Questão 1) ELETRICIDADE

Tamanho: px
Começar a partir da página:

Download "Questão 1) ELETRICIDADE"

Transcrição

1 Eletricidade 1

2 Questão 1) Uma esfera condutora A, carregada positivamente, é aproximada de uma outra esfera condutora B, que é idêntica à esfera A, mas está eletricamente neutra. Sobre processos de eletrização entre essas duas esferas, identifique a alternativa incorreta:

3 Questão 1) ELETRICIDADE

4 Questão 1) ELETRICIDADE

5 Questão 1) a) Ao aproximar a esfera A da B, sem que haja contato, uma força de atração surgiráentre essas esferas. b) Ao aproximar a esfera A da B, havendo contato, e em seguida separando-as, as duas esferas sofrerão uma força de repulsão.

6 Questão 1) c) Ao aproximar a esfera A da B, havendo contato, e em seguida afastando-as, a esfera A ficaráneutra e a esfera B ficarácarregada positivamente. d) Ao aproximar a esfera A da B, sem que haja contato, e em seguida aterrando a esfera B, ao se desfazer esse aterramento, ambas ficarão com cargas elétricas de sinais opostos. e) Ao aproximar a esfera A da B, sem que haja contato, e em seguida afastando-as, a configuração inicial de cargas não se modificará.

7 Questão 3) Considere um modelo clássico de um átomo de hidrogênio, onde um elétron, de massa m e carga q, descreve um movimento circular uniforme, de raio R, com velocidade de módulo v, em torno do núcleo. A análise das informações, com base nos conhecimentos da Física, permite concluir: a) A intensidade da corrente elétrica estabelecida na órbita éigual a qv/r. b) O raio da órbita éigual a k.q 2 /m.v 2, sendo k a constante eletrostática do meio. c) O trabalho realizado pela força de atração que o núcleo exerce sobre o elétron émotor. d) A resultante centrípeta é a força de atração eletrostática que o elétron exerce sobre o núcleo. e) O núcleo de hidrogênio apresenta, em seu entorno, um campo elétrico e um campo magnético.

8 Questão 3) Resolução: a) A intensidade da corrente elétrica estabelecida na órbita é igual a qv/r. i = q/ t i = q/(2πr/v) i = qv/ 2πR (F) b) O raio da órbita éigual a k.q 2 /m.v 2, sendo k a constante eletrostática do meio. kqq 2 r = m v r 2 r = kq mv 2 2 (V) c) O trabalho realizado pela força de atração que o núcleo exerce sobre o elétron émotor. TRABALHO NULO (F) d) A resultante centrípeta é a força de atração eletrostática que o elétron exerce sobre o núcleo. NÚCLEO EXERCE SOBRE O ELÉTRON (F) e) O núcleo de hidrogênio apresenta, em seu entorno, um campo elétrico e um campo magnético. NÃO APRESENTA CAMPO MAGNÉTICO, POIS ESTÁ EM REPOUSO (F)

9 Questão 5) Considere a figura a seguir como sendo a de uma distribuição de linhas de força e de superfícies equipotenciais de um campo elétrico uniforme. Nesta região, é abandonada uma carga elétrica Q positiva de massa M. Analise as afirmações que se seguem:

10 Questão 5) ELETRICIDADE

11 Questão 5) ELETRICIDADE

12 Questão 5) ELETRICIDADE

13 Questão 5) ELETRICIDADE

14 Questão 5) ELETRICIDADE

15 Questão 5) (2) A força elétrica que o campo elétrico exerce sobre a carga elétrica Q tem intensidade F = QE, direção horizontal e sentido contrário ao campo elétrico E. (4) A aceleração adquirida pela carga elétrica Q é constante, tem intensidade diretamente proporcional ao campo elétrico E e inversamente proporcional à massa M. (6) O movimento realizado pela carga elétrica Q é retilíneo uniformemente retardado. (8) O potencial elétrico no ponto A éigual ao potencial elétrico no ponto B e menor do que o potencial elétrico no ponto C. A soma dos números entre parênteses que corresponde aos itens corretos é igual a: a) 2 b) 4 c) 6 d) 10 e) 12

16 Questão 6) De acordo com a figura a seguir, considere duas placas A e D conectadas à terra. As regiões B e C possuem uma diferença de potencial elétrico, em relação àterra, de 410 V e 100 V, respectivamente. Um elétron desprende-se da placa A com velocidade inicial igual a zero, deslocando-se até a placa D. Dado: considere a relação carga do elétron / massa do elétron = 1, C/kg Analise as proposições que se seguem:

17 Questão 6) I. O trabalho realizado pelo campo elétrico, para deslocar o elétron da placa A para a placa D, não énulo. II. Ao passar pela região B, a ordem de grandeza da velocidade do elétron, em m/s, vale III. O elétron, ao deslocar-se da placa A até a placa D executa um movimento progressivo acelerado. IV. A energia cinética do elétron, ao passar na região B, é, aproximadamente, quatro vezes maior do que a energia cinética do elétron ao passar na região C. É correto afirmar que apenas a(s) afirmação(ões): a) II e IV estão corretas. b) IV estácorreta. c) I e III estão corretas. d) III e IV estão corretas. e) II e III estão corretas.

18 Questão 7) A figura representa o esquema de funcionamento de um gerador eletrostático. Com base na figura e nos conhecimentos sobre as propriedades físicas oriundas de cargas elétricas em repouso, écorreto afirmar: Resolução: GERADOR DE VAN DER GRAAF: As cargas vão acumulando-se na parte externa da esfera provocando um campo elétrico cada vez maior. A d.d.p. entre a esfera e a Terra tende a aumentar até romper a rigidez dielétrica do ar, havendo, portanto, uma descarga elétrica entre a esfera e a Terra. O que acontece com os raios e relâmpagos é semelhante.

