Estabilidade Transitória

Tamanho: px
Começar a partir da página:

Download "Estabilidade Transitória"

Transcrição

1 Estabilidade Transitória Revisão em janeiro Introdução A geração de energia elétrica dos sistemas de potência é constituída de máquinas síncronas. que operam com uma determinada freqüência. O sistema brasileiro opera na freqüência de 60 Hertz. A freqüência do sistema depende do equilíbrio entre as potências da geração, carga e perdas no sistema. Quando a potência da geração é menor que a solicitada, a freqüência do sistema tende a diminuir ou se a potência da geração é maior que a solicitada a freqüência do sistema tende a aumentar. A freqüência dos sistemas elétricos é controlada através da geração pois a carga pode aumentar ou diminuir aleatoriamente. Tendo em vista que é impossível controlar a freqüência exatamente em 60 Hertz, na prática se estabelece uma faixa de tolerância da ordem de 0,1%. O controle do sistema atua na geração impedindo que a freqüência exceda a faixa de tolerância. Entretanto podem ocorrer distúrbios no sistema que causam variações na freqüência. Distúrbios nos sistemas elétricos podem provocam variações na freqüência que podem causar interrupções de fornecimento. A maioria das cargas podem operar em amplas faixas de freqüências o que não ocorre com geradores sincronizados. A estabilidade de sistemas elétricos normalmente é classificada em dois tipos: estabilidade com pequenas e grandes variações de freqüência. O estudo de estabilidade com pequenas variações de freqüência é também denominado de estabilidade dinâmica enquanto que os estudo de estabilidade com grandes variações de freqüência é denominado de estabilidade transitória. O tratamento matemático para os dois tipos de estabilidade é bastante distinto. O fenômeno mais comum que provoca grandes variações de freqüência é o curto circuito. O aumento ou a redução brusca de grandes blocos de carga podem também provocar grandes variações na freqüência do sistema. A solução matemática para a estabilidade transitória é conseguida através de solução numérica de equações diferenciais. A solução analítica pode ser conseguida para um número restrito de geradores, assim a solução analítica somente é aplicada em alguns casos específicos. 1

2 Os problemas de estabilidade com pequenas perturbações ocorrem em sistemas com extensas linhas de transmissão ou sistemas extremamente carregados. Sistemas que operam próximos dos limites de capacidade podem apresentar problemas de estabilidade com pequenas perturbações. A solução matemática pode ser alcançada através de linearizações, facilitando desta forma as soluções analíticas. Um exemplo de estabilidade com pequenas perturbações é o caso do estudo do limite de transporte de potência em função do defasamento angular. - Limites de capacidade de transporte As linhas de transmissão de corrente alternada tem um limite definido de capacidade de transporte em função do defasamento angular. A determinação deste limite pode ser conseguido mesmo com representações bastante simplificadas. Um sistema tão simples quanto o de duas barras pode mostrar claramente o fenômeno do limite de capacidade de transporte de sistemas de corrente alternada. Um sistema de duas barras com um gerador e um motor síncrono é suficiente para demonstrar o problema. A figura. mostra um sistema com duas barras e o correspondente diagrama de impedâncias. ~ ~ G M Z ~ ~ Figura.1 Na figura.1 assume-se que tanto o gerador quanto o motor tem potência reativa para manterem constantes as tensões em seus terminais. De acordo com a figura.1 o fluxo de potência do gerador para o motor pode ser dado por: sgm * vgigm vg * ( vg vm ) * z gm vg * vg vm * z gm Desprezando a parte resistiva da impedância obtém-se:

3 vg vg vm ((cos( g m) + jsen( g m)) s gm Pgm + jx jqgm O fluxo de potência ativa pode então ser dado por: Pgm VgVmsen( gm ) X A figura. mostra a representação gráfica da equação acima, onde Pmax Vg Vm / X. O gráfico mostra que existe um limite para o transporte de potência e o limite ocorre quando o defasamento angular atinge 90. Figura. A figura.3 mostra o diagrama fasorial do sistema. Através do diagrama fasorial e do diagrama de transferência de potência pode-se analisar a estabilidade do sistema. 3

4 Figura.3 O diagrama fasorial mostra que a tensão do motor está atrasada com relação a tensão do gerador. Suponha que num dado momento a carga do motor sofre um pequeno acréscimo, fazendo com que o motor gere um pouco mais lento o que ocasiona um aumento no defasamento angular. A figura.4 mostra que, coma perturbação, o defasamento que era 0 passa para 1. O acréscimo do defasamento provoca um acréscimo na transferência de potência o que tende a equilibrar a perturbação. Portanto o sistema é estável. Figura.4 A figura.5 mostra que com a mesma perturbação o sistema não é estável. Figura.5 Conclui-se assim que os sistemas são estáveis quando operam com defasamentos menores que 90 e instáveis quando operam com defasamentos superiores a 90, conforme mostra a figura.6. 4

5 Figura.6 Exemplo.1 - Uma carga é suprida através de uma linha de transmissão de 1000 km, com reatância de 0,5 ohms/km. O sistema supridor opera na tensão de 138kV e tem reatância desprezível. Supondo que a carga se comporte como u motor síncrono operando com tensão de 138kV, determine a máxima potência que pode ser transmitida. Solução - Adotando uma base de 100 MVA para a potência e 138kV para a tensão a reatância conectando o gerador e o motor é: X gm 0, /100,65 A máxima potência que pode ser transferida é então: Pmax 1/,65 0,381 Sabendo que a potência de base do sistema é de 100 MVA então a máxima potência que pode ser transferida é de 38,1 MW. 3 - Freqüência de sistemas isolados Os sistemas de pequeno porte podem ser analisados através de equações simples de movimento rotacional. No caso de movimento linear, a equação que relaciona força e aceleração é: F M e no caso de movimento rotacional a equação equivalente é: a T I α A equação acima multiplicada pela velocidade angular ω resulta em: ω T P ω I α 5

6 Sabendo que a aceleração é equivalente a derivada da velocidade angular, então: P ω I dω A equação que relaciona a freqüência e a velocidade angular é: ω π f Em estudos de estabilidade normalmente se utiliza a constante H ao invés do momento de inércia I. A constante H é definida como a razão entre a energia cinética em MegaJoule pela potência nominal da máquina em MVA, assim: E Iω H s / S S onde S é a potência nominal da máquina em MVA e ω s a correspondente freqüência nominal. A constante H de geradores é um valor aproximadamente entre e 5 MJ/MVA. Os geradores acionados por turbinas hidráulicas tem valores de H menores que os geradores acionados por turbinas a vapor. Exemplo Um gerador de 5 MVA, de 60 Hz e com constante de inércia H igual a 3 MJ/MVA, supre uma carga de 3 MW. Num dado momento a carga aumenta para 4 MW. Calcule a freqüência após 1 segundo. Figura Solução (A)- (método numérico) - A relação entre a constante H e a energia cinética é: S H I ω s / Adotando como base de potência 5 MVA, então o momento de inércia também na base de 5 MVA é dado por: I S H , 10 ω s ω s 6

7 A perturbação no sistema é o aumento da carga. Supondo que a potência que aciona o gerador permanece constante durante a perturbação, o aumento da carga provoca uma desaceleração do sistema. A potência desacelerante em pu do sistema é: P ( 4 3) / 5 0, Sabendo que: P ω I dω 0, e conhecendo a constante de inércia então: dω 0, 4737 d t ω I ω Em termos incrementais, a equação acima é dada por: ω 4737 t ω Adotando um intervalo de tempo t 0, inicial de 60 Hz, então: segundos e conhecendo a velocidade angular ω 1 ω 0 + ω ω 0 (4737 / ω ) t onde ω 0 π A tabela abaixo mostra os passos da solução numérica. Iterações tempo (segundos) ω (rad/s) ω (rad/s) 0,0 0, , -, ,487 0,4 -, ,957 0,6 -, ,410 0,8 -, ,845 1,0 -,58 364,63 Assim, para t 1 segundo ω 364, 3 rad/s ou f 364,3 /(π ) 57, 97 Hz Solução (B) -(método analítico) - A solução analítica pode ser obtida através simplificações. Como a variação da freqüência é relativamente pequena, supõe-se que a desaceleração é constante, assim: 4737 α 4π ω Através das equações de movimento angular sabe-se que: 7

