Permutação. Série Matemática na Escola

Tamanho: px
Começar a partir da página:

Download "Permutação. Série Matemática na Escola"

Transcrição

1 Permutação Série Matemática na Escola Objetivos 1. Ensinar o conceito de permutação; 2. Deduzir a fórmula para permutações; 3. Apresentar usos da permutação no cotidiano.

2 Permutação Série Matemática na Escola Conteúdos Permutação. Duração Aprox. 10 minutos. Objetivos 1. Ensinar o conceito de permutação; 2. Deduzir a fórmula para permutações; 3. Apresentar usos da permutação no cotidiano. Sinopse Sinopse Dois amigos conversam sobre como a permutação pode solucionar problemas de contagem de possibilidades. Material relacionado Vídeos: Desejos, Roda roda; Experimentos: Táxi e combinatória; Experimento: De quantas maneiras posso passar meu cadarço? Quadrado mágico aditivo; Softwares:Embaralhando imagens; Áudios: O que é permutação?

3 Introdução Sobre a série A série Problemas e Soluções trata de problemas típicos de matemática do ensino médio contextualizados por uma ficção. Em cada programa um ou dois problemas são interpretados no primeiro bloco de cinco minutos, ao final do qual o leitor é convidado a tentar resolver. No contexto da sala de aula, o professor então tem a oportunidade de discutir os métodos ou as formas possíveis de resolver o problema. O segundo bloco do programa apresenta as soluções e alguns comentários ou informações adicionais. Durante o programa os alunos devem exercitar a sua abstração, pois estarão apenas ouvindo os problemas e as suas soluções, mas é sempre recomendável que os ouvintes façam anotações para melhor aproveitar o conteúdo. Sobre o programa Lucas é um DJ em Fortaleza, e precisa montar listas de música com diferentes ordens, para tocar em festas. Para resolver esse problema, se encontra em um shopping com sua amiga Cláudia, que irá ajudá-lo. Cláudia sugere que Lucas utilize a permutação para saber quantas listas são possíveis de se fazer e começa explicando com apenas duas músicas. Nesse caso, é possível apenas duas possíveis listas. Em seguida, o problema passa a ter três músicas, e é explicado que cada música pode agora ocupar a primeira, segunda ou terceira posição na lista. Assim, supondo que a música C ocupe a posição um, as músicas A e B devem ocupar as posições dois e três, retornando ao problema com duas músicas. O mesmo acontece quando a música C ocupar a posição dois ou três, em que as músicas A e B deverão ocupar as posições um e três ou um e dois. Assim, o problema com Permutações 3/10

4 três músicas é solucionado multiplicando por três o total de listas possíveis com apenas duas músicas. Depois de explicado o problema para duas e três músicas, Cláudia diz que utilizando o mesmo raciocínio, o problema pode ser resolvido para quatro, cinco, seis músicas e assim por diante. Cláudia esclarece que para o caso geral, quando há n ítens, o total de maneiras distintas de ordenar esses n ítens é n! (n fatorial). Lucas pergunta qual será então o total de possibilidades se acrescentarmos mais um ítem, e Cláudia explica que haverá (n+1) vezes o total de ordenações dos n ítens, ou seja, (n+1)xn! = (n+1)!. Lucas pergunta em que outras situações a permutação pode ser utilizada. O primeiro exemplo dado é em uma festa junina, em que se deseja saber quantos diferentes casais podem ser formados com cinco homens e cinco mulheres. Suponha que essas mulheres sejam Maria, Vera, Sara, Lúcia e Joana. Para formar o primeiro casal, há cinco homens disponíveis para Maria; para formar o segundo casal, há agora quatro homens disponíveis para Vera; para formar o terceiro casal, há três homens disponíveis para Sara; para formar o quarto casal, há dois homens disponíveis para Lúcia, e finalmente para formar o último casal, há apenas um homem disponível para Joana. Portanto, o total de casais diferentes que podem ser formados na festa é 5! = 5 x 4 x 3 x 2 x 1. O segundo exemplo é de quantas maneiras diferentes pode-se pintar as seis faces numeradas de 1 a 6 de um dado com cores distintas, e a resposta é 6!, pois a primeira face pode ser pintada com seis cores, a segunda com cinco cores, a terceira com quatro cores, a quarta com três cores, a quinta com duas cores e a sexta com uma única cor. Por fim, Lucas pergunta como usar a permutação para calcular de quantas formas diferentes é possível dispor cinco homens e cinco mulheres em uma fila de cadeiras, respeitando a condição que duas pessoas do mesmo sexo não podem se sentar lado a lado. Permutações 4/10

