem (ou casa) decimal. -1,3-1,1-0,9-0,7-0,5-0,3-0,1 0,1 0,3 0,5 0,7-1,2-1,0-0,8-0,6-0,4-0,2 0,0 0,2 0,4 0,6 3º passo: Se dividirmos cada décimo em dez partes iguais, ficam assinalados os centésimos, como podemos ver na figura a seguir. Representamos, assim, os números com duas ordens decimais. 0 0,1-0,03-0,01 0,01 0,03 0,05 0,07 0,09-0,04-0,02 0,00 0,02 0,04 0,06 0,08-1,2-1,1-1,21-1,19-1,17-1,15-1,13-1,11-1,09-1,22-1,20-1,18-1,16-1,14-1,12-1,10-1,08 Com este processo, podemos representar os diferentes números decimais exatos. Agora que os números já foram localizados na reta, fica fácil fazer a comparação. Verifica-se que a < b se a estiver antes de b sobre a reta, da esquerda para a direita. a b

16 120 Exemplo: e-tec Brasil Matemática Instrumental Qual desses números é maior: 3,426 ou 3,45? Para resolver esta questão, colocamos os números um em baixo do outro com os algarismos de mesma ordem alinhados: 1º. 3,426 2º. 3,45 Observe que os dois números possuem três unidades e também possuem quatro décimos. Agora, veja que os centésimos são diferentes; o primeiro número tem 2 centésimos, enquanto o segundo tem 5 centésimos (5 > 2). Portanto, o segundo número é maior que o primeiro. Chegou o momento de praticar e fixar todos esses conceitos apresentados até aqui. As próximas atividades são fundamentais para que você entenda as operações com os números decimais. Atividade 1 Atende ao Objetivo 1 Escreva, por extenso, como se lê cada um dos números a seguir: a. 1,7 b. 5,23 c. 12,006 d.,8 e. 0,003 f. 0,25 g. 54,9 h. 123,05

17 121 Atividade 2 Atende ao Objetivo 2 Transforme os números a seguir em frações decimais: a. 0,3 b. 1,34 Aula 5 Números decimais c. 9,2324 d. 0,0014 Atividade 3 Atende ao Objetivo 2 Transforme as frações a seguir em números decimais: a b c d

18 122 e-tec Brasil Matemática Instrumental Atividade 4 Atende ao Objetivo 3 Escreva em ordem decrescente os preços encontrados numa padaria: Pães Pãozinho francês R$ 0,30 Pão para hambúrguer R$ 0,95 Pão para cachorro-quente R$ 0,55 Pão doce R$ 0,40 Operando com os decimais Agora, você verá como é fácil fazer contas de somar, subtrair, multiplicar e dividir com números decimais. Adição e subtração Para fazer o cálculo 3,6 + 0, ,124, podemos converter (transformar) os números decimais em frações e somá-las: , 924 3, 6 + 0, , 124 = = = 16, Regra prática (1º) Colocamos vírgula debaixo de vírgula. (2º) Adicionamos ou subtraímos como se fossem números naturais.

19 Usando a regra prática, podemos somar 3,6 + 0, ,124, fazendo: 123 Veja outro exemplo: Agora, vamos calcular 23,50-1, , , , , 924 Aula 5 Números decimais Mais uma vez, podemos transformar esses números decimais em frações ou, simplesmente, usar a regra prática como é mostrado a seguir. Multiplicação + 23, , 33 22, 17 Para calcular o produto 2,331 x 1,2, podemos converter os decimais em frações e multiplicá-las , 331 1, 2 = x = = 2, Regra prática (1º) Multiplicamos os números decimais como se fossem números naturais. (2º) Separamos no produto, da direita para esquerda, o total de casas decimais dos dois fatores. Usando a regra prática, temos: 02, , 2 x , casas decimais Multiplicando...1 casa decimal Multiplicando...4 casas decimais Produto

20 124 e-tec Brasil Matemática Instrumental Divisão Vamos calcular (Dividendo) 6 25 (Divisor)? (Quociente) (1º) Multiplicando o dividendo por 10, o quociente ficará dividido por 10. Isto justifica a presença do algarismo 0, seguido de uma vírgula no quociente , (2º) Realizamos a divisão de 60 por 25. O resultado será 2 e o resto será ,2 10 (resto) (3º) O resto 10 corresponde a 10 décimos ou 100 centésimos, razão pela qual colocamos um zero (0) à direita do número ,2 100 (4º) Dividimos 100 por 25 para obter o quociente 4 e o novo resto será , (resto) A razão 6 25 inteiro. é igual a 0,24. O resultado é um decimal exato, mas não é um número