8 ω ω 0 + α t Portanto tem-se que: ω 377 4π t 364,4 O que eqüivale em termos de freqüência a 58,00 Hz. 4 - Estabilidade transitória A estabilidade transitória envolvendo reduzido número de máquinas pode ter soluções analíticas. Entretanto o problema generalizado somente pode ser analisado através de métodos numéricos. O fenômeno da estabilidade transitória pode ser entendido através da análise de um sistema com apenas duas barras, onde uma delas é uma barra infinita. Uma barra infinita tem tensão, freqüência e defasamento angular constantes para qualquer perturbação que ocorra no sistema. A outra barra pode conter um gerador ou um motor, com tensão fixa, mas com defasamento angular dependente das condições do sistema. Portanto o ângulo de defasamento do gerador ou motor pode oscilar com relação a barra infinita. Figura 4.1 A figura 4.1 mostra o diagrama de impedâncias de um motor síncrono e um sistema representado por uma barra infinita. A equação de transferência de potência elétrica do sistema para o motor, no caso em que os módulos das tensões de ambas barras são unitários e desprezando a parte resistiva da impedância, pode ser dada por: Psm sen( sm ) X sm O motor elétrico aciona uma carga mecânica cuja potência é P m e a freqüência permanece constante enquanto houver equilíbrio entre a potência mecânica e a potência 8

9 elétrica. No caso de presença de distúrbios o motor acelera ou desacelera provocando mudanças na freqüência consequentemente alterando também o defasamento entre o sistema e o motor. Dependendo do distúrbio, das condições iniciais do sistema e dos parâmetros do sistema, a freqüência pode-se estabilizar ou não. Após um distúrbio, se a freqüência reduz ou aumenta sem condições de permanecer constante, o sistema entra em instabilidade. Por outro lado se a freqüência oscila, o sistema pode ser estável. Ao invés de se referir a freqüência o problema da estabilidade pode ser analisado através do comportamento do defasamento angular. V s V m Figura 4. A figura 4. mostra o diagrama fasorial das tensões do sistema e do motor. A tensão V m do motor está atrasada com relação a tensão V s do sistema. O sentido do giro dos fasores é anti-horário e a freqüência é de 60 Hz. Como V s é a tensão da barra infinita ele gira com freqüência constante. Quando ocorre perturbações V m gira com velocidades diferentes de 60 Hz alterando então o deslocamento angular sm entre os dois fasores. Denominando como β o ângulo em um instante qualquer e ω s a velocidade síncrona do sistema que é constante, então: β + A velocidade angular da máquina pode ser determinada como: ω s t dβ d( + ω st) d ω + ω s A partir da equação acima a aceleração da máquina pode ser determinada em função do deslocamento fasorial, assim: d β α d Levando em conta distúrbios de potência P no sistema, a equação de oscilação é: ω I d P 9

10 Na equação acima, se P for positivo a aceleração é positiva e a tendência da máquina é aumentar de velocidade com relação a barra infinita, ou se for negativo a aceleração é negativa e a tendência da máquina é reduzir a velocidade com relação a barra infinita. O valor de P que determina se a máquina permanece em repouso ou se altera sua velocidade com relação a barra infinita é: P P mecanica P eletrica ou P P eletrica Pmecanica O deslocamento angular entre a barra infinita e a máquina, como por exemplo sm, pode ser representado como simplesmente m ao se considerar a barra infinita como 0,0. Exemplo Um motor ligado a uma barra infinita consome 60 MW e num determinado momento sua carga se reduz para 50 MW. Verificar a estabilidade do sistema. Figura Solução - Adotando uma potência de base de 100 MVA, a equação de transferência de potência elétrica da barra infinita para o motor é: Pelet sen( s m ) 0,3 0,6 Adotando a barra infinita como referência com ângulo de 0,0, nas condições iniciais o defasamento angular do motor é: 0 m arcsen(0,6 0,3) 10,37 Portanto antes da perturbação o defasamento angular do motor é de -10,37. Nas condições iniciais o motor absorve uma potência elétrica de 60 MW e sua carga mecânica é de 50 MW. Isto quer dizer que o motor se acelera após o distúrbio consequentemente reduzindo o defasamento angular. Considerando o defasamento angular inicial do motor como -10,37, portanto o valor de P na equação de oscilação é positivo e igual a: P Pelet Pmec sen(0 m ) 0,3 0,5 10

11 Muito tempo após o distúrbio, a potência elétrica provavelmente entra em equilíbrio com a potência mecânica, assim o defasamento angular do motor é: 0 m arcsen(0,5 0,3) 8,63 A figura 4.1. mostra o gráfico do comportamento do motor. P Motor Acelera 0,6 0,5 Motor fica Oscilando 8,63 10,37 Motor Desacelera Figura 4.1. No gráfico os ângulos estão com valores positivos para se evitar que se desenhe o gráfico de forma invertida. O motor se encontra em uma região estável, com isso ele tenderá a se recompor. A transição do angulo de -10,37 para -8,63 pode ser determinada através da solução numérica da equação de oscilação. A constante de inércia do motor pode ser obtida através de: S H Iω s / Assim: ω si S H / ω s 1 3 / 377 0, Portanto a equação de oscilação do motor é: ω I d ω si d d 0, sen( ) 0,3 0,5 A equação de oscilação, que é de segunda ordem, pode ser decomposta em duas equações de primeira ordem: 11

12 d W dw e 09,4 sen( ) 31, 4 O sistema de equações acima pode ser resolvido através de equações incrementais, onde: W ( 09,4 sen( ) 31,4) t onde Wn+ 1 Wn + W, sabendo que W 0 0, 0. A velocidade W é a velocidade relativa a velocidade da barra infinita ω s. Da mesma forma: W t onde n+ 1 n +, sabendo que 0 10,37. Adotando t 0, 05 segundos, então W ( 09,4 sen(10,37 ) 31,4) 0,05 0, 3146, assim W 1 0,0 + 0,3146 0, Com relação ao ângulo do motor W t 0,3146 0,05 0,01573 rd 0,90, assim ,37 + 0,90 9,47. A tabela abaixo e a figura mostram a solução da equação de oscilação. Tempo (seg) W ( rad / s) W ( rad /s ) ( graus ) ( graus ) 0,000 0,000 0,000 0,000-10,37 0 0,05 0,314 0,314 0,9-9,47 0,10 0,15 0,466 1,33-8,14 0,15-0,0885 0,378 1,08-7,06 0,0-0,84 0,094 0,69-6,79 0,5-0,333-0,39-0,685-7,48 segundos angulo 1

13 Figura A tabela mostra que o ângulo do motor oscila desde -10,37 até -6,79. Se houvesse amortecimento na equação de oscilação, o ângulo do motor tenderia para o valor de -8,63, que é o ponto de equilíbrio após a perturbação. Conclui-se assim que o sistema é estável. No tempo de 0,10 segundos a freqüência do motor atinge o seu máximo valor e pode ser encontrada como f ( ,466) /(π ) 60, 08 Hz. O resultado mostra que o ângulo varia muito mas a freqüência varia pouco. Exemplo 4. - O gerador fornece à barra infinita 10 MW. Num dado momento ocorre um curto-circuito trifásico no ponto P. O curto circuito é eliminado em 10 ciclos, verifique a estabilidade do sistema. Figura 4. 1 Solução - O problema pode ser dividido em três estados, antes, durante e depois da perturbação. A figura 4.. mostra o diagrama de impedâncias do estado antes da perturbação, adotando uma potência de base de 100 MVA e uma tensão de base de 6,9 kv no gerador. Figura 4.. O ângulo de defasamento do gerador antes da perturbação pode encontrado sabendo que 0,1 sen( ) / 4,57, assim: arcsen( 4,57 0,1) 5, 13