19 Questão 7) Resolução: CONCEITOS IMPORTANTES: 1) RIGIDEZ DIELÉTRICA: E(máx.) suportável pelo isolante (dielétrico). 2) EQUILÍBRIO ELETROSTÁTICO: F = 0 E = 0 U = 0 W= 0 3) BLINDAGEM ELETROSTÁTICA (GAIOLA DE FARADAY): em condutores (U = 0), logo todos os pontos têm o mesmo potencial elétrico (equipotencial) e o campo elétrico interno é nulo.

20 Questão 7) a) O campo elétrico entre a superfície interna e a externa da esfera metálica é uniforme e constante. b) As cargas positivas migram para a Terra quando um fio condutor conecta a esfera metálica àterra. c) O potencial elétrico de um ponto da superfície externa da esfera metálica é maior do que o potencial elétrico no centro desta esfera. d) As cargas se acumulam na esfera, enquanto a intensidade do campo elétrico gerado por essas cargas émenor do que a rigidez dielétrica do ar. e) As duas pontas de uma lâmina de alumínio dobrado ao meio e fixa na parte interna da esfera metálica exercem entre si força de repulsão eletrostática.

21 Questão 8) Na figura a seguir, são representadas as linhas de força em uma região de um campo elétrico. A partir dos pontos A, B, C, e D situados nesse campo, são feitas as seguintes afirmações: I. A intensidade do vetor campo elétrico no ponto B émaior que no ponto C. (Correta) Quanto mais concentradas as linhas de força, mais intenso é o campo elétrico. II. O potencial elétrico no ponto D émenor que no ponto C. (Falsa) No sentido das linhas de força o potencial elétrico édecrescente, portanto V D > V C.

22 Questão 8) III. Uma partícula carregada negativamente, abandonada no ponto B, se movimenta espontaneamente para regiões de menor potencial elétrico. (Falsa) Partículas com carga negativa sofrem força em sentido oposto ao do vetor campo elétrico, movimentando-se espontaneamente para regiões de maior potencial elétrico. IV. A energia potencial elétrica de uma partícula positiva diminui quando se movimenta de B para A. (Correta) Partículas positivamente carregadas movimentam-se espontaneamente no mesmo sentido dos menores potenciais, ganhando energia cinética, consequentemente, diminuindo sua energia potencial. Écorreto o que se afirma apenas em: a) I. b) I e IV. c) II e III. d) II e IV. e) I, II e III.

23 Questão 09) A carga elétrica de uma partícula com 2,0 g de massa, para que ela permaneça em repouso, quando colocada em um campo elétrico vertical, com sentido para baixo e intensidade igual a 500 N/C, é: a) + 40 nc b) + 40 µc c) + 40 mc d) -40 µc e) -40 mc

24 Questão 12) Um pesquisador produziu um novo material e, para investigar possíveis aplicações tecnológicas, estudou o comportamento elétrico de um objeto cilíndrico feito com esse material. Aplicaram-se diversos valores de diferenças de potencial V a esse objeto e mediu-se a corrente elétrica i que circulou por ele. Foi obtido então o gráfico ao lado: LEMBRETES: RESISTOR ÔHMICO: R constante RESISTOR NÃO-ÔHMICO: R variável

25 Questão 12) Com base nesse gráfico, considere as seguintes afirmativas: 1. O objeto apresenta comportamento ôhmico apenas para diferenças de potencial entre 0 V e 1 V. 2. Quando submetido a uma diferença de potencial de 4 V, a resistência elétrica do objeto vale R = 20 Ω.

26 Questão 12) 3. Para diferenças de potencial entre 1 V e 3 V, a resistência elétrica do objeto é constante. 4. Quando aplicada uma diferença de potencial de 2 V, a potência elétrica dissipada pelo objeto éigual a 1 W. Assinale a alternativa correta. a) Somente as afirmativas 1, 2 e 4 são verdadeiras. b) Somente as afirmativas 2 e 3 são verdadeiras. c) Somente as afirmativas 1 e 2 são verdadeiras. d) Somente as afirmativas 1 e 3 são verdadeiras. e) As afirmativas 1, 2, 3 e 4 são verdadeiras.

27 Questão 14) Em dias frios, o chuveiro elétrico é geralmente regulado para a posição inverno. O efeito dessa regulagem éalterar a resistência elétrica do resistor do chuveiro de modo a aquecer mais, e mais rapidamente, a água do banho. Para isso, essa resistência deve ser : a) diminuída, aumentando-se o comprimento do resistor. b) aumentada, aumentando-se o comprimento do resistor. c) diminuída, diminuindo-se o comprimento do resistor. d) aumentada, diminuindo-se o comprimento do resistor. e) aumentada, aumentando-se a voltagem nos terminais do resistor.

28 Questão 15) Considere o esquema do circuito elétrico a seguir, composto por resistores e geradores de valores iguais e uma chave, onde, os geradores são representados por E e os resistores por R. Nesse contexto, assinale o que for correto, no que se refere a sua esquematização. 01) A ddp no circuito éigual àddp de cada gerador integrante da associação. 02) A intensidade de corrente que atravessa a chave EF é igual à soma das intensidades de corrente gerada pela associação de geradores. 04) A intensidade de corrente em qualquer ramo do circuito tem o mesmo valor (constante). 08) O resistor equivalente éigual a R Eq = 2R/3.

29 Questão 15) Resolução: A questão foi mal elaborada, não permitindo solução. Vejamos alguns pontos críticos: 1º) Não se deve tentar colocar em paralelo geradores diferentes, pois eles ficam em série, com a associação de maior ddp tentando recarregar a de menor. 2º) A afirmativa (01) é sem sentido. Seja E a força eletromotriz de cada gerador, que pelo que se pode entender, são considerados ideais. Se o examinador está supondo que nos geradores as correntes sejam de B para A, como os geradores são iguais, a ddp no ramo superior é V A V B = 3E e no ramo inferior é V A V B = E. De acordo com a lei das malhas, isso é absurdo, pois teríamos: 3E E = 0 (somente se E = 0. Mas aínão haveria circuito!!!).