5 Cláudia explica que para respeitar a condição basta formar casais e ordená-los na fila. Como o problema de quantos casais possíveis já foi calculado, sabe-se que há 5! possibilidades. Agora, no entanto não há apenas 5! maneiras de ordenar esses casais na fila de cadeiras, pois a fila pode ser da forma Homem, Mulher, Homem, Mulher, Homem, Mulher, Homem, Mulher, Homem, Mulher, ou então Mulher, Homem, Mulher, Homem, Mulher, Homem, Mulher, Homem, Mulher, Homem. Logo, há 2 x 5! Maneiras de ordená-los. Portanto há 5! x 5! x 2 = maneiras de formar casais e ordená-los com os cinco homens e cinco mulheres, sem que duas pessoas do mesmo sexos sentem-se lado a lado. Sugestões de atividades Antes da execução Este programa pode ser apresentado como introdução às permutações (primeiro bloco) com duas aplicações (final do primeiro e segundo blocos) ou uma revisão de permutação com os dois problemas como foco da aula. É recomendável que os alunos já tenham entendido os princípios fundamentais de contagem. Problema: O professor dispõe de N moedas iguais para colocar em M cofrinhos diferentes. Quantas maneiras os alunos podem fazer essa distribuição? Considere os casos N=5, M=2 e N=7, M=3. Solução: O caso N=5, M=2, temos: 5+0, 4+1, 3+2,2+3,1+4,0+5. Assim, há seis maneiras para distribuir cinco moedas iguais em dois cofres diferentes. Os demais casos seguem o padrão. Permutações 5/10

6 Depois da execução Exercícios 1. Quantos anagramas podemos construir com a palavra AMOR? (4!=24) 2. De quantas formas diferentes é possível ordenar cinco livros distintos em uma estante? (5!=120). É importante enfatizar os princípios de contagem e incentivar a análise de casos para então contar as possibilidades. Com este objetivo, se for apropriado para a sua turma, desenvolva os seguintes problemas com os seus alunos. O primeiro é bem simples, mas o segundo é relativamente complicado. Pode ser um desafio para alguns alunos. Torres no Xadrez O tabuleiro de Xadrez pode ser visto como uma matriz 8x8 e as torres no jogo de Xadrez podem se movimentar apenas em percursos retos, pelas linhas ou pelas colunas da matriz. De quantas maneiras posso colocar 8 torres no tabuleiro de forma que elas não estejam em rotas de colisão, isto é, que tenha uma e apenas uma torre por linha ou coluna no tabuleiro? Solução. Uma maneira é colocá-las em uma diagonal: Se trocarmos duas linhas ou duas colunas nós obtemos outras configurações possíveis. Assim, usando o princípio de contagem, temos que para a primeira torre a ser colocada no tabuleiro, dispomos de 8 linhas (ou colunas), em seguida vamos dispor de 7 possíveis linhas e assim por diante. Com esta forma de contar, teremos 8!=40320 maneiras de colocar 8 torres de forma que tenha uma e apenas uma torre por linha ou coluna. Permutações 6/10