14 A figura 4..3 mostra o diagrama de impedâncias do estado durante a perturbação em outras palavras durante o curto circuito trifásico. Sabendo que a impedância equivalente: Figura 4..3 z ab ( za zb + za zc + zb zc ) / zc e fazendo z a j, 533, z b j1, 74 e z c 0, 0, então z ab j. Portanto durante a perturbação o gerador transfere 0,0 MW de potência para a barra infinita entretanto a potência que aciona o gerador permanece constante, o que provoca uma aceleração no gerador. Assim a equação de oscilação durante a perturbação de 10 ciclos é: ω I d P 0,1 0,0 A figura 4. 4 mostra o diagrama de impedâncias do sistema após a perturbação, cuja impedância de transferência é idêntica a impedância de transferência antes da perturbação. Figura 4..4 Sabendo que existe uma transferência de potência do gerador para a barra infinita, então a equação de oscilação após a perturbação é: ω I d 0,1 sen( ) 4,57 Sabendo que S H ω s I /, então o valor de ω I do gerador é: ω I ω s I 0,15 3 / 377 0,

15 A figura 4..5 mostra o diagrama fasorial das tensões. Figura 4..5 Decompondo as equações de oscilação e adotando a formulação incremental, então: antes da perturbação depois da perturbação Adotando o tempo incremental equivalente a 1 ciclo ou 1/60 segundos, a tabela abaixo mostra a solução numérica da equação de oscilação durante a perturbação. Tempo(ciclos) W (rad /s) W (rad /s) (graus) (graus) ,0 1,396 1,396,666 7,87 4 1,396,79 5,33 33,0 6 1,396 4,188 7,998 41,0 8 1,396 5,584 10,660 51, ,396 6,980 13,330 65,19 A equação de oscilação durante a perturbação mostra que a aceleração do gerador é constante, assim o defasamento angular pode ser encontrado através das fórmulas de movimento, ao invés da solução numérica das equações diferenciais. Sabendo que: 0 + α t Como 0 5,, α 41, 89 e t 10 / 60 segundos, então: 5, + 41,89 (10 / 60) 180 π 58,54 O valor de 58,54 é mais preciso do que o valor de 65,19 encontrado pela solução numérica. Adotando-se um valor para o incremento de tempo menor que 1 ciclo, a precisão da solução numérica seria melhor. 15

16 A tabela abaixo mostra a solução numérica da equação de oscilação após a perturbação Neste caso a aceleração não é constante, portanto as fórmulas de equações de movimento não podem ser aplicadas. Tempo(ciclos) W (rad /s) W (rad /s) (graus) (graus) -1,401 5,581 10,66 69, 4-1,670 3,911 7,469 76,67 6-1,795,116 4,041 80,7 8-1,840 0,76 0,571 81,5 10-1,845-1,569 -,997 78,5 O processo foi interrompido no momento em que o ângulo de defasamento cessou de aumentar. Isto significa que o ângulo vai oscilar e assim o sistema é estável ciclos Exemplo (Stevenson 15.8 ) - Um gerador está fornecendo a potência nominal de 1,0 pu a uma barra infinita através de um circuito inteiramente reativo, quando ocorre uma falta que reduz a máxima potência de saída a 0,4 pu. Antes da ocorrência da falta, a potência máxima que pode ser transmitida é,0 pu e, após o seu isolamento, 1,5 pu. Se o isolamento ocorrer em 4,5 ciclos, esquematize acurva de oscilação desde t 0 até t 0,8 segundos, para intervalos de 0,05s. Considere H 7 MJ/MVA. Adotar uma freqüência de 60 Hz. 16

17 Solução - A equação de transferência de potência de potência é P Pmax sen( ). Antes da perturbação P max, 0 e P 1, 0, assim o valor do ângulo inicial de defasamento é 0 arcsen(1,0/,0) 30,0. O valor de ω si da equação de oscilação é dado por: ω si S H / ω s 1,0 7 /377 0,03714 Assim a equação de oscilação do sistema, em qualquer instante, é dada por: d 0, P max sen( ) O problema estabelece um tempo incremental de 0,05 segundos, o que eqüivale a 3,0 ciclos. Para compatibilizar a duração da falta de 4,5 ciclos, pode-se adotar um tempo incremental de 1,5 ciclos, o que eqüivale a 0,05 segundos, durante a ocorrência da falta. Em termos de solução numérica, em qualquer instante, W t. Por outro lado, o valor de W depende das situações ocorridas, tal como mostrado abaixo. a) Durante a perturbação de 4,5 ciclos: d equação de oscilação 0, ,4 sen( ) t 0,05 segundos incremento de freqüência W ( 6,93 10,77 sen( )) t b) Após a perturbação até 0,8 segundos: d equação de oscilação 0, ,5 sen( ) t 0,050 segundos incremento de freqüência W ( 6,93 40,39 sen( )) t O resultado das iterações está mostrado na tabela abaixo. Tempo W (rad /s) W (rad /s) (graus) (graus ,000 0,05 0,539 0,539 0,77 30,77 0,050 0,535 1,074 1,539 3,311 17

18 0,075 0,59 1,603,97 34,608 0,15 0,00 1,803 5,164 39,77 0,175 0,055 1,858 5,3 45,094 0,5-0,084 1,774 5,083 50,177 0,75-0,05 1,569 4,496 54,673 0,35-0,301 1,68 3,63 58,305 0,375-0,37 0,896,567 60,87 0,45-0,418 0,478 1,370 6,4 0,475-0,441 0,037 0,107 6,349 0,55-0,44-0,405-1,161 61,187 0,575-0,43-0,88 -,37 58,815 0,65-0,381-1,09-3,464 55,351 0,675-0,315-1,54-4,365 50,986 0,75-0,3-1,747-5,004 45,98 0,775-0,106-1,853-5,308 40,673 0,85 0,606-1,47-3,57 37,100 O gráfico mostra a trajetória do ângulo de defasamento do gerador em função do tempo angulo tempo A freqüência do gerador no tempo 0,5 segundos é dada por: f ( 377,0 + 1,774)/( π ) 60,8 Hz 5 - Solução analítica da equação de oscilação A equação de oscilação tem solução analítica quando o número de máquinas é pequeno. A solução clássica do problema é o caso de um sistema que pode ser equivalentado a uma máquina síncrona que oscila com relação a barra infinita, conforme mostra a figura

19 Figura 5.1 A equação de oscilação do sistema mostrado na figura 5.1 pode ser representada como: ω I d P Multiplicando a equação acima por d / obtém-se: d d ω I P d A mesma equação pode ser equivalente a: 1 d d P d Portanto: d P d A máquina do sistema na figura 5.1 é estável se após as perturbações ocorridas d / 0, assim: P d 0 1 Na equação acima P representa o equilíbrio entre as potências elétrica e mecânica da máquina, portanto: ( Pmecanica 1 Peletrica ) d 0 A representação dos estados durante e após o distúrbio, pode ser feita ao se didir a equação de estabilidade em duas ou mais partes. A figura 5. mostra o gráfico da potência em função do deslocamento angular. 19