30 Questão 15) Resolução: 3º) O circuito seria possível se os geradores fossem idênticos, porém não ideais, sendo o E 4 um gerador reversível (uma bateria recarregável), ou um receptor de força contraeletromotriz E, como indicado no esquema. Aí caímos em outro impasse, pois a afirmativa (02) estaria errada, uma vez que na chave EF a corrente seria I i.

31 Questão 16) No circuito mostrado no diagrama, todos os resistores são ôhmicos, o gerador e o amperímetro são ideais e os fios de ligação têm resistência elétrica desprezível. A intensidade da corrente elétrica indicada pelo amperímetro, em A, é de: a) 3. b) 4. c) 8. d) 12. e) 15.

32 Questão 16) Resolução: O circuito abaixo é equivalente ao dado: Como mostrado, a resistência equivalente é 4 Ω. Aplicando a lei de Ohm-Pouillet (Primeira Lei de Ohm): E = R eq i 60 = 4i i = 15 A.

33 Questão 17) Considere o circuito abaixo. 01) A corrente no circuito é2,0 A. 02) O potencial elétrico no ponto D émenor do que no ponto C.

34 Questão 17) 04) A potência fornecida ao circuito externo pela fonte de 15 V é14 W. 08) A potência dissipada no resistor de 4 Ωéde 16 W. 16) A diferença de potencial entre os pontos A e B (VB VA) é6 V.

35 Questão 1) Uma esfera condutora descarregada (potencial elétrico nulo), de raio R1 = 5,0 cm, isolada, encontra-se distante de outra esfera condutora, de raio R2 = 10,0 cm, carregada com carga elétrica Q = 3,0 µc (potencial elétrico não nulo), também isolada.

36 Questão 1) Em seguida, liga-se uma esfera à outra, por meio de um fio condutor longo, até que se estabeleça o equilíbrio eletrostático entre elas. Nesse processo, a carga elétrica total é conservada e o potencial elétrico em cada condutor esférico isolado descrito pela equação V = k.q/r, onde k éa constante de Coulomb, q éa sua carga elétrica e r o seu raio. Supondo que nenhuma carga elétrica se acumule no fio condutor, determine a carga elétrica final em cada uma das esferas.

37 Questão 1) Resolução: Após o contato, as esferas terão o mesmo potencial elétrico (eq. eletrostático: U = 0): kq kq Q R 5 1 V V Q 2Q = 2 = = = = 2 = 1 R1 R2 Q2 R A carga total não muda, portanto (conservação das cargas elétricas): Substituindo 01 em 02, vem: Q1 + Q2 = 3 Q Q1 + 2Q1 = 3 3Q1 = 3 Q 1 2 = 1μ C = 2μC

38 Questão 2) Duas esferas condutoras de raios R A = 0,45m e R B = 0,90m, carregadas com as cargas q A = +2, C e q B = - 4, C, são colocadas a uma distância de 1m. Considere K e =9x10 9 V.m/C. a) Faça um esboço das linhas de campo elétrico entre as duas esferas, e, em particular, desenhe a linha de campo elétrico no ponto P 1 assinalado na figura adiante.

39 Questão 2) Resolução: a) O sentido das linhas de força é da carga positiva para a negativa. O vetor campo elétrico num ponto étangente àlinha de força nesse ponto e no mesmo sentido.

40 Questão 2) b) Calcule o potencial eletrostático na superfície de cada esfera. Suponha agora que cada uma destas esferas é ligada a um terminal de um circuito como mostrado na figura a seguir. c) Determine a corrente que inicialmente fluirápelo resistor R 2 onde R 1 =1 kωe R 2 = 2 kω.

41 Questão 2) Resolução: b) ELETRICIDADE

42 Questão 2) Resolução: c) ELETRICIDADE

43 Questão 4) No circuito abaixo, o voltímetro V e o amperímetro A indicam, respectivamente, 18 V e 4,5 A. Considerando como ideais os elementos do circuito, determine a força eletromotriz E da bateria.

44 Questão 4) Resolução: No resistor R 3 : U CD = R 3 i 3 18 = 12i 3 i 3 = 1,5 A. No resistor R 2 : U CD = R 2 i 2 18 = R 2 (4,5) R 2 = 4 Ω. A corrente total é: i = i 2 + i 3 = 4,5 + 1,5 i = 6 A. Calculando a resistência equivalente do circuito: R eq = R R 12 4 R + + R R = R + R eq 2 3 R eq = 10 Ω. Aplicando a Lei de Ohm-Pouillet (Primeira Lei de Ohm): E = R eq i E = 10(6) E = 60 V.

45 Questão 5) Os circuitos elétricos A e B esquematizados, utilizam quatro lâmpadas incandescentes L idênticas, com especificações comerciais de 100 W e de 110 V, e uma fonte de tensão elétrica de 220 V. Os fios condutores, que participam dos dois circuitos elétricos, podem ser considerados ideais, isto é, têm suas resistências ôhmicas desprezíveis. a) Qual o valor da resistência ôhmica de cada lâmpada e a resistência ôhmica equivalente de cada circuito elétrico? b) Calcule a potência dissipada por uma lâmpada em cada circuito elétrico, A e B, para indicar o circuito no qual as lâmpadas apresentarão maior iluminação.

46 Questão 5) Resolução: a) ELETRICIDADE

47 Questão 5) Resolução: b) ELETRICIDADE

48 Questão 7) Um estudante de Física observou que o ferro de passar roupa que ele havia comprado num camelô tinha somente a tensão nominal V = 220 Volts, impressa em seu cabo. Para saber se o ferro de passar roupa atendia suas necessidades, o estudante precisava conhecer o valor da sua potência elétrica nominal. De posse de uma fonte de tensão e um medidor de potência elétrica, disponível no laboratório de Física da sua universidade, o estudante mediu as potências elétricas produzidas quando diferentes tensões são aplicadas no ferro de passar roupa. O resultado da experiência do estudante é mostrado no gráfico ao lado, por meio de uma curva que melhor se ajusta aos dados experimentais.