21 125 Atenção! Você já sabe que podemos multiplicar tanto o numerador como o denominador de uma fração por 10, 100 ou 1000, que o resultado não se alterará. Utilizando essas informações, poderemos efetuar divisões entre números decimais como se fossem divisões de números inteiros. Aula 5 Números decimais Exemplo: Calcular 7,2 0,4 NUMERADOR DENOMINADOR Se multiplicarmos o numerador e o denominador por 10, a fração irá alterar. Assim, tanto o numerador como o denominador serão números inteiros. Com isso, podemos cortar a vírgula. Veja: 7,2 7,2 X = = = 18 0,4 0,4 X 10 4 Você percebeu que os números decimais fazem parte do nosso cotidiano? Não é raro fazermos contas usando números decimais; por isso é importante saber como fazê-las de maneira correta. Dominar as operações elementares pode proporcionar grandes vantagens. Multimídia Gênio indomável Matemática também pode ser uma boa diversão no cinema; é só assistir ao filme Gênio indomável. Ele conta a história de um faxineiro chamado Will, que trabalhava em um dos mais renomados centros de pesquisa dos Estados Unidos. Sem nunca ter estudado, era capaz de resolver complexos problemas matemáticos. Um professor do Instituto descobre sua genialidade e tenta convencer o jovem a entrar para sua equipe. O problema é que Will é um rebelde com problemas com a polícia. É feito, então, um acordo com a justiça e, para que Will tenha liberdade, ele precisa fazer sessões de terapia. Will conhece então Sean, o psiquiatra, que provocará muitas mudanças em sua vida.

22 126 e-tec Brasil Matemática Instrumental Para finalizar esta aula e garantir que não você ficou com nenhuma dúvida, faça as atividades propostas. Atividade 5 Atende ao Objetivo 4 Calcule: a. 1,23 + 5,04 b. 0,81 + 1,32 c. 0,54 0,16 d. 7,24 + 3,09 e. 72, ,43 f. 0, ,76 Atividade 6 Atende ao Objetivo 4 Na última aula, você aprendeu a trabalhar com expressões. Agora, calcule o valor de cada uma das expressões a seguir: a. (1-0,25) + 2,3 b. (0,83 + 4,1) 1,225

23 127 Atividade 7 Atende ao Objetivo 4 De acordo com o IBGE (Instituto Brasileiro de Geografia e Estatística), a décima estimativa da safra nacional de cereais, leguminosas e oleaginosas indica uma produção para o ano de 2008 da ordem de 145,6 milhões de toneladas, superior à obtida em 2007, que foi de 133,1 milhões de toneladas. Aula 5 Números decimais Fonte: Acesso em 7 de novembro de Qual a diferença, em toneladas, da produção anual de 2008 para a produção de 2007? Admitindo essa mesma variação na produção anual, qual será a estimativa da safra para o ano de 2009? Atividade 8 Atende ao Objetivo 5 Calcule: a. 0,2. 8 b. 3,58. 0,23 c. 0,36. 0, 501 d. 10,0. 0,5

24 128 e-tec Brasil Matemática Instrumental Atividade 9 Efetue as seguintes operações: a. 0,34 x 10 b. 0,0453 x 100 c. 0, Atende ao Objetivo 5 d. 0, Atividade 10 Atende ao Objetivo 5 Calcule o valor das expressões: a. (0,21. 0,5) : 1,05 b. (0,55 + 0,2). 0,2 : 0,3 Atividade 11 Atende ao Objetivo 5 Uma fábrica produziu 81,5 kg de queijo e quer fazer pacotes, contendo 0,25 kg de queijo em cada. a. Quantos pacotes poderão ser feitos? b. E com 100kg, quantos pacotes podem ser feitos?