20 Figura 5. Supondo um ângulo inicial 0, n como o término do estado durante o distúrbio (início do estado após o distúrbio) e max como término do estado após o distúrbio, então a equação de estabilidade poder ser dada como: n ( Pmecanica 0 Peletrica ) d max + ( Pmecanica n Peletrica ) d 0 ou ainda: 0 ( Pmecanica Peletrica ) d ( Peletrica Pmecanica ) n max n d A equação de estabilidade envolve duas variáveis, e P, então a integral pode ser interpretada como uma área com dimensões e P. Assim uma outra forma de apresentar o problema de estabilidade é A 1 A. Por este motivo, o método em questão é também denominado de critério das áreas iguais. Muitas vezes o valor de max não é conhecido, neste caso se existir uma área A que seja igual A 1, então a máquina é estável. Exemplo O gerador fornece à barra infinita 10 MW. Num dado momento ocorre um curto-circuito trifásico no ponto P. O curto circuito é eliminado quando o ângulo de defasamento do gerador atinge 58,54 o, verifique a estabilidade do sistema. A potência de base é de 100 MVA e a tensão de base 6,9kV no gerador. Figura

21 Solução - O problema pode ser dividido em 3 partes, antes, durante e após o distúrbio. Antes do distúrbio. Antes do distúrbio o gerador fornece 10MW a barra infinita: P0 10 MW 0, 1 pu Portanto o ângulo de deslocamento inicial é: 0 arcsen(4,58 0,1) 5, Durante o distúrbio. Durante o distúrbio a potência mecânica que aciona o gerador permanece como 0,1 pu e devido ao curto circuito trifásico no ponto mostrado a potência elétrica transmitida é P elet A figura mostra o gráfico da área A 1. Figura Após o distúrbio. Após o distúrbio a potência mecânica que aciona o gerador permanece ainda como igual a 0,1 pu, entretanto a potência elétrica transmitida é: P elet sen( ) 4,58 Figura 5.1. A figura 5.1. mostra o gráfico do estado após o distúrbio. O eixo da potência mecânica cruza com a curva da potência elétrica no ângulo 180-5,19. Se dentro da área 1

22 marcada A existir uma área igual a A 1, então o gerador é estável. Portanto se A A1, então o gerador é estável. Desta forma o problema da estabilidade pode ser resumido em: n (0,1 0,0) d ( 0 max n sen( ) 4,58 0,1) d onde 0 5, n 58,75 e max 180 5,19. Resolvendo a equação verificase que: A1 0,1 (58,75 5, ) π /180,0 0,058 cos(154,81 ) + cos(58,75 ) A 0,1(154,81 58,75 ) π /180 4,58 0,1671 Portanto como A A1, então o gerador permanece estável. Exemplo 5. - Com os dados do exemplo 5.1, determine qual a maior duração da falta para que o sistema continue estável. Solução O máximo tempo de duração da falta pode ser determinado aumentando a área A 1 através do crescimento de n. A área A 1 tem início em 5, e fim em n e a área A tem início em n e fim em 154,81. O crescimento de n implica na redução da área A. Portanto existe um n, denominado neste caso de ângulo critico c tal que A A1. Assim o problema se resume em: c 0,1 5, d 154,81 sen( ) ( 4,58 c 0,1) d Resolvendo a equação acima obtém-se: 0,1( c 5, ) π /180 (cos(154,81 ) cos( c))/ 4,58 0,1(154,81 c) π /180 Portanto cos( c) 0, 05831, de onde obtém-se que c 86,7. Conhecendo o ângulo crítico, o tempo em segundos pode ser determinado através de fórmulas de movimento rotacional. A equação de oscilação durante a falta é:

23 d 0, 1 α ω I onde α é a aceleração do gerador. Sabendo que S H Iω /, então α 41, 9. A equação de movimento rotacional envolvendo ângulos e tempo é: α t Sabendo que 86,7, 0 5. e α 41, 9, então t 0,6 segundos ou 13,6 ciclos. Exemplo Um motor está conectado a uma barra infinita consumindo 60 MW. Os valores nominais do motor são 100MVA, 13,8kV, H 3,0 e reatância subtransitória de 30,0%. Num dado momento sua carga aumenta para 70 MW. Verifique a estabilidade utilizando o critério das área iguais. Adotar uma potência de base de 100 MVA e 13,8 kv na barra do motor. Solução - O ângulo de defasamento do motor antes da perturbação é: 0 arcsen(0,6 0,3) 10,4 O ângulo de defasamento do motor, correspondente a uma carga mecânica de 70 MW, é: 1 arcsen(0,7 0,3) 1,1 A figura 5.3. mostra o equacionamento do problema em termos gráficos. Na figura P mec 0,7 e P elet sen( )/0, 3 P elet P mec 10,4 1, ,1 Figura

24 A área A 1 na figura 5.3. corresponde a área compreendida entre os ângulos de 10,4 e 1.1. O valor da área A 1 é: 1,1 1,1 sen( ) A1 ( Pmec Pelet ) d (0,7 ) d 0,3 10,4 10,4 0,00148 A área A na figura 5.3. corresponde a área compreendida entre os ângulos de 1,1 e 167,9, correspondendo a um valor de: 167,9 167,9 sen( ) A ( Pelet Pmect ) d ( 0,7) d 0,3 1,1 1,1 4,616 Portanto como A > A1, então o sistema é estável. Exemplo O motor está recebendo 5% da máxima potência que ele pode receber e supre uma carga com o mesmo valor. Se a carga for dobrada, calcule o valor máximo de, durante a oscilação do motor em torno de sua nova posição de equilíbrio. Solução - Denominando de P max como a máxima potência de transmissão, então antes do distúrbio a potência da carga é 0,5P max. A carga é dobrada, portanto o novo valor da carga é de 0,5P max enquanto que a capacidade de transmissão de potência elétrica ainda permanece como P max. A figura mostra a representação gráfica do problema. m n P P max sen 0,5P max 0 m Figura Sabendo que a máxima potência de transferência é P max, então: P max sen(90 )/ X 4

25 Portanto a reatância equivalente do sistema pode ser representada como X 1/ Pmax. Antes do distúrbio a potência transferida é equivalente a 0,5P max, assim o ângulo de defasamento inicial do motor pode ser encontrado através de: sen( ) 0,5P 0 max X Portanto 0 arcsen(0,5) 14,48, e o ângulo n arcsen( 0,5) 30. Desta forma a área A 1 correspondente a figura é: A1 )) 14,48 14,48 ( Pmec Pelet ) d (0,5 sen( Pmax d O máximo ângulo de oscilação do motor, denominado de m, pode ser encontrado ao se definir A A1, onde A é dada por: Fazendo A A1, obtém-se: A ) ( Pelet Pmec ) d ( sen( ) 0,5 Pmax d cos( m) + 0,00877 m 1, O valor de m pode ser encontrado através de processos iterativos resolvendo a equação m arccos( 1,0946 0,00877 m). Assim o valor de m corresponde a 46,4. Exemplo Um gerador de 60Hz está fornecendo, através de uma linha de transmissão, ligada a uma barra infinita, 50% de sua Potência. Ocorre uma falta que aumenta a reatância entre o Gerador e a barra 400% do valor original. Quando a falta é isolada, a máxima potência que pode ser fornecida é 75 % do valor máximo original. Para a situação descrita calcule o ângulo de isolamento crítico. 5

26 Fazendo A 1 A Pmáx 0,5 c , ( 0,5 0,sen ) d Pmáx ( 0,75sen 0,5) d π c ( c 30 ) + 0,( cos c cos30 ) 0,75( cos138, cos c) 0,5( 138,5 c) π ϑ c... 6