7 Bloco de Euler Uma escola de samba tem que fazer um bloco de 25 componentes em uma formação quadrada 5x5 com as seguintes restrições. Existem cinco fantasias diferentes, digamos A, B, C, D, E, sendo que cada fantasia é patrocinada por um dos cinco padrinhos ou patrocinadores diferentes, digamos α, β, γ, δ, ε. Cada fila e cada coluna deve ter apenas um tipo de fantasia de apenas um padrinho. Quantos arranjos a escola de samba pode formar para este bloco? Observação. Não existe um jeito fácil e direto de obter a quantidade de arranjos para esse problema, mas o objetivo é enfatizar o modo sistemático de construção e análise de casos. O professor pode usar o caso mais simples de quadrado com nove componentes. O caso de dezesseis componentes é complicado. E o caso de 25 células tem os principais passos de desenvolvimento abaixo. Veja referências para mais detalhes. Tente desenvolver a atividade prática com a turma, se possível. Esse é um caso particular de arranjos conhecidos pelo nome de quadrado greco-latino. O problema foi apresentado pelo matemático Euler, no contexto de oficiais com patentes A, B, C, D, E de regimentos α, β, γ, δ, ε. Solução: Podemos pensar no quadrado formado por 25 células tais que em cada célula tem um par ordenado (F,Π) que indique a fantasia F e o padrinho Π. As restrições acima implicam que em cada linha ou cada coluna, só aparece um tipo de fantasia F e um tipo de patrocinador Π. Além disso, um determinado par ordenado não pode se repetir no quadrado pedir aos alunos que justifiquem esta afirmação. Em função desta análise podemos pensar em duas formações independentes: Uma para as fantasias e outra para os patrocinadores. Permutações 7/10

8 Em cada caso há cinco possibilidades que vamos identificar pelos números 0, 1, 2, 3 e 4. Podemos construir quadrados com estes números usando um pouco de álgebra. Some os números das entradas do quadrado e divida por cinco. O número da entrada dessa matriz vai ser o resto da divisão. Assim na entrada 3,2 (da terceira linha e segunda coluna) teria 0 e na entrada 4,2 (quarta linha e segunda coluna) teria 1 (que é o resto de 6 por 5). Em outras palavras, os elementos desse quadrado serão dados por S ij = resto da divisão de (i+j) por 5. Temos então o seguinte quadrado de ordem 5: Tabela 1 Um quadrado latino de ordem Na figura acima, os números externos mostram os números das linhas e das colunas. Esta pequena tabela foi feita em uma planilha eletrônica com o comando do tipo MOD(F$1+$A6;5), que quer dizer o resto da divisão por cinco. Observe que o número que aparece em uma determinada célula da tabela não se repete na linha nem na coluna correspondente. Este tipo de quadrado é conhecido por quadrado latino por que se consideravam as letras do alfabeto latino. Neste caso vamos associar 0, 1, 2, 3 e 4 a A, B, C, D e E. Podemos fazer milhares de outros quadrados latinos de ordem 5. Para sermos exato, há quadrados latinos de ordem 5. Mas para o bloco da escola de samba, pequenas variações de patrocinador e fantasia não seriam relevantes. Vamos considerar as variações independentes (ortogonais) desses quadrados latinos. Isto é, se juntarmos os dois quadrados, teríamos em cada célula um par ordenado diferente. Permutações 8/10

9 Veja o exemplo ao lado de dois quadrados superpostos. Para facilitar a visualização colocamos os pares ordenados (letra latina maiúscula, letra grega minúscula, daí o nome quadrado greco-latino). Em cada entrada tem um único par ordenado. Assim os quadrados das letras latinas e os quadrados das letras gregas são ditos ortogonais. O conceito de ortogonalidade para os quadrados latinos é bem elaborado pelos matemáticos, mas vamos assumir, por simplicidade, que podemos combinar os dois quadrados latinos e construí-los de forma semelhante à anterior, a saber, um quadrado das fantasias seria dado por F ij (s)=si+j mod 5, e o quadrado dos patrocinados dado por Π ij (t)=ti+j mod 5. Aqui usamos a notação mod 5 para indicar que consideramos apenas o resto da divisão por 5. Para serem ortogonais devemos exigir que para todos os quartetos i,j,m,n, os pares ordenados (F ij, Π ij ) e (F mn, Π mn ) sejam diferentes. Vamos supor que eles sejam iguais, isto é (F ij, Π ij )=(F mn, Π mn ). Isto implica si+j=sm+n mod 5, e portanto i=m e j=n. E assim concluímos que todos os pares ordenados (F ij, Π ij ) são distintos para os distintos pares ordenados (i,j). Como vamos pegar o resto da divisão por 5, os valores de s e t que dariam valores diferentes só podem ser 1 e 2. Assim temos apenas dois pares ordenados distintos para os quadrados latinos, a saber (i+j,2i+j) e (2i+j,i+j). Conclusão. O bloco de Euler, que é um quadrado greco-latino, pode ter duas formações ortogonais distintas. O professor pode então desenvolver a atividade quadrado mágico aditivo. Sugestões de leitura A. S. Machado (1996). Matemática na escola do segundo grau. Editora Atual. I. Stewart (2010). Incríveis Passatempos Matemáticos: Tradução D. Alfaro. Editora Zahar J. Dénes & A. D. Keedwell (1974) Latin squares and their applications. Academic Press. Permutações 9/10