49 Questão 7) a) A partir do gráfico, determine a potência elétrica nominal do ferro de passar roupa quando ligado à tensão nominal. Resolução: Conforme mostrado abaixo, para a tensão nominal de 220 V, a potência dissipada é1.100 W.

50 Questão 7) b) Calcule a corrente elétrica no ferro de passar roupa para os valores nominais de potência elétrica e tensão. Resolução: P P = U i i = = i = 5 A. U 220 c) Calcule a resistência elétrica do ferro de passar roupa quando ligado à tensão nominal. Resolução: De acordo com a Primeira Lei de Ohm: U 220 U = R i R = = R = 44 Ω. i 5

51 Questão 8) Quando dois metais são colocados em contato formando uma junção, surge entre eles uma diferença de potencial elétrico que depende da temperatura da junção. a) Uma aplicação usual desse efeito é a medição de temperatura através da leitura da diferença de potencial da junção. A vantagem desse tipo de termômetro, conhecido como termopar, éo seu baixo custo e a ampla faixa de valores de temperatura queele pode medir. O gráfico a) abaixo mostra a diferença de potencial U na junção em função da temperatura para um termopar conhecido como Cromel-Alumel. Considere um balão fechado que contém um gás ideal cuja temperatura é medida por um termopar Cromel-Alumel em contato térmico com o balão. Inicialmente o termopar indica que a temperatura do gás no balão ét i = 300 K. Se o balão tiver seu volume quadruplicado e a pressão do gás for reduzida por um fator 3, qual seráa variação U = U final U inicial da diferença de potencial na junção do termopar?

52 Questão 8) Resolução: a) ELETRICIDADE

53 Questão 8) b) Outra aplicação importante do mesmo efeito é o refrigerador Peltier. Neste caso, dois metais são montados como mostra a figura b) abaixo. A corrente que flui pelo anel é responsável por transferir o calor de uma junção para a outra. Considere que um Peltier é usado para refrigerar o circuito abaixo, e que este consegue drenar 10% da potência total dissipada pelo circuito. Dados R 1 = 0,3 Ω, R 2 = 0, 4 Ωe R 3 = 1,2 Ω. Qual é a corrente i c que circula no circuito, sabendo que o Peltier drena uma quantidade de calor Q = 540 J em t = 40 s?

54 Questão 8) Resolução: b) ELETRICIDADE

55 Questão 11) No gráfico a seguir estão representadas as características de um gerador, de força eletromotriz igual a ε e resistência interna r, e um receptor ativo de força contraeletromotriz ε e resistência interna r. Sabendo que os dois estão interligados, determine a resistência interna e o rendimento para o gerador e para o receptor.

56 Questão 11) Resolução: Equação do Gerador: U = ε ri (reta decrescente). Assim, do gráfico: ε= 100 V. Mas, para i = 4 A U = 20 V. Substituindo esses valores na equação: 20 = 100 r(4) 4r= 80 r = 20 Ω.

57 Questão 11) Resolução: Equação do Receptor: U = ε + r i (reta crescente). Assim, do gráfico: ε = 40 V. Mas, para i = 4 A U = 80 V. Substituindo esses valores na equação: 80 = 40 + r (4) 4r = 40 r =10 Ω.

58 Questão 11) Resolução: Conforme mostra o esquema do circuito, os dois dispositivos estão em série. Quando em operação, a corrente deve ser a mesma em ambos, assim como as tensões nos seus terminais. Mais uma vez, do gráfico: i = 2 A e U = 60 V.

59 Questão 11) Resolução: ELETRICIDADE

60 Questão 12) Telas de visualização sensíveis ao toque são muito práticas e cada vez mais utilizadas em aparelhos celulares, computadores e caixas eletrônicos. Uma tecnologia frequentemente usada é a das telas resistivas, em que duas camadas condutoras transparentes são separadas por pontos isolantes que impedem o contato elétrico. a) O contato elétrico entre as camadas é estabelecido quando o dedo exerce uma força sobre a tela, conforme mostra a figura a seguir. A área de contato da ponta de um dedo é igual a A = 0,25 cm 2. Baseado na sua experiência cotidiana, estime o módulo da força exercida por um dedo em uma tela ou teclado convencional, e em seguida calcule a pressão exercida pelo dedo. Caso julgue necessário, use o peso de objetos conhecidos como guia para a sua estimativa. Resolução:

61 Questão 12) b) O circuito simplificado da figura no espaço de resposta ilustra como é feita a detecção da posição do toque em telas resistivas. Uma bateria fornece uma diferença de potencial U = 6 V ao circuito de resistores idênticos de R = 2 kω. Se o contato elétrico for estabelecido apenas na posição representada pela chave A, calcule a diferença de potencial entre C e D do circuito.

62 Questão 12) Resolução: b) ELETRICIDADE

63 Questão 12) Resolução: b) ELETRICIDADE

64 Questão 13) Na figura, são apresentadas as resistências elétricas, em ohms, do tecido conjuntivo em cada região do corpo humano. Uma pessoa descalça apoiada sobre os dois pés na terra toca acidentalmente, com uma das mãos, um cabo elétrico de tensão 220 V em relação à terra. Considerando o exposto e que a corrente flui apenas pelo tecido mencionado, calcule: a) a resistência imposta pelo corpo à passagem da corrente elétrica; b) a corrente elétrica total.

65 Questão 13) Resolução: a) O circuito equivalente possui um ramo em série e dois ramos em paralelo, que correspondem ao trajeto pelas pernas.