27 Exemplo Um motor síncrono de 5,0 MVA, na tensão de 4,16kV, é suprido por um sistema de grande porte conforme mostra a figura. O motor síncrono aciona uma carga mecânica de 1,0MW. Num dado momento a carga mec6anica aumenta para 4,0MW. Verifique a estabilidade. 4,16kV 5MVA H3,0 80km ~ sistema X0,5Ω/km 4,16kV/69kV 5MVA X 8,0% Resolução: a figura abaixo mostra o diagrama de impedâncias do sistema, na base de 100MVA e 4,16kV no motor. j5,0 j1,6 j0,84 M G A equação da potência elétrica entre o gerador e o motor é dada por: P el sen / 7,44 Sabendo que a potência mecânica inicial é de 1,0 MW, então o ângulo inicial do motor é: 0 arcsen(0,01 7,44) 4,7 A perturbação do sistema eqüivale ao aumento da potência mecânica para 4,0 MW. A interseção da curva de potência elétrica com a nova potência mecânica resulta em um ângulo de: p arcsen( 0,04 7,44) 17,31 A nova potência mecânica tem duas interseções com a curva da potência elétrica, resultando nos ângulos de 17,31 e ,3116,69. Portanto a área perturbadora é dada por: 7

28 17,31 17,31 A1 ( 0,04 sen / 7,44) d 0,04 + cos / 7,44 0, ,7 4,7 Por outro lado a área restauradora, a área que contribui para a estabilidade, pode ser dada como: 16,69 16,69 A ( sen / 7,44 0,04) d cos / 7,44 0,04 0, ,31 17,31 Verificando que A 1 A, portanto o sistema é estável. Exemplo Determine o máximo ângulo de oscilação do exemplo anterior. Resolução: através das áreas é possível determinar o máximo ângulo de oscilação. O máximo ângulo de oscilação pode ser obtido através da igualdade de áreas. 17,31 (0,04 4,7 M sen / 7,44) d ( sen / 7,44 17,31 0,04) d Resolvendo a equação acima obtém-se: 0,04(17,31 ( cos( M ) + 4,7 ) π /180 + cos(17,31 ))/ 7,44 Simplificando a equação acima obtém-se: (cos(17,31 ( M cos( M ) 1,0 0, cos(4,7 ))/7,44 17,31 ) π /180 que pode ser resolvida por processos iterativos. O valor do ângulo máximo resultante é de 9,95. M EXERCÍCIOS Exercício 1 - Verificar a estabilidade do sistema. A duração da falta trifásica, no ponto mostrado na figura é de 10 ciclos. Antes da ocorrência da falta o gerador fornece uma potência ativa de 0,6 pu ao sistema de grande porte. j0,8 H3,0 ~ j0,16 j0,16 j0,4 j0,4 j0,16 j0,16 j0,16 sistema 8 falta trifásica

ET720 Sistemas de Energia Elétrica I. Capítulo 3: Gerador síncrono. Exercícios

ET720 Sistemas de Energia Elétrica I. Capítulo 3: Gerador síncrono. Exercícios ET720 Sistemas de Energia Elétrica I Capítulo 3: Gerador síncrono Exercícios 3.1 Dois geradores síncronos estão montados no mesmo eixo e devem fornecer tensões em 60 Hz e 50 Hz, respectivamente. Determinar

Leia mais

Controle e Estabilidade de Sistemas Elétricos de Potência. Antonio J.A. Simões Costa e Aguinaldo S. e Silva

Controle e Estabilidade de Sistemas Elétricos de Potência. Antonio J.A. Simões Costa e Aguinaldo S. e Silva Controle e Estabilidade de Sistemas Elétricos de Potência Antonio J.A. Simões Costa e Aguinaldo S. e Silva Florianópolis, agosto de 2000 Capítulo 1 Introdução 1.1 Controle de Freqüência e Tensão na Operação

Leia mais

REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA

REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA 1 REPRESENTAÇÃO DE SISTEMAS DE POTÊNCIA revisão mar06 1 - Introdução A maioria dos sistemas elétricos de potência é em corrente alternada. As instalações em corrente contínua são raras e tem aplicações

Leia mais

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos

Leia mais

Geração de Energia Elétrica

Geração de Energia Elétrica Geração de Energia Elétrica Aspectos Dinâmicos da Geração Hidroelétrica Joinville, 21 de Março de 2012 Escopo dos Tópicos Abordados Controle de Carga-Frequência Regulação Primária Modelo do Sistema de

Leia mais

1 a Lista de Exercícios Exercícios para a Primeira Prova

1 a Lista de Exercícios Exercícios para a Primeira Prova EE.UFMG - ESCOLA DE ENGENHARIA DA UFMG CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA ELE 0 - CIRCUITOS POLIFÁSICOS E MAGNÉTICOS PROF: CLEVER PEREIRA 1 a Lista de Exercícios Exercícios para a Primeira Prova

Leia mais

DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE CURSO DE ENGENHARIA ELÉTRICA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO 6: Máquina Síncrona em Barramento Infinito Objetivo: Verificar, experimentalmente, como é feita a ligação de um gerador síncrono no barramento infinito. Teoria: As necessidades de energia elétrica

Leia mais

Laboratório de Conversão Eletromecânica de Energia B

Laboratório de Conversão Eletromecânica de Energia B Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Obtenção Experimental dos Parâmetros do Circuito Equivalente do Motor de Indução Monofásico 1.1 Introdução 1.1.1 Motores

Leia mais

4 Impedância de Transferência entre Geradores e Carga

4 Impedância de Transferência entre Geradores e Carga 50 4 Impedância de Transferência entre Geradores e Carga 4.1. O procedimento nesta seção é baseado no cálculo de correntes de curtocircuito, comumente encontrado em livros de análise de sistemas de potência

Leia mais

CÁLCULO DO CURTO CIRCUITO PELO MÉTODO KVA

CÁLCULO DO CURTO CIRCUITO PELO MÉTODO KVA CÁLCULO DO CURTO CIRCUITO PELO MÉTODO KVA Paulo Eduardo Mota Pellegrino Introdução Este método permite calcular os valores de curto circuito em cada ponto do Sistema de energia elétrica (SEE). Enquanto

Leia mais

UNIVERSIDADE CATÓLICA DE PELOTAS CENTRO POLITÉCNICO ENGENHARIA ELÉTRICA

UNIVERSIDADE CATÓLICA DE PELOTAS CENTRO POLITÉCNICO ENGENHARIA ELÉTRICA UNIVERSIDADE CATÓLICA DE PELOTAS CENTRO POLITÉCNICO ENGENHARIA ELÉTRICA NOTAS DE AULA PROF. LUCIANO VITORIA BARBOZA SUMÁRIO Capítulo 1. Faltas Trifásicas Simétricas... 1 1.1. Introdução... 1 1.. Transitórios

Leia mais

Circuitos Elétricos Análise de Potência em CA

Circuitos Elétricos Análise de Potência em CA Introdução Circuitos Elétricos Análise de Potência em CA Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Potência é a quantidade de maior importância em

Leia mais

Aula 7 Reatância e Impedância Prof. Marcio Kimpara

Aula 7 Reatância e Impedância Prof. Marcio Kimpara ELETRIIDADE Aula 7 Reatância e Impedância Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Parâmetros da forma de onda senoidal Vp iclo Vpp omo representar o gráfico por uma equação matemática?