10 Ficha técnica Autores Beatriz Castro Dias Cuyabano e Samuel Rocha de Oliveira Revisão José Plinio de Oliveira Santos Coordenação de Mídias Audiovisuais Prof. Dr. Eduardo Paiva Coordenação Geral Prof. Dr. Samuel Rocha de Oliveira Universidade Estadual de Campinas Reitor Fernando Ferreira Costa Vice-reitor Edgar Salvadori de Decca Pró-Reitor de Pós-Graduação Euclides de Mesquita Neto Instituto de Matemática, Estatística e Computação Científica Diretor Caio José Colletti Negreiros Vice-diretor Verónica Andrea González-López Permutações 10/10

Amuleto Mágico. Série Matemática na Escola. Objetivos. Amuleto mágico 1/11

Amuleto Mágico. Série Matemática na Escola. Objetivos. Amuleto mágico 1/11 Amuleto Mágico Série Matemática na Escola Objetivos 1. Apresentar os quadrados mágicos, suas propriedades e curiosidades; 2. Trabalhar noções de equivalência algébrica e simetrias; 3. Utilizar raciocínio

Leia mais

O Jogo de Dados de Mozart. Série Matemática na Escola

O Jogo de Dados de Mozart. Série Matemática na Escola O Jogo de Dados de Mozart Série Matemática na Escola Objetivos 1. Relacionar música e matemática; 2. Apresentar os fundamentos de análise combinatória e probabilidade; 3. Exibir uma aplicação prática de

Leia mais

Cooperativa de Leite. Série Matemática na Escola

Cooperativa de Leite. Série Matemática na Escola Cooperativa de Leite Série Matemática na Escola Objetivos 1. Introduzir matrizes através da representação tabular de dados numéricos; 2. Mostrar uma aplicação simples desse tipo de representação. Cooperativa

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

Cada gráfico no seu galho. Série Matemática na Escola

Cada gráfico no seu galho. Série Matemática na Escola Cada gráfico no seu galho Série Matemática na Escola Objetivos 1. Apresentar diferentes tipos de gráficos 2. Mostrar que cada tipo de gráfico pode ser utilizado para determinado fim Cada gráfico no seu

Leia mais

O que é permutação? Série O que é

O que é permutação? Série O que é O que é permutação? Série O que é Objetivos 1. Discutir o significado da palavra permutação no contexto da Matemática; 2. Apresentar os casos clássicos de problemas de análise combinatória; 3. Apresentar

Leia mais

A César o que é de César. Série Matemática na Escola

A César o que é de César. Série Matemática na Escola A César o que é de César Série Matemática na Escola Objetivos 1. Apresentar o conceito de criptografia; 2. Dar exemplos da importância da criptografia até os dias de hoje. A César o que é de César Série

Leia mais

Números primos. Série Rádio Cangalha. Objetivos 1. Provar que existem infinitos números primos;

Números primos. Série Rádio Cangalha. Objetivos 1. Provar que existem infinitos números primos; Números primos Série Rádio Cangalha Objetivos 1. Provar que existem infinitos números primos; Números primos Série Rádio Cangália Conteúdos Aritmética. Duração Aprox. 10 minutos. Objetivos 1. Provar que

Leia mais

Gasolina ou Álcool. Série Matemática na Escola

Gasolina ou Álcool. Série Matemática na Escola Gasolina ou Álcool Série Matemática na Escola Objetivos 1. Apresentar aplicações de Sistemas de Equações Lineares no balanceamento de reações químicas. Gasolina ou Álcool Série Matemática na Escola Conteúdos

Leia mais

Tudo começa em pizza. Série Problemas e Soluções. Objetivos 1. Introduzir a relação entre diâmetro e área de um círculo através de um problema.