66 Questão 13) Resolução: b) De acordo com a Primeira Lei de Ohm:

Exercícios Leis de Kirchhoff

Exercícios Leis de Kirchhoff Exercícios Leis de Kirchhoff 1-Sobre o esquema a seguir, sabe-se que i 1 = 2A;U AB = 6V; R 2 = 2 Ω e R 3 = 10 Ω. Então, a tensão entre C e D, em volts, vale: a) 10 b) 20 c) 30 d) 40 e) 50 Os valores medidos

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos 1 Fig.20.1 20.1. A Fig. 20.1 mostra um receptor elétrico ligado a dois pontos A e B de um circuito entre os quais existe uma d.d.p. de 12 V. A corrente que o percorre é de 2,0 A. A

Leia mais

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO Prof. Cazuza 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

Exercícios de Física sobre Circuitos Elétricos com Gabarito

Exercícios de Física sobre Circuitos Elétricos com Gabarito Exercícios de Física sobre Circuitos Elétricos com Gabarito (Unicamp-999 Um técnico em eletricidade notou que a lâmpada que ele havia retirado do almoxarifado tinha seus valores nominais (valores impressos

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

Professor João Luiz Cesarino Ferreira

Professor João Luiz Cesarino Ferreira Exercícios 1º Lei de Ohm e Potência elétrica 1º) 2º) 3º) Um fio com uma resistência de 6,0Ω é esticado de tal forma que seu comprimento se torna três vezes maior que o original. Determine a resistência

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

Associação de Geradores

Associação de Geradores Associação de Geradores 1. (Epcar (Afa) 2012) Um estudante dispõe de 40 pilhas, sendo que cada uma delas possui fem igual a 1,5 V e resistência interna de 0,25. Elas serão associadas e, posteriormente,

Leia mais

Introdução à Eletricidade e Lei de Coulomb

Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

Associação de Resistores

Associação de Resistores Associação de Resistores 1. (Pucrj 2013) No circuito mostrado na figura, a diferença de potencial entre os pontos B e A vale, em Volts: a) 3,0 b) 1,0 c) 2,0 d) 4,5 e) 0,75 2. (Uerj 2011) Observe a representação

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua Circuitos de Corrente Contínua Conceitos básicos de eletricidade Fundamentos de Eletrostática Potencial, Diferença de Potencial, Corrente Tipos de Materiais Circuito Elétrico Resistores 1 Circuitos de

Leia mais

O que você deve saber sobre

O que você deve saber sobre O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Capacitores e) 12,5 J 1-Capacitores são elementos de circuito destinados a: a) armazenar corrente elétrica. b) permitir a passagem de corrente elétrica de intensidade constante. c) corrigir

Leia mais

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA Movimento ordenado dos portadores de carga elétrica. 2- INTENSIDADE DE CORRENTE É a razão entre a quantidade de carga elétrica que atravessa

Leia mais

Lista de Exercícios de Física II Lei de Ohm - circuitos Prof: Tadeu Turma: 3 Ano do Ensino Médio Data: 16/07/2009

Lista de Exercícios de Física II Lei de Ohm - circuitos Prof: Tadeu Turma: 3 Ano do Ensino Médio Data: 16/07/2009 Lista de Exercícios de Física II Lei de Ohm - circuitos Prof: Tadeu Turma: 3 Ano do Ensino Médio Data: 16/07/2009 1ª Questão) Num circuito elétrico, dois resistores, cujas resistências são R 1 e R 2, com

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule.

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. ASSNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. 1. (CEFET CE 007) Na figura a seguir, a bateria E, o voltímetro V e o amperímetro A são ideais. Todos os

Leia mais

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2.

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2. LISTA 08 GERADORES 1. (Uesb-BA) A força eletromotriz de um gerador é de 12V e a sua resistência interna é de 2,0. Quando esse gerador alimenta um dispositivo cuja resistência ôhmica é 4,0, a intensidade

Leia mais

Unidade 12 - Capacitores

Unidade 12 - Capacitores Unidade 1 - Capacitores Capacidade Eletrostática Condutor Esférico Energia Armazenada em um capacitor Capacitor Plano Associação de Capacitores Circuitos com capacitores Introdução Os primeiros dispositivos

Leia mais

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos Prezado aluno, com o intuito de otimizar seus estudos para a 2ª fase do Vestibular da UECE, separamos as questões, por ano, por assunto e com suas respectivas resoluções! Vele a pena dar uma lida e verificar

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor 1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída

Leia mais

Lista de Eletrostática - Mackenzie

Lista de Eletrostática - Mackenzie Lista de Eletrostática - Mackenzie 1. (Mackenzie 1996) Uma esfera eletrizada com carga de + mc e massa 100 g é lançada horizontalmente com velocidade 4 m/s num campo elétrico vertical, orientado para cima

Leia mais

; Densidade da água ρ

; Densidade da água ρ Na solução da prova, use quando necessário: COMISSÃO PERMANENTE DE SELEÇÃO COPESE VESTIULAR Aceleração da gravidade g = m / s ; Densidade da água ρ a =, g / cm = kg/m 8 5 Velocidade da luz no vácuo c =,

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador 1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

RESISTORES. 1.Resistencia elétrica e Resistores

RESISTORES. 1.Resistencia elétrica e Resistores RESISTORES 1.Resistencia elétrica e Resistores Vimos que, quando se estabelece uma ddp entre os terminais de um condutor,o mesmo é percorrido por uma corrente elétrica. Agora pense bem, o que acontece

Leia mais

4 - (AFA-2003) Considere a associação da figura abaixo: As cargas, em C, de cada capacitor C1, C2 e C3 são, respectivamente:

4 - (AFA-2003) Considere a associação da figura abaixo: As cargas, em C, de cada capacitor C1, C2 e C3 são, respectivamente: 1 - (UEL-2003) A câmara de TV é o dispositivo responsável pela captação da imagem e pela transformação desta em corrente elétrica. A imagem é formada num mosaico constituído por grânulos de césio, que

Leia mais

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA POTENCIAL ELÉTRICO E FORÇA ELÉTRICA 1. No movimento de A para B (figura) ao longo de uma linha de campo elétrico, o campo realiza 3,94 x 10-19 J de trabalho sobre um elétron. Quais são as diferenças de

Leia mais

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA)

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) 1. (Fuvest) O plutônio ( Pu) é usado para a produção direta de energia elétrica em veículos espaciais. Isso é realizado em um gerador que possui

Leia mais

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em filtros para caixas

Leia mais

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Nome: 3ª série: n o Professor: Luiz Mário Data: / / 2015. ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Orientações: - Este estudo dirigido poderá ser usado para revisar a matéria que será cobrada

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

Física C Extensivo V. 8

Física C Extensivo V. 8 Extensivo V 8 Exercícios 0) E I Verdadeira C ε o A d II Falsa A capacitância se reduz à metade III Falsa Não depende da carga 0) B P Q Como o tempo de transferência é pequeno, a t potência é máxima 0)

Leia mais

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: PROVA DE FÍSICA QUESTÃO 0 Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: Essa lente é mais fina nas bordas que no meio e a posição de cada um de seus focos está indicada

Leia mais

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA

Um pouco de história. Um pouco de história. Um pouco de história. Um pouco de história CORPOS ELETRIZADOS E NEUTROS CARGA ELÉTRICA Um pouco de história O conhecimento de eletricidade data de antes de Cristo ~ 600 a.c. Ambar, quando atritado, armazena eletricidade William Gilbert em 1600 conseguiu eletrizar muitas substâncias diferentes

Leia mais

Potência e rendimento de geradores e receptores

Potência e rendimento de geradores e receptores Potência e rendimento de geradores e receptores 1 Fig.26.1 26.1. No circuito da Fig. 26.1, a potência transformada em calor é igual a: A) 15 watts. B) 36 watts. C) 51 watts. D) 108 watts. E) 121 watts.

Leia mais

CAPACIDADE ELÉTRICA. Unidade de capacitância

CAPACIDADE ELÉTRICA. Unidade de capacitância CAPACIDADE ELÉTRICA Como vimos, a energia elétrica pode ser armazenada e isso se faz através do armazenamento de cargas elétricas. Essas cargas podem ser armazenadas em objetos condutores. A capacidade

Leia mais

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a: Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física III PROFESSOR(A) Hermann ANO SEMESTRE DATA 3º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Para a associação da figura, a resistência

Leia mais

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente,

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente, 1. (Espcex (Aman) 015) Em um circuito elétrico, representado no desenho abaixo, o valor da força eletromotriz (fem) do gerador ideal é E 1,5 V, e os valores das resistências dos resistores ôhmicos são

Leia mais

Valores eternos. MATÉRIA PROFESSOR(A) ---- ----

Valores eternos. MATÉRIA PROFESSOR(A) ---- ---- Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física I PROFESSOR(A) Raphael ANO SEMESTRE DATA 2º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Em um determinado local do espaço, existe

Leia mais

ELETROSTÁTICA 3ª SÉRIE

ELETROSTÁTICA 3ª SÉRIE ELETROSTÁTICA 3ª SÉRIE 1. (Pucrj 013) Duas cargas pontuais q1 3,0 μc e q 6,0 μc são colocadas a uma distância de 1,0 m entre si. Calcule a distância, em metros, entre a carga q 1 e a posição, situada entre

Leia mais

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.)

(www.inpe.br/webelat/homepage/menu/el.atm/perguntas.e.respostas.php. Acesso em: 30.10.2012.) 1. (G1 - ifsp 2013) Raios são descargas elétricas de grande intensidade que conectam as nuvens de tempestade na atmosfera e o solo. A intensidade típica de um raio é de 30 mil amperes, cerca de mil vezes

Leia mais

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07 1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo

Leia mais

Exercícios Eletrodinâmica

Exercícios Eletrodinâmica Exercícios Eletrodinâmica 01-Um gerador elétrico tem potência total 0,6 kw, quando percorrido por uma corrente de intensidade igual a 50 A. Qual a sua força eletromotriz. a) 30.000 V b) 100 V c) 120 V

Leia mais

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4.

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4. Leis de Kirchoff 1. (Ita 2013) Considere o circuito elétrico mostrado na figura formado por quatro resistores de mesma resistência, R 10, e dois geradores ideais cujas respectivas forças eletromotrizes

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

Aula de Véspera - Inv-2008

Aula de Véspera - Inv-2008 01. Um projétil foi lançado no vácuo formando um ângulo θ com a horizontal, conforme figura abaixo. Com base nesta figura, analise as afirmações abaixo: (001) Para ângulos complementares teremos o mesmo

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2

FÍSICA. Sempre que for necessário, utilize g= 10m/s 2 FÍSICA Sempre que for necessário, utilize g= 10m/s 2 28 d Leia com atenção a tira da Turma da Mônica mostrada abaixo e analise as afirmativas que se seguem, considerando os princípios da Mecânica Clássica.

Leia mais

Capítulo 02. Resistores. 1. Conceito. 2. Resistência Elétrica

Capítulo 02. Resistores. 1. Conceito. 2. Resistência Elétrica 1. Conceito Resistor é todo dispositivo elétrico que transforma exclusivamente energia elétrica em energia térmica. Simbolicamente é representado por: Assim, podemos classificar: 1. Condutor ideal Os portadores

Leia mais

Resistência elétrica

Resistência elétrica Resistência elétrica 1 7.1. Quando uma corrente percorre um receptor elétrico (um fio metálico, uma válvula, motor, por exemplo), há transformação de ia elétrica em outras formas de energia. O receptor

Leia mais

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt.