Leia mais

Aula 19. Modelagem de geradores síncronos trifásicos

Aula 19. Modelagem de geradores síncronos trifásicos Aula 19 Modelagem de geradores síncronos trifásicos Geradores Em problemas de fluxo de potência normalmente são especificadas as tensões desejadas para a operação do gerador e calculadas as injeções de

Leia mais

Motores de Indução ADRIELLE DE CARVALHO SANTANA

Motores de Indução ADRIELLE DE CARVALHO SANTANA ADRIELLE DE CARVALHO SANTANA Motores CA Os motores CA são classificados em: -> Motores Síncronos; -> Motores Assíncronos (Motor de Indução) O motor de indução é o motor CA mais usado, por causa de sua

Leia mais

Revisão. Gerador Síncrono Tensão induzida no enrolamento do estator

Revisão. Gerador Síncrono Tensão induzida no enrolamento do estator Revisão Gerador Síncrono Tensão induzida no enrolamento do estator Revisão Motor de Indução Geração do campo girante do estator Revisão Motor de Indução Velocidade de rotação do campo girante do estator

Leia mais

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios. Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de

Leia mais

Transformadores trifásicos

Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Por que precisamos usar transformadores trifásicos Os sistemas de geração, transmissão e distribuição de energia elétrica

Leia mais

Trabalho Prático Nº 6.

Trabalho Prático Nº 6. Trabalho Prático Nº 6. Título: Carga Predominantemente Resistiva, Carga Predominantemente Indutiva e Carga Resistiva e Indutiva em paralelo. Objetivo: Este trabalho prático teve como objetivo montar três

Leia mais

Técnico em Eletrotécnica

Técnico em Eletrotécnica Técnico em Eletrotécnica Caderno de Questões Prova Objetiva 2015 01 Em uma corrente elétrica, o deslocamento dos elétrons para produzir a corrente se deve ao seguinte fator: a) fluxo dos elétrons b) forças

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Fluxo de Potência em sistemas de distribuição

Fluxo de Potência em sistemas de distribuição Fluxo de Potência em sistemas de distribuição Os sistemas de distribuição são radiais, caracterizados por ter um único caminho entre cada consumidor e o alimentador de distribuição. A potência flui da

Leia mais

Retificadores (ENG - 20301) Lista de Exercícios de Sinais Senoidais

Retificadores (ENG - 20301) Lista de Exercícios de Sinais Senoidais Retificadores (ENG - 20301) Lista de Exercícios de Sinais Senoidais 01) Considerando a figura abaixo, determine: a) Tensão de pico; b) Tensão pico a pico; c) Período; d) Freqüência. 02) Considerando a

Leia mais

3 Faltas Desbalanceadas

3 Faltas Desbalanceadas UFSM Prof. Ghendy Cardoso Junior 2012 1 3 Faltas Desbalanceadas 3.1 Introdução Neste capítulo são estudados os curtos-circuitos do tipo monofásico, bifásico e bifase-terra. Durante o estudo será utilizado

Leia mais

Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada

Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada ELETRICIDADE Aula 8 Análise de circuitos no domínio da frequência e potência em corrente alternada Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Associação de impedâncias As impedâncias

Leia mais

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]:

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]: 4 Tornado de Projeto O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]: Tornado do tipo F3-médio; Velocidade máxima de 233km/h = 64,72m/s; Velocidade translacional

Leia mais

Eletrotécnica Geral. Lista de Exercícios 2

Eletrotécnica Geral. Lista de Exercícios 2 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA - Departamento de Engenharia de Energia e Automação Elétricas Eletrotécnica Geral Lista de Exercícios 2 1. Condutores e Dispositivos de Proteção 2. Fornecimento

Leia mais

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA:

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA: ESTUDO DIRIGIDO COMPONENTE CURRICULAR: Controle de Processos e Instrumentação PROFESSOR: Dorival Rosa Brito ESTUDO DIRIGIDO: Métodos de Determinação de Parâmetros de Processos APRESENTAÇÃO: O rápido desenvolvimento

Leia mais

Teoria Princípio do Capacitor

Teoria Princípio do Capacitor Teoria Princípio do Capacitor Um capacitor consiste de dois pratos eletrodos isolados de cada lado por um dielétrico médio. As características de um capacitor são dependentes da capacitância e da tensão.

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A respeito de sistemas de distribuição de energia elétrica, julgue os itens a seguir. 4 Ao operar em tensão secundária, um sistema de distribuição de energia elétrica funciona

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

Controle de vibração significa a eliminação ou a redução da vibração.

Controle de vibração significa a eliminação ou a redução da vibração. Quais são os métodos mais utilizados para controle de vibrações? Defina um absorvedor de vibração? Qual é função de um isolador de vibração? Por que um eixo rotativo sempre vibra? Qual é a fonte da força

Leia mais

20 m. 20 m. 12. Seja L a indutância de uma linha de transmissão e C a capacitância entre esta linha e a terra, conforme modelo abaixo:

20 m. 20 m. 12. Seja L a indutância de uma linha de transmissão e C a capacitância entre esta linha e a terra, conforme modelo abaixo: ENGENHEIRO ELETRICISTA 4 CONHECIMENTOS ESPECÍFICOS QUESTÕES DE 11 A 25 11. Um sistema de proteção contra descargas atmosféricas do tipo Franklin foi concebido para prover a segurança de uma edificação

Leia mais

- SISTEMA TRIFÁSICO. - Representação senoidal

- SISTEMA TRIFÁSICO. - Representação senoidal - SISTEMA TRIFÁSICO - Representação senoidal As ligações monofásicas e bifásicas são utilizadas em grande escala na iluminação, pequenos motores e eletrodomésticos Nos níveis da geração, transmissão e

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Tutorial de Eletrônica Aplicações com 555 v2010.05

Tutorial de Eletrônica Aplicações com 555 v2010.05 Tutorial de Eletrônica Aplicações com 555 v2010.05 Linha de Equipamentos MEC Desenvolvidos por: Maxwell Bohr Instrumentação Eletrônica Ltda. Rua Porto Alegre, 212 Londrina PR Brasil http://www.maxwellbohr.com.br

Leia mais

Alternadores e Circuitos Polifásicos ADRIELLE DE CARVALHO SANTANA

Alternadores e Circuitos Polifásicos ADRIELLE DE CARVALHO SANTANA Alternadores e Circuitos Polifásicos ADRIELLE DE CARVALHO SANTANA Alternadores Um gerador é qualquer máquina que transforma energia mecânica em elétrica por meio da indução magnética. Um gerador de corrente

Leia mais

GUIA DE APLICAÇÃO DE CAPACITORES BT

GUIA DE APLICAÇÃO DE CAPACITORES BT GUIA DE APLICAÇÃO DE Neste guia você tem um resumo detalhado dos aspectos mais importantes sobre aplicação de capacitores de baixa tensão para correção do fator de potência. Apresentando desde conceitos

Leia mais

Circuitos Elétricos Circuitos Magneticamente Acoplados

Circuitos Elétricos Circuitos Magneticamente Acoplados Introdução Circuitos Elétricos Circuitos Magneticamente Acoplados Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Os circuitos que estudamos até o momento

Leia mais

Conhecer as características de conjugado mecânico

Conhecer as características de conjugado mecânico H4- Conhecer as características da velocidade síncrona e do escorregamento em um motor trifásico; H5- Conhecer as características do fator de potência de um motor de indução; Conhecer as características

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

CONCURSO DE ADMISSÃO CURSO DE FORMAÇÃO

CONCURSO DE ADMISSÃO CURSO DE FORMAÇÃO CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA ELÉTRICA CADERNO DE QUESTÕES 20 1 a QUESTÃO Valor: 1,00 Seja um circuito RLC série alimentado por uma fonte de tensão e sem energia inicialmente armazenada.

Leia mais

TRANSFORMADORES ADRIELLE C. SANTANA

TRANSFORMADORES ADRIELLE C. SANTANA TRANSFORMADORES ADRIELLE C. SANTANA Aplicações As três aplicações básicas dos transformadores e que os fazem indispensáveis em diversas aplicações como, sistemas de distribuição de energia elétrica, circuitos

Leia mais

Analisando graficamente o exemplo das lâmpadas coloridas de 100 W no período de três horas temos: Demanda (W) a 100 1 100 100.