25 129 Atividade 12 Atende ao Objetivo 5 A milésima parte dos habitantes de uma cidade tem mais de 60 anos. Se essa cidade tiver habitantes, quantas pessoas terão mais 60 anos? Aula 5 Números decimais Resumindo... Números decimais são todos os números que podem ser escritos como uma fração cujo denominador é um múltiplo de 10. O lugar ocupado pelo algarismo indica a ordem que ele ocupa, ou seja, milhar, centena, dezena, unidade, décimo, centésimo, milésimo etc. Um número decimal não se altera quando retiramos ou acrescentamos um ou mais zeros à direita da sua parte decimal. Para multiplicar um número decimal por 10, 100, 1000 etc., basta deslocar a vírgula uma, duas, três etc. casas para a direita. Para dividir um número decimal por 10, 100, 1000 etc., basta deslocar a vírgula uma, duas, três etc. casas para a esquerda. Para somarmos ou subtrairmos números decimais, primeiro igualamos o número de casas decimais, colocando zeros; depois, ajeitamos as parcelas de forma que fique vírgula em baixo de vírgula. Por fim, somamos ou diminuímos normalmente, colocando a vírgula alinhada com as outras. A multiplicação de decimais é feita como se fossem números naturais; as casas decimais são o total de casas decimais das parcelas. Para dividirmos números decimais, primeiro igualamos o número de casas decimais das duas parcelas, depois retiramos as vírgulas e assim fazemos a divisão como números naturais.

26 130 Informação sobre a próxima aula e-tec Brasil Matemática Instrumental Na próxima aula, vamos estudar as expressões aritméticas. Respostas das Atividades Atividade 1 a. Um inteiro e sete décimos. b. Cinco inteiros e vinte e três centésimos. c. Doze inteiros e seis milésimos. d. Oito décimos. e. Três milésimos. f. Vinte e cinco centésimos. g. Cinqüenta e quatro inteiros e nove décimos. h. Cento e vinte e três inteiros e cinco centésimos. Atividade a. b. c. d Atividade 3 a. 0,008 b. 5,4 c. 1,38 d. 0,041 Atividade 4 R$ 0,95 > R$ 0,55 > R$ 0,40 > R$ 0,30 Atividade 5 a. 1, , 0 4 6, 2 7 e. 7 2, , , b. 2,13 f. 0,7601 c. 0,38 d. -4,15

27 Atividade 6 Como já foi visto na aula passada, devemos efetuar as contas que estão dentro dos parênteses, para depois calcular o resultado final. a. 3,05 b. 3,705 Atividade 7 Para saber a diferença da produção anual de 2007 para 2008 basta fazer: 131 Aula 5 Números decimais 145,6 133,1 = 12,5 milhões de toneladas. Agora, mantendo essa diferença constante, precisamos saber quanto será produção para Para isso basta fazer: 145,6 (produção de 2008) + 12,5 (diferença de 2007 para 2008) = 158,1 milhões de toneladas. Logo, a produção estimada para 2009 será de 158,1 milhões de toneladas. Atividade 8 a. 0, 2 x 8 1, 6 b. 0,8234 c. x 0000, x 0, , d. 5 Atividade 9 a. 3,4 b. 4,53 c. 0,0074 d. 0,0001

28 132 e-tec Brasil Matemática Instrumental Atividade 10 a. 0,21. 0,5 = 0,105 Assim, 0,105 : 1,05 = 0,1 1,05 1,05 0 (resto) 0,1 b. 0,55 + 0,2 = 0,75 Agora, 0,75. 0,2 = 0,15 Assim, 0,15 : 0,3 = 0,5 0,15 0,3 0 (resto) 0,5 Atividade 11 a. 81,5 : 0,25 = 326 pacotes b. 100 : 0,25 = 400 pacotes Atividade 12 A milésima parte significa dividir por mil. Como a cidade tem habitantes, basta fazer : 1000 = 150. Logo, 150 pessoas dessa cidade têm mais de 60 anos de idade. Referências bibliográficas GIOVANNI, José Ruy et alii. A conquista da Matemática. São Paulo. Editora FTD ª edição. 5ª série. IEZZI Gelson. et alii. Matemática e Realidade. São Paulo. Atual Editora ª Ed. 5ª série. MORI, Iracema & ONAGA, Dulce Satiko. Matemática: idéias e desafios. São Paulo. Editora Saraiva ª Edição. 5ª série. Site consultado <www.ibge.gov.br>. Acesso em 7 de novembro de 2008.