CIÊNCIAS 9º Ano do Ensino Fundamental. Professora: Ana Paula Souto. Se precisar use as equações: i = ΔQ Δt ; E = PΔt. CIÊNCIAS º Ano do Ensino Fundamental Professora: Ana Paula Souto Nome: n o : Turma: Exercícios Estudo da eletricidade (PARTE ) Se precisar use as equações: i = ΔQ Δt ; E = PΔt V = Ri ; P = Vi ) Observe

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

1º Experimento 1ª Parte: Resistores e Código de Cores

1º Experimento 1ª Parte: Resistores e Código de Cores 1º Experimento 1ª Parte: Resistores e Código de Cores 1. Objetivos Ler o valor nominal de cada resistor por meio do código de cores; Determinar a máxima potência dissipada pelo resistor por meio de suas

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

Resolução Comentada CEFET/MG - 2 semestre 2014

Resolução Comentada CEFET/MG - 2 semestre 2014 Resolução Comentada CEFET/MG - 2 semestre 2014 01 - A figura mostra um sistema massa-mola que pode oscilar livremente, sem atrito, sobre a superfície horizontal e com resistência do ar desprezível. Nesse

Leia mais

q = (Unidade: 1 C = 1A) t I m

q = (Unidade: 1 C = 1A) t I m 1 Corrente Elétrica Como visto no modulo anterior, os materiais condutores, devido as suas características físicas, formam elétrons livres quando de suas ligações atômicas. Contudo essas partículas que

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014

Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014 Prova Oficial de Física - GABARITO 1 Trimestre/2014 Data: 23/04/2014 CONTEÚDO Corrente Elétrica, Tensão Elétrica, Resistores, 1º Lei de Ohm, 2º Lei de Ohm, Circuitos em Série e Paralelo, Potência Elétrica

Leia mais

FÍSICA - 2 o ANO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PARTE 2

FÍSICA - 2 o ANO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PARTE 2 FÍSIC - 2 o NO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PRTE 2 i 1 R 1 R 2 i 1 i g G B i i 2 R 4 D R g i 2 R 3 i Gerador R x G i G =0 R L 1 L 2 + E r i=i CC E i = r i=i CC U E 0 i CC i L 1 L 2 120V E

Leia mais

Carga Elétrica e Eletrização dos Corpos

Carga Elétrica e Eletrização dos Corpos ELETROSTÁTICA Carga Elétrica e Eletrização dos Corpos Eletrostática Estuda os fenômenos relacionados às cargas elétricas em repouso. O átomo O núcleo é formado por: Prótons cargas elétricas positivas Nêutrons

Leia mais

FÍSICA Adriano Jorge. Aula 1 - Eletrodinâmica

FÍSICA Adriano Jorge. Aula 1 - Eletrodinâmica FÍSICA Adriano Jorge Aula 1 - Eletrodinâmica E Coulomb (C) i Ampère (A) Segundos (s) 1 A = 1 C/s 19 e 16, 10 C i 1 18A i 2 12A Resistores e Resistência Unidade(SI): 1 (ohm) 1V / A Potência Dissipada

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor 1 a QUESTÃO: (,0 pontos) Avaliador evisor Vários fenômenos físicos podem ser explicados pela propagação retilínea da luz em meios homogêneos. Essa hipótese é conhecida como o modelo do raio luminoso da

Leia mais

Prof. Rogério Porto. Assunto: Eletrostática

Prof. Rogério Porto. Assunto: Eletrostática Questões COVEST Física Elétrica Prof. Rogério Porto Assunto: Eletrostática 1. Duas esferas condutoras A e B possuem a mesma carga Q. Uma terceira esfera C, inicialmente descarregada e idêntica às esferas

Leia mais

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA UNIESIDADE DO ESTADO DE SANTA CATAINA CENTO DE CIÊNCIAS TECNOLÓGICAS DEPATAMENTO DE FÍSICA Lista - FCC 1. Um eletrômetro é um instrumento usado para medir carga estática: uma carga desconhecida é colocada

Leia mais

ELETRICIDADE: CIRCUITOS ELÉTRICOS Experimento 1 Parte II: Medidas de corrente elétrica, tensão e resistência em circuitos de corrente

ELETRICIDADE: CIRCUITOS ELÉTRICOS Experimento 1 Parte II: Medidas de corrente elétrica, tensão e resistência em circuitos de corrente OBJETIVOS 9 contínua NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA Familiarizar-se com o multímetro, realizando medidas de corrente, tensão e resistência. INTRODUÇÃO Corrente elétrica FÍSICA ELETRICIDADE: CIRCUITOS

Leia mais

c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta.

c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta. Questão 1 Um estudante de física, com o intuito de testar algumas teorias sobre circuitos e indução eletromagnética, montou o circuito elétrico indicado na figura ao lado. O circuito é composto de quatro

Leia mais

F q. Vetor campo elétrico O campo elétrico pode ser representado, em cada ponto do espaço por um vetor, usualmente simbolizado por E.

F q. Vetor campo elétrico O campo elétrico pode ser representado, em cada ponto do espaço por um vetor, usualmente simbolizado por E. CAMPO ELÉTRICO É a região do espaço que foi modificada pela presença de uma carga elétrica, ou seja, a região do espaço que a carga exerce influência. De maneira, prática o campo elétrico é a região em

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Uma montagem experimental simples permite a medida da força entre objetos carregados com o auxílio de uma balança (A. Cortel, Physics Teacher 7, 447 (1999)).