Tudo começa em pizza. Série Problemas e Soluções. Objetivos 1. Introduzir a relação entre diâmetro e área de um círculo através de um problema. Tudo começa em pizza Série Problemas e Soluções Objetivos 1. Introduzir a relação entre diâmetro e área de um círculo através de um problema. Tudo começa em pizza Série Problemas e Soluções Conteúdos Relação

Leia mais

A razão dos irracionais. Série Matemática na Escola. Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o

A razão dos irracionais. Série Matemática na Escola. Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o A razão dos irracionais. Série Matemática na Escola Objetivos 1. Apresentar os numeros irracionais. 2. Demonstrar que 2 não é racional com o argumento do absurdo. A razão dos irracionais Série Matemática

Leia mais

Gasolina adulterada. Série Problemas e Soluções. Objetivo. Entender e resolver um problema que envolve proporção.

Gasolina adulterada. Série Problemas e Soluções. Objetivo. Entender e resolver um problema que envolve proporção. Gasolina adulterada Série Problemas e Soluções Objetivo Entender e resolver um problema que envolve proporção. Gasolina adulterada Série Problemas e Soluções Conteúdos Razão e proporção, porcentagem, função

Leia mais

Roda Roda. Série Matemática na Escola. Objetivos 1. Introduzir o conceito de permutação circular; 2. Aplicar o conceito de permutação simples.

Roda Roda. Série Matemática na Escola. Objetivos 1. Introduzir o conceito de permutação circular; 2. Aplicar o conceito de permutação simples. Roda Roda Série Matemática na Escola Objetivos 1. Introduzir o conceito de permutação circular; 2. Aplicar o conceito de permutação simples. Roda Roda Série Matemática na Escola Conteúdos Permutações e

Leia mais

A Parte do Leão. Série Matemática na Escola. por partes; afim por partes na resolução de um problema do cotidiano.

A Parte do Leão. Série Matemática na Escola. por partes; afim por partes na resolução de um problema do cotidiano. A Parte do Leão Série Matemática na Escola Objetivos 1. Introduzir o conceito de função por partes; 2. Aplicar o conceito de função afim por partes na resolução de um problema do cotidiano. A Parte do

Leia mais

O Grilo Cantante. Série Matemática na Escola

O Grilo Cantante. Série Matemática na Escola O Grilo Cantante Série Matemática na Escola Objetivos 1. Apresentar e resolver uma charada algébrica; 2. Mostrar como usar o sistema de numeração decimal para resolver alguns problemas. O Grilo Cantante

Leia mais

Huguinho e Zezinho. Série Matemática na Escola. Objetivos 1. Explicitar como são calculados os juros compostos

Huguinho e Zezinho. Série Matemática na Escola. Objetivos 1. Explicitar como são calculados os juros compostos Huguinho e Zezinho Série Matemática na Escola Objetivos 1. Explicitar como são calculados os juros compostos Huguinho e Zezinho Série Matemática na Escola Conteúdos Matemática financeira; juros compostos

Leia mais

Hotelaria e Logística

Hotelaria e Logística Série Qual é a sua profissão? Hotelaria e Logística Objetivos 1. Apresentar algumas características de duas profissões; 2. Mostrar a presença da matemática nas profissões; 3. Incentivar o estudo para a

Leia mais

Carro Flex. Série Matemática na Escola. Objetivos 1. Recordar conceitos básicos relacionados a funções; 2. Exemplificar o uso de funções no cotidiano.

Carro Flex. Série Matemática na Escola. Objetivos 1. Recordar conceitos básicos relacionados a funções; 2. Exemplificar o uso de funções no cotidiano. Carro Flex Série Matemática na Escola Objetivos 1. Recordar conceitos básicos relacionados a funções; 2. Exemplificar o uso de funções no cotidiano. Carro flex Série Matemática na Escola Conteúdos Funções,

Leia mais

A voz do interior. Série Matemática na Escola. 1. Mostrar como um problema simples pode ser resolvido com a ajuda de um sistema de equações lineares;

A voz do interior. Série Matemática na Escola. 1. Mostrar como um problema simples pode ser resolvido com a ajuda de um sistema de equações lineares; A voz do interior Série Matemática na Escola Objetivos 1. Mostrar como um problema simples pode ser resolvido com a ajuda de um sistema de equações lineares; A voz do interior Série Matemática na Escola

Leia mais

Animais na natureza. Série Estimativas. Objetivos 1. Determinar a quantidade de animais, em diversos ambientes, através de estimativas.