Analisando graficamente o exemplo das lâmpadas coloridas de 100 W no período de três horas temos: Demanda (W) a 100 1 100 100. Consumo Consumo refere-se à energia consumida num intervalo de tempo, ou seja, o produto da potência (kw) da carga pelo número de horas (h) em que a mesma esteve ligada. Analisando graficamente o exemplo

Leia mais

Potência ativa (W): é a que realmente produz trabalho, isto é, faz os motores e os transformadores funcionarem.

Potência ativa (W): é a que realmente produz trabalho, isto é, faz os motores e os transformadores funcionarem. Fator de Potência e sua correção A energia elétrica consumida em uma instalação industrial é composta basicamente por duas parcelas distintas, que são: BANCO DE CAPACITORES Nota: Energia consumida por

Leia mais

MOTORES ELÉTRICOS Princípios e fundamentos

MOTORES ELÉTRICOS Princípios e fundamentos MOTORES ELÉTRICOS Princípios e fundamentos 1 Classificação 2 3 Estator O estator do motor e também constituido por um núcleo ferromagnético laminado, nas cavas do qual são colocados os enrolamentos alimentados

Leia mais

13 - INSTALAÇÕES DE FORÇA MOTRIZ

13 - INSTALAÇÕES DE FORÇA MOTRIZ Instalações Elétricas Professor Luiz Henrique Alves Pazzini 104 13.1 - Introdução 13 - INSTALAÇÕES DE FORÇA MOTRIZ Existem três configurações básicas para alimentação de motores que operam em condições

Leia mais

Os princípios fundamentais da Dinâmica

Os princípios fundamentais da Dinâmica orça, Trabalho,Quantidade de Movimento e Impulso - Série Concursos Públicos M e n u orça, Exercícios Trabalho,Quantidade propostos Testes de Movimento propostos e Impulso Os princípios fundamentais da

Leia mais

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s 01 De acordo com o enunciado, não há dissipação ou acréscimo de energia. Considerando que a energia citada seja a mecânica e que, no ponto de altura máxima, a velocidade seja nula, tem-se: ε ε = ' + 0

Leia mais

CAPÍTULO 2 - TIPOS DE MÁQUINAS ASSÍNCRONAS TRIFÁSICAS

CAPÍTULO 2 - TIPOS DE MÁQUINAS ASSÍNCRONAS TRIFÁSICAS CAPÍTULO 2 - TIPOS DE MÁQUINAS ASSÍNCRONAS TRIFÁSICAS 2.1 INTRODUÇÃO O objetivo do presente trabalho é estudar o funcionamento em regime permanente e em regime dinâmico da Máquina Assíncrona Trifásica

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

I Retificador de meia onda

I Retificador de meia onda Circuitos retificadores Introdução A tensão fornecida pela concessionária de energia elétrica é alternada ao passo que os dispositivos eletrônicos operam com tensão contínua. Então é necessário retificá-la

Leia mais

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem:

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem: Física QUESTÃO 1 Um contêiner com equipamentos científicos é mantido em uma estação de pesquisa na Antártida. Ele é feito com material de boa isolação térmica e é possível, com um pequeno aquecedor elétrico,

Leia mais

AULA 02 REVISÃO DE EQUIPAMENTOS ELÉTRICOS TRANSFORMADORES DE MEDIDAS DISJUNTORES DE POTÊNCIA

AULA 02 REVISÃO DE EQUIPAMENTOS ELÉTRICOS TRANSFORMADORES DE MEDIDAS DISJUNTORES DE POTÊNCIA AULA 02 REVISÃO DE EQUIPAMENTOS ELÉTRICOS TRANSFORMADORES DE MEDIDAS DISJUNTORES DE POTÊNCIA ENE095 Proteção de Sistemas Elétricos de Potência Prof. Luís Henrique Lopes Lima 1 TRANSFORMADORES DE MEDIDAS

Leia mais

Fundamentos de Máquinas Elétricas

Fundamentos de Máquinas Elétricas Universidade Federal do C Engenharia de nstrumentação, utomação e Robótica Fundamentos de Máquinas Elétricas rof. Dr. José Luis zcue uma Regulação de tensão Rendimento Ensaios de curto-circuito e circuito

Leia mais

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul DETERMINAÇÃO DE CONDIÇÃO DE ACIONAMENTO DE FREIO DE EMERGÊNCIA TIPO "VIGA FLUTUANTE" DE ELEVADOR DE OBRAS EM CASO DE QUEDA DA CABINE SEM RUPTURA DO CABO Miguel C. Branchtein, Delegacia Regional do Trabalho

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Capítulo IV. Aterramento de sistemas elétricos industriais de média tensão com a presença de cogeração. Aterramento do neutro

Capítulo IV. Aterramento de sistemas elétricos industriais de média tensão com a presença de cogeração. Aterramento do neutro 60 Capítulo IV Aterramento de sistemas elétricos industriais de média tensão com a presença de cogeração Paulo Fernandes Costa* Nos três capítulos anteriores, foram discutidos os aspectos da escolha e

Leia mais

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador 1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência

Leia mais

6.0 Curto-Circuito Simétrico P r o f. F l á v i o V a n d e r s o n G o m e s

6.0 Curto-Circuito Simétrico P r o f. F l á v i o V a n d e r s o n G o m e s UNVERSDADE FEDERAL DE JUZ DE FORA Análise de Sistemas Elétricos de Potência 6.0 Curto-Circuito Simétrico P r o f. F l á v i o V a n d e r s o n G o m e s E - m a i l : f l a v i o. g o m e s @ u f j f.

Leia mais

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011 DIODO SEMICONDUTOR Prof. Marcelo Wendling Ago/2011 Conceitos Básicos O diodo semicondutor é um componente que pode comportar-se como condutor ou isolante elétrico, dependendo da forma como a tensão é aplicada

Leia mais

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência

Leia mais

Questão 3: Três capacitores são associados em paralelo. Sabendo-se que suas capacitâncias são 50μF,100μF e 200μF, o resultado da associação é:

Questão 3: Três capacitores são associados em paralelo. Sabendo-se que suas capacitâncias são 50μF,100μF e 200μF, o resultado da associação é: Questão 1: A tensão E no circuito abaixo vale: a) 0,5 V b) 1,0 V c) 2,0 V d) 5,0 V e) 10,0 V Questão 2: A resistência equivalente entre os pontos A e B na associação abaixo é de: a) 5 Ohms b) 10 Ohms c)

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

ÃO AO CURSO LEGENDA WS 01 S 01 ENGENHARIA ELÉTRICA. Valor: 1,0. 1 a QUESTÃO. Tomada de 350 W. Luminária de 250 W monofásica. Interruptor simples

ÃO AO CURSO LEGENDA WS 01 S 01 ENGENHARIA ELÉTRICA. Valor: 1,0. 1 a QUESTÃO. Tomada de 350 W. Luminária de 250 W monofásica. Interruptor simples CONCURSO DE ADMISSÃ ÃO AO CURSO DE FORMAÇÃO ENGENHARIA ELÉTRICA CADERNO DE QUESTÕES 2009 1 a QUESTÃO Valor: 1,0 3m 02 g 3m 3m 4m 3m e 6m 4m 6m 6m d 4m 4m 02 02 02 4m 02 S g f 4m S S f e 4m c S d WS ab

Leia mais

dv dt Fig.19 Pulso de tensão típico nos terminais do motor

dv dt Fig.19 Pulso de tensão típico nos terminais do motor INFLUÊNCIA DO INVERSOR NO SISTEMA DE ISOLAMENTO DO MOTOR Os inversores de freqüência modernos utilizam transistores (atualmente IGBTs) de potência cujos os chaveamentos (khz) são muito elevados. Para atingirem