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

Prepara a Prova Final Matemática 4.º ano

Prepara a Prova Final Matemática 4.º ano Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

TUTORIAL DE OPERAÇÕES BÁSICAS

TUTORIAL DE OPERAÇÕES BÁSICAS TUTORIAL DE OPERAÇÕES BÁSICAS MULTIPLICAÇÃO POR E SEUS MÚLTIPLOS Para multiplicar multiplicar por, 0, 00,... basta deslocar a vírgula para a direita tantas casas quantos forem os zeros.,6,6 (desloca a

Leia mais

AGENTE ADMINISTRATIVO FEDERAL

AGENTE ADMINISTRATIVO FEDERAL FRAÇÕES SÍNTESE TEÓRICA O que é uma fração? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos?

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? Meça a página do seu livro com uma régua. Como você representa, em centímetros, a medida encontrada?

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.

Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Habilidades Avaliação Disciplina: Matemática Trimestre: 1º PLANEJAMENTO ANUAL / TRIMESTRAL 2014 Conteúdos Fundamentais de Matemática Sistema de Numeração decimal As quatro operações fundamentais Compreender problemas Números

Leia mais

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02

= 0,333 = 0, = 0,4343 = 0, = 1,0222 = 1,02 1 1.1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES

MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b

Leia mais

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES

5º ano do Ensino Fundamental 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES 5º ano do Ensino Fundamental 1º BIMESTRE Compor e decompor números naturais e racionais na forma decimal. Reconhecer ordens e classes numa escrita numérica. Arredondar números na precisão desejada. Ordenar

Leia mais

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4

Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4 0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o

Leia mais

Planejamento de Curso de Matemática para a 5º serie.

Planejamento de Curso de Matemática para a 5º serie. Planejamento de Curso de Matemática para a 5º serie. 1º O conteúdo trabalhado no ano será: Obs: Todos os conteúdos antes de serem iniciados devem ter o contexto histórico passado. 1º Modulo Conjuntos:

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA

TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA TREINAMENTO MATEMÁTICA BÁSICA 1ª ETAPA 1 Adição, subtração, multiplicação e divisão de números naturais e decimais Números Naturais Nos dias de hoje, em lugar das pedrinhas, utilizam-se, em todo o mundo,

Leia mais

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo

NÚMEROS RACIONAIS. FRAÇÕES. Ano letivo NÚMEROS RACIONAIS. FRAÇÕES Ano letivo 203-4 Fração é um número que exprime uma ou mais partes, em que foi dividida a unidade. Numerador 2 Denominador Termos da fracção é o numerador, representa o número

Leia mais

TEMPO DE CÁLCULO. 3º Ano. Maria José Porto Louza Silva Ferreira. Escola EB1 António Nobre (Lisboa)

TEMPO DE CÁLCULO. 3º Ano. Maria José Porto Louza Silva Ferreira. Escola EB1 António Nobre (Lisboa) TEMPO DE CÁLCULO 3º Ano Maria José Porto Louza Silva Ferreira Escola EB1 António Nobre (Lisboa) Este ficheiro pode ser usado de 2 maneiras distintas: 1.Pode constituir uma rotina semanal. Neste caso, o

Leia mais

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL Nível* Nível 1: 125-150 Nível 2: 150-175 Nível 3: 175-200 Nível 4: 200-225 Descrição do Nível - O estudante provavelmente é capaz de: Determinar

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares de Matemática 1º CICLO MATEMÁTICA 4º ANO TEMAS/DOMÍNIOS

Leia mais

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES.

OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. OPERAÇÕES COM NÚMEROS RACIONAIS, DECIMAIS, FRAÇÕES, MDC, MMC E DIVISORES. 1) Calcule o valor das expressões: a) 19,6 + 3,04 + 0,076 = b) 17 + 4,32 + 0,006 = c) 4,85-2,3 = d) 9,9-8,76 = e) (0,378-0,06)

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Ao longo do ano Números e Operações 3. Resolver problemas 3.1. Resolver problemas de vários passos envolvendo as quatro operações. setembro/

Leia mais

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Número e Operações - Números naturais 1. Contar 1.1. Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de

Leia mais

Apontamentos de Matemática 6.º ano

Apontamentos de Matemática 6.º ano Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos

Leia mais

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador.