Leia mais

P R O V A DE FÍSICA II

P R O V A DE FÍSICA II 1 P R O V A DE FÍSICA II QUESTÃO 16 A figura mostra uma barra rígida articulada no ponto O. A barra é homogênea e seu peso P está em seu ponto médio. Sobre cada uma de suas extremidades são aplicadas forças

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

E X E R C Í C I O S. i(a) 7,5 10 elétrons

E X E R C Í C I O S. i(a) 7,5 10 elétrons E X E R C Í C I O S 1. O gráfico da figura abaixo representa a intensidade de corrente que percorre um condutor em função do tempo. Determine a carga elétrica que atravessa uma secção transversal do condutor

Leia mais

TURMA: 3º ANO: Campo Elétrico

TURMA: 3º ANO: Campo Elétrico DISCIPLINA: FÍSICA SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO

Leia mais

Exercícios de Eletrização

Exercícios de Eletrização Exercícios de Eletrização 1-Um corpo inicialmente neutro recebe 10 milhões de elétrons. Este corpo adquire uma carga de: (e = 1,6. 10 19 C). a) 1,6. 10 12 C b) 1,6. 10 12 C c) 16. 10 10 C d) 16. 10 7 C

Leia mais

Volume 6 eletricidade

Volume 6 eletricidade Volume 6 eletricidade Vídeo 37.1 Vídeo 37.2 Vídeo 37.3 Capítulo 37 Cristais e Baixas Temperaturas Supercondutores a baixas temperaturas permitem a levitação de materiais magnéticos. Confira! Modelos de

Leia mais

TD de Física 2 Capacitores

TD de Física 2 Capacitores 1. (Ufpr 2014) No circuito esquematizado abaixo, deseja-se que o capacitor armazene uma energia elétrica de 125 μ J. As fontes de força eletromotriz são consideradas ideais e de valores ε1 10 V e ε2 5

Leia mais

1. Se um resistor de cobre tiver o seu comprimento e o seu diâmetro duplicado, a resistência:

1. Se um resistor de cobre tiver o seu comprimento e o seu diâmetro duplicado, a resistência: Exercícios 01 1. Se um resistor de cobre tiver o seu comprimento e o seu diâmetro duplicado, a resistência: a) é multiplicada por quatro; b) permanece a mesma; c) é dividida por dois; d) é multiplicada

Leia mais

Atividade extra. Fascículo 5 Física Unidade 11. Exercício 1 Adaptado de UFES. Exercício 2 Adaptado de UFGO - 1986

Atividade extra. Fascículo 5 Física Unidade 11. Exercício 1 Adaptado de UFES. Exercício 2 Adaptado de UFGO - 1986 Atividade extra Fascículo 5 Física Unidade 11 Exercício 1 Adaptado de UFES Num dia bastante seco, uma jovem de cabelos longos, percebe que depois de penteá-los o pente utilizado atrai pedaços de papel.

Leia mais

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C Questão 46 O movimento de uma partícula é caracterizado por ter vetor velocidade e vetor aceleração não nulo de mesma direção. Nessas condições, podemos afirmar que esse movimento é a) uniforme. b) uniformemente

Leia mais

Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico

Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico 1. (G1 - cftmg 2013) O meio que conduz melhor a eletricidade é a(o) a) ar,

Leia mais

d) F 4 ; F 9 e F 16 e) 4F; 6F e 8F Dado: Lei de COULOMB F = K.Q Q d CIÊNCIAS DA NATUREZA E SUAS TECNOLOGIAS - Vol. II 39

d) F 4 ; F 9 e F 16 e) 4F; 6F e 8F Dado: Lei de COULOMB F = K.Q Q d CIÊNCIAS DA NATUREZA E SUAS TECNOLOGIAS - Vol. II 39 Aula n ọ 09 01. Em um experimento realizado em sala de aula, um professor de física mostrou duas pequenas esferas metálicas idênticas, suspensas por fios isolantes, em uma situação de atração. Na tentativa

Leia mais

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida

ENEM 2014/2015 Física (Prova Amarela) Prof. Douglas Almeida Questão 46 Nesta questão, o candidato precisa saber que um filtro de luz realiza a refração seletiva, deixando passar as cores que o compõe e absorvendo substancialmente as outras cores. Assim, para absorver

Leia mais

FÍSICA LISTA DE EXERCÍCIOS APOSTILA 13. c) o objetivo do resistor R neste circuito é transformar energia elétrica em energia luminosa.

FÍSICA LISTA DE EXERCÍCIOS APOSTILA 13. c) o objetivo do resistor R neste circuito é transformar energia elétrica em energia luminosa. FÍSICA Prof. Cazuza LISTA DE EXERCÍCIOS APOSTILA 13 1. (G1 - ifsc 01) Um estudante do ensino médio quer montar em seu quarto um circuito com quatro lâmpadas idênticas com a seguinte especificação (,0 V

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de Capítulo 1: Eletricidade É um fenômeno físico originado por cargas elétricas estáticas ou em movimento e por sua interação. Quando uma carga encontra-se em repouso, produz força sobre outras situadas em

Leia mais

COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada

COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada COLÉGIO NOSSA SENHORA DE FÁTIMA ALUNO(A): Nº PROF.: André Harada DISCIPLINA: Física II SÉRIE: 2ª Ensino Médio TURMA: DATA: 1. (Uerj 2000) Duas partículas de cargas +4Q e -Q coulombs estão localizadas sobre

Leia mais

Física Experimental B Turma G

Física Experimental B Turma G Grupo de Supercondutividade e Magnetismo Física Experimental B Turma G Prof. Dr. Maycon Motta São Carlos-SP, Brasil, 2015 Prof. Dr. Maycon Motta E-mail: m.motta@df.ufscar.br Site: www.gsm.ufscar.br/mmotta

Leia mais

Prof. Rogério Eletrônica Geral 1

Prof. Rogério Eletrônica Geral 1 Prof. Rogério Eletrônica Geral 1 Apostila 2 Diodos 2 COMPONENTES SEMICONDUTORES 1-Diodos Um diodo semicondutor é uma estrutura P-N que, dentro de seus limites de tensão e de corrente, permite a passagem

Leia mais