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores

www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores Introdução A tensão fornecida pela concessionária de energia elétrica

Leia mais

Lista de exercícios nº 2

Lista de exercícios nº 2 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 2 MOVIMENTO EM UMA DIMENSÃO Exercício 1: A velocidade escalar média é definida como a razão entre a distância total percorrida

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 TUTORIAL Fonte Estabilizada de 5 Volts Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br

Leia mais

ESTUDO DO AUTOTRANSFORMADOR

ESTUDO DO AUTOTRANSFORMADOR ESTUDO DO UTOTRNSFORMDOR. onceito. O autotransformador é um equipamento semelhante ao transformador, possuindo a mesma finalidade. única diferença é que existe apenas um único enrolamento.. Estudo do utotransformador

Leia mais

Simulação e Avaliação dos Esquemas de Proteção de Geradores Síncronos Contra Perda de Sincronismo

Simulação e Avaliação dos Esquemas de Proteção de Geradores Síncronos Contra Perda de Sincronismo 1 Simulação e Avaliação dos Esquemas de Proteção de Geradores Síncronos Contra Perda de Sincronismo Bernardo R. Bordeira e Sebastião E. M. de Oliveira Resumo--O presente trabalho avalia os principais esquemas

Leia mais

Circuitos Elétricos Senoides e Fasores

Circuitos Elétricos Senoides e Fasores Circuitos Elétricos Senoides e Fasores Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Introdução Corrente contínua x corrente alternada. Ver War of Currentes

Leia mais

CURSO Eletroeletrônica - DATA / / Eletromagnetismo. Indução eletromagnética

CURSO Eletroeletrônica - DATA / / Eletromagnetismo. Indução eletromagnética 1 de 9 CURSO Eletroeletrônica - DATA / / COMPONENTE ALUNO DOCENTE Eletromagnetismo Prof. Romeu Corradi Júnior [www.corradi.junior.nom.br] RA: Assunto: Resumo com comentários Eletromagnetismo Indução eletromagnética

Leia mais

3 - Sistemas em Corrente Alternada. 1 Considerações sobre Potência e Energia. Carlos Marcelo Pedroso. 18 de março de 2010

3 - Sistemas em Corrente Alternada. 1 Considerações sobre Potência e Energia. Carlos Marcelo Pedroso. 18 de março de 2010 3 - Sistemas em Corrente Alternada Carlos Marcelo Pedroso 18 de março de 2010 1 Considerações sobre Potência e Energia A potência fornecida a uma carga à qual está aplicada um tensão instantânea u e por

Leia mais

DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA

DESTAQUE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Capítulo 0 Transformadores DESTAQE: A IMPORTÂNCIA DOS TRANSFORMADORES EM SISTEMAS DE ENERGIA ELÉTRICA Os geradores elétricos, que fornecem tensões relativamente baixas (da ordem de 5 a 5 kv), são ligados

Leia mais

TERMOS PRINCIPAIS UTILIZADOS EM TRANSFORMADORES

TERMOS PRINCIPAIS UTILIZADOS EM TRANSFORMADORES TRANSFORMADOR MONOFÁSICO: São transformadores que possuem apenas um conjunto de bobinas de Alta e Baixa tensão colocado sobre um núcleo. 1 TRANSFORMADOR TRIFÁSICO: São transformadores que possuem três

Leia mais

Circuitos Osciladores

Circuitos Osciladores Circuitos Osciladores Em virtude da realimentação do sinal, a estabilidade do circuito deve ser analisada pois quando a freqüência aumenta, o deslocamento de fase varia e como parte deste sinal é adicionado

Leia mais

Filtros de sinais. Conhecendo os filtros de sinais.

Filtros de sinais. Conhecendo os filtros de sinais. Filtros de sinais Nas aulas anteriores estudamos alguns conceitos importantes sobre a produção e propagação das ondas eletromagnéticas, além de analisarmos a constituição de um sistema básico de comunicações.

Leia mais

PROGRAMAÇÃO FÁCIL DO. Micro Master. Midi Master

PROGRAMAÇÃO FÁCIL DO. Micro Master. Midi Master 1 PROGRAMAÇÃO FÁCIL DO Micro Master E Midi Master Preparado por ASI 1 PS 2 1. PARAMETRIZAÇÃO BÁSICA INICIAL...3 1.1 AJUSTES INICIAIS DO APARELHO...3 1.2 AJUSTE DE TEMPOS DE ACELERAÇÃO E DESACELERAÇÃO...3

Leia mais

Geração, Transmissão e Distribuição de Energia Elétrica

Geração, Transmissão e Distribuição de Energia Elétrica Geração, Transmissão e Distribuição de Energia Elétrica Existem diversas maneiras de se gerar energia elétrica. No mundo todo, as três formas mais comuns são por queda d água (hidroelétrica), pela queima

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

- Para se aumentar a quantidade de líquido (W), para o mesmo copo de chopp, deve-se reduzir a quantidade de espuma (VAr). Desta forma, melhora-se a

- Para se aumentar a quantidade de líquido (W), para o mesmo copo de chopp, deve-se reduzir a quantidade de espuma (VAr). Desta forma, melhora-se a 6. FATOR DE POTÊNCIA O fator de potência é uma relação entre potência ativa e potência reativa, conseqüentemente energia ativa e reativa. Ele indica a eficiência com a qual a energia está sendo usada.

Leia mais

Representação em PU P r o f. F l á v i o V a n d e r s o n G o m e s

Representação em PU P r o f. F l á v i o V a n d e r s o n G o m e s UNERDADE FEDERAL DE JU DE FORA Análise de istemas Elétricos de Potência Representação em PU P r o f. F l á v i o a n d e r s o n G o m e s E - m a i l : f l a v i o. g o m e s @ u f j f. e d u. b r E N

Leia mais

COELCE DECISÃO TÉCNICA CRITÉRIO PARA INSTALAÇÃO DT - 106 RELIGADOR AUTOMÁTICO TRIFÁSICO DE 15 KV USO EM POSTE

COELCE DECISÃO TÉCNICA CRITÉRIO PARA INSTALAÇÃO DT - 106 RELIGADOR AUTOMÁTICO TRIFÁSICO DE 15 KV USO EM POSTE DECISÃO TÉCNICA CRITÉRIO PARA INSTALAÇÃO DT - 16 RELIGADOR AUTOMÁTICO TRIFÁSICO DE 15 KV USO EM POSTE DOCUMENTO NORMATIVO DA TRANSMISSÃO DESIM -896-1 I JUN/1 Í N D I C E 1 OBJETIVO...1 2 NORMAS E TRABALHOS...1

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

Antena Escrito por André

Antena Escrito por André Antena Escrito por André Antenas A antena é um dispositivo passivo que emite ou recebe energia eletromagnéticas irradiada. Em comunicações radioelétricas é um dispositivo fundamental. Alcance de uma Antena

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

TEMA DA AULA PROFESSOR: RONIMACK TRAJANO DE SOUZA

TEMA DA AULA PROFESSOR: RONIMACK TRAJANO DE SOUZA TEMA DA AULA EQUIPAMENTOS ELÉTRICAS DE SUBESTAÇÕES PROFESSOR: RONIMACK TRAJANO DE SOUZA TRANSFORMADORES Um transformador (ou trafo) é um dispositivo destinado a transmitir energia elétrica ou potência

Leia mais

Sistema de excitação

Sistema de excitação Sistema de excitação Introdução Introdução A função do sistema de excitação é estabelecer a tensão interna do gerador síncrono; Em consequência,o sistema de excitação é responsável não somente pela tensão

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos CONVERSORES E CONTROLADORES DE FASE Um conversor é um equipamento utilizado para converter potência alternada em potência contínua. Num conversor simples, que usa somente diodos retificadores, a tensão

Leia mais