AUTOR: PROF. PEDRO A. SILVA lê-se: 2 inteiros e cinco sextos. Exs.:, 2 3 Fração aparente É aquela cujo numerador é múltiplo do denominador. I - NÚMEROS RACIONAIS lê-se: inteiros e cinco sextos. a Dois números a e b ( b 0 ), quando escritos na forma b representam uma fração, onde : b (denominador) e a (numerador). O numerador e o denominador

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 4º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 4º ano Professores: todos os docentes do 4º

Leia mais

João trabalha 6 dias por semana. Por isso, devemos multiplicar 2,40 por 6. Fazemos a operação como se a vírgula não existisse: 240 x

João trabalha 6 dias por semana. Por isso, devemos multiplicar 2,40 por 6. Fazemos a operação como se a vírgula não existisse: 240 x Por 8 dias de trabalho, João deveria receber R$ 250,00. Mas, tendo trabalhado apenas 5 dias, João resolveu ir embora e pediu as contas. Quanto deverá receber pelo trabalho realizado? A situação acima envolve

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5R Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.

MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro. MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa

Leia mais

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS SUGESTÕES DE ESTUDO PARA FRAÇÕES o ENCONTRO Neste momento de trabalho, vamos explorar algumas das diversas maneiras de se compreender as frações, todas importantes para nosso cotidiano. O texto complementar

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO

PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO Direção Geral dos Estabelecimentos Escolares Direção de Serviços da Região do Algarve Agrupamento de Escolas José Belchior Viegas (Sede: Escola Secundária José Belchior Viegas) PLANIFICAÇÃO ANUAL 2016/2017

Leia mais

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular).

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2012 Conteúdos Habilidades Avaliação COLÉGIO LA SALLE BRASÍLIA Disciplina: Matemática Trimestre: 1º Números Naturais: - Sistema de numeração - Adição e subtração - Multiplicação e divisão - Traduzir em palavras números representados por algarismos

Leia mais

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes

MATEMÁTICA 5º ANO UNIDADE 1. 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes MATEMÁTICA 5º ANO UNIDADE 1 CAPÍTULOS 1 NÚMEROS, PROBLEMAS E SOLUÇÕES Sistema de numeração Operações com números grandes 2 IMAGENS E FORMAS Ângulos Ponto, retas e planos Polígono Diferenciar o significado

Leia mais

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.

FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro

Leia mais

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e

CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e de Avaliação Números e Operações Números Sistema de decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até ao milhão Conhecer a romana Descodificar o sistema de decimal Adicionar

Leia mais

Técnico Judiciário TJ / RS

Técnico Judiciário TJ / RS CONTINHAS Prof. Ivan Zecchin Adição e Subtração Algébrica de Números Fracionários: - Somente podemos somar ou subtrair frações de MESMO DENOMINADOR - Caso não tenham mesmo denominador devemos escrevê-las

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 ATIVIDADES COM O SISTEMA BABILÔNIO DE BASE 60 A representação

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Números decimais. Roberto Geraldo Tavares Arnaut. Kathleen S. Gonçalves

Números decimais. Roberto Geraldo Tavares Arnaut. Kathleen S. Gonçalves Números decimais 21 Roberto Geraldo Tavares Arnaut Kathleen S. Gonçalves e-tec Brasil Estatística Aplicada METAS OBJETIVOS Apresentar o conceito de números decimais e demonstrar como realizar as operações

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática

Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

Lista de Matemática e Interpretação de Texto 5 o ano de 22 a 26/08/16

Lista de Matemática e Interpretação de Texto 5 o ano de 22 a 26/08/16 Lista de Matemática e Interpretação de Texto 5 o ano de a 6/08/6 Ouça o sábio e cresça em prudência. (Provérbios :5) Segunda-feira /08 Vamos reforçar o que já aprendemos sobre as frações.. Resolva: a)

Leia mais

Resolver uma equação do 1º grau é determinar o valor da incógnita [letra] que satisfaz a equação.

Resolver uma equação do 1º grau é determinar o valor da incógnita [letra] que satisfaz a equação. EQUAÇÃO DO º GRAU Definição: Uma equação do grau [com uma incógnita] é toda equação que pode ser reduzida à forma ax = b, onde a e b são números reais, com a 0. Veja alguns exemplos e suas formas reduzidas

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

CADERNO DE EXERCÍCIOS 1C

CADERNO DE EXERCÍCIOS 1C CADERNO DE EXERCÍCIOS 1C Ensino Fundamental Matemática Questão 1 2 Conteúdo Fração. Interpretação de problema envolvendo a relação parte todo. Soma de frações. Cálculo de área e situações problema envolvendo

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO Prof. Dr. Daniel Caetano 2011-2 Visão Geral 1 2 3 4 Representações Numéricas Notação Posicional Notação Binária Conversões

Leia mais

Uma história muito antiga. Uma história muito antiga. Uma história muito antiga 05/03/2016

Uma história muito antiga. Uma história muito antiga. Uma história muito antiga 05/03/2016 Uma história muito antiga Há muito, muito tempo... Para saber quantas ovelhas tinha, um pastor separava uma pedrinha para cada ovelha, quando as soltava para pastar. Uma história muito antiga Uma história

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 09 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Fração. Parte ou pedaço de um inteiro.

Fração. Parte ou pedaço de um inteiro. Fração Parte ou pedaço de um inteiro. Exemplos do Uso da Fração no Dia-a-Dia Ao dividir uma pizza; Exemplos do Uso da Fração no Ao dividir um bolo; Dia-a-Dia Milhões Exemplos do Uso da Fração no Dia-a-Dia

Leia mais

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.

Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção. Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE

AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE Números e Operações ANUAL 164 dias letivos Números naturais Relações numéricas 1. Conhecer os numerais ordinais 1. Utilizar corretamente os numerais ordinais até «centésimo». 2. Contar até um milhão 1.

Leia mais

Competência Objeto de aprendizagem Habilidade

Competência Objeto de aprendizagem Habilidade 3ª Matemática 4º Ano E.F. Competência Objeto de aprendizagem Habilidade BLOCO: ESPAÇO E FORMA C2. Compreender os conceitos relacionados às características, classificações e propriedades das figuras geométricas,

Leia mais

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo

ADIÇÃO mesma natureza homogêneas Como fazer Exemplo heterogêneas Como fazer Exemplo ADIÇÃO É a operação que tem por fim determinar uma fração que contenha todas as unidades e partes de unidades de várias parcelas de mesma natureza. Entende-se por mesma natureza as frações que exprimem

Leia mais

Grandezas geométricas: perímetros, áreas e volumes

Grandezas geométricas: perímetros, áreas e volumes Grandezas geométricas: perímetros, áreas e volumes Aula 12 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar as grandezas geométricas: perímetro, área e volume. Objetivos Após

Leia mais

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total Cursos Técnicos Habilitações Plenas Eletrônica Digital Professor Arnaldo Sistemas de Numeração Bases Numéricas - Conversões Op. Sistema de Numeração Decimal Composto pela Base 10 e pelos Símbolos ( Algarismos

Leia mais

Regra de três simples

Regra de três simples Regra de três simples Aula 7 Velocidade Ricardo Ferreira Paraizo Tempo e-tec Brasil Matemática Instrumental Meta Apresentar os conceitos sobre grandezas direta e inversamente proporcionais e regra de três.

Leia mais

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco.

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco. ÁBACO VERTICAL É de extrema importância que os alunos construam os conceitos de número já nas séries iniciais, a fim de que estes evoluam do concreto aos estágios de abstração. Os Parâmetros Curriculares

Leia mais

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) =

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) = PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Verifique se o número 8 437 é

Leia mais

Dois amigos resolveram apostar qual deles acertava mais bolas ao cesto. João arremessou 12 bolas e acertou 7; Mário arremessou 15 bolas e acertou 8.

Dois amigos resolveram apostar qual deles acertava mais bolas ao cesto. João arremessou 12 bolas e acertou 7; Mário arremessou 15 bolas e acertou 8. Dois amigos resolveram apostar qual deles acertava mais bolas ao cesto. João arremessou 1 bolas e acertou 7; Mário arremessou 1 bolas e acertou 8. Escreva as frações que representam Qual deles ganhou a

Leia mais

CURSO ANUAL DE MATEMÁTICA VOLUME 1

CURSO ANUAL DE MATEMÁTICA VOLUME 1 CURSO ANUAL DE MATEMÁTICA VOLUME ) SISTEMA DE NUMERAÇÃO DECIMAL O sistema de numeração que usamos é o sistema de numeração decimal, pelo fato de contarmos os elementos em grupos de dez. Dezenas cada grupo

Leia mais

CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO 3º ANO (1º CICLO) MATEMÁTICA

CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO 3º ANO (1º CICLO) MATEMÁTICA CRTÉRO EPECÍCO DE AVALAÇÃO 3º ANO (1º CCLO) MATEMÁTCA DOMÍNO/ UDOMÍNO Números e Operações Números naturais OJETVO DECRTORE DE DEEMPENHO MENÇÕE 1. Conhecer os numerais ordinais 2. Contar até um milhão 3.

Leia mais

Conjuntos numéricos II: números racionais, irracionais e reais

Conjuntos numéricos II: números racionais, irracionais e reais Conjuntos numéricos II: números racionais, irracionais e reais Aula 3 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar os conjuntos numéricos racionais, irracionais e reais.

Leia mais

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo.

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo. Aritmética Binária Aqui tudo nasce do cálculo. Todo o hardware computacional está sustentado sobre cálculos de adição e subtração de elementos binários (bits), portanto o estudo da aritmética binária é

Leia mais

Lista de Exercícios - Multiplicação

Lista de Exercícios - Multiplicação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 6 - Multiplicação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=gppmajolb1s Gabaritos nas últimas

Leia mais

Competências e Habilidades - Concurso de Bolsas 2015/2016. Ensino Médio e Fundamental. Ensino Fundamental (6º Ano )

Competências e Habilidades - Concurso de Bolsas 2015/2016. Ensino Médio e Fundamental. Ensino Fundamental (6º Ano ) Ensino Fundamental (6º Ano ) Língua Portuguesa Em Língua Portuguesa (com foco em leitura) serão avaliadas habilidades e competências, agrupadas em 9 tópicos que compõem a Matriz de Referência dessa disciplina,

Leia mais

ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA Nome: Nº 6ºAno Data: / / Professores: Leandro e Renan Nota: (Valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do

Leia mais

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14?

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14? Unidade III 6 CIRCUITOS DIGITAIS 6.1 Sistemas de numeração O que quer dizer 14? Sabemos, por força de educação e hábito, que os algarismos 1 e 4 colocados desta forma representam a quantidade catorze.

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar o que é uma base de numeração Apresentar o conceito de notação posicional

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

CRITÉRIOS DE AVALIAÇÃO 1º CICLO 4.º ANO DE ESCOLARIDADE MATEMÁTICA

CRITÉRIOS DE AVALIAÇÃO 1º CICLO 4.º ANO DE ESCOLARIDADE MATEMÁTICA ANO LETIVO 0/06 CRITÉRIOS DE AVALIAÇÃO º CICLO.º ANO DE ESCOLARIDADE MATEMÁTICA Números e Operações Números naturais Contar Reconhece, sem falhas, que se poderia prosseguir a contagem indefinidamente introduzindo

Leia mais

Aula 1: Reconhecendo Matrizes

Aula 1: Reconhecendo Matrizes Aula 1: Reconhecendo Matrizes Caro aluno, nesta aula você aprenderá a reconhecer matrizes, posteriormente vamos identificar os tipos de matrizes existentes e como realizar algumas operações entre elas.

Leia mais

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno 1 Matemática Instrumental 2008.1 Aula 1 Introdução Hoje em dia temos a educação presencial, semi-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontram

Leia mais

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 2.º Ano - Ano Letivo 2015/2016 1.º Período Números e Operações Conteúdos Programados Aulas Previstas Aulas Dadas Números naturais Conhecer os numerais ordinais Utilizar corretamente

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

Aula 1: Conjunto dos Números Inteiros

Aula 1: Conjunto dos Números Inteiros Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)

Leia mais

OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2

OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2 OPERANDO NÚMEROS INTEIROS COM O ÁBACO Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2 Resumo O aprendizado das operações fundamentais, sendo elas a adição, a subtração, a multiplicação e a divisão,

Leia mais

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017

Plano Curricular de Matemática 4.º Ano - Ano Letivo 2016/2017 4.º Ano - Ano Letivo 2016/2017 1.º Período - Números naturais Números e operações Contar Estender as regras de construção dos numerais decimais para classes de grandeza indefinida; Conhecer os diferentes

Leia mais