Animais na natureza. Série Estimativas. Objetivos 1. Determinar a quantidade de animais, em diversos ambientes, através de estimativas. Animais na natureza Série Estimativas Objetivos 1. Determinar a quantidade de animais, em diversos ambientes, através de estimativas. Animais na Natureza Série Estimativas Conteúdos Estimativa, proporção,

Leia mais

Qual o melhor caminho?

Qual o melhor caminho? Qual o melhor caminho? Série Matemática na Escola Objetivos 1. Introduzir a métrica do taxista através de um exemplo cotidiano; 2. Aplicar o conceito de permutação com repetição; 3. Mostrar algumas identidades

Leia mais

Quem quer ser um milionário? Série Matemática na Escola

Quem quer ser um milionário? Série Matemática na Escola Quem quer ser um milionário? Série Matemática na Escola Objetivos. Apresentar o famoso Paradoxo de São Petersburgo 2. Definir esperança matemática 3. Introduzir a teoria da escolha envolvendo o risco Quem

Leia mais

Música quase por acaso. Série Matemática na Escola

Música quase por acaso. Série Matemática na Escola Música quase por acaso Série Matemática na Escola Objetivos 1. Introduzir o conceito de probabilidade de transição; 2. Introduzir Cadeias de Markov; 3. Usar matrizes, estatística e probabilidade para compor

Leia mais

Colmeia Global. Série Matemática na Escola

Colmeia Global. Série Matemática na Escola Colmeia Global Série Matemática na Escola Objetivos 1. Refletir sobre os fusos horários do planeta; 2. Servir como um exemplo de Progressão Aritmética. Colmeia Global Série Matemática na Escola Conteúdos

Leia mais

Venda segura. Série Matemática na Escola

Venda segura. Série Matemática na Escola Venda segura Série Objetivos 1. Apresentar alguns conceitos de criptografia de chave pública; 2. Contextualizar o assunto através de exemplos práticos. 3. Motivar o estudo de operações matemáticas envolvendo

Leia mais

O que é número primo? Série O que é?

O que é número primo? Série O que é? O que é número primo? Série O que é? Objetivos 1. Discutir o significado da palavra número primo no contexto da Matemática; 2. Apresentar idéias básicas sobre criptografia. O que é número primo? Série

Leia mais

Quadra Poliesportiva. Série Matemática na Escola

Quadra Poliesportiva. Série Matemática na Escola Quadra Poliesportiva. Série Matemática na Escola Objetivos 1. Usar a semelhança de figuras e conceitos de geometria plana para construir uma maquete de uma quadra poliesportiva. Quadra poliesportiva Série

Leia mais

Jardim de Números. Série Matemática na Escola

Jardim de Números. Série Matemática na Escola Jardim de Números Série Matemática na Escola Objetivos 1. Introduzir plano cartesiano; 2. Marcar pontos e traçar objetos geométricos simples em um plano cartesiano. Jardim de Números Série Matemática na

Leia mais

Hit dos Bits. Série Matemática na Escola

Hit dos Bits. Série Matemática na Escola Hit dos Bits Série Matemática na Escola Objetivos 1. Apresentar o sistema de numeração binário; 2. Mostrar aplicações de sistemas de numeração diferentes do decimal; Hit dos Bits Série Matemática na Escola

Leia mais

Desenhando padrões no plano. Série Software ferramenta

Desenhando padrões no plano. Série Software ferramenta Desenhando padrões no plano Série Software ferramenta Funcionalidade Este software permite desenhar padrões geométricos muito simples baseados em rotações e translações. Desenhando padrões no plano Série

Leia mais

Hotel de Hilbert. Série Matemática na Escola. Objetivos 1. Introduzir o conceito matemático de infinito.

Hotel de Hilbert. Série Matemática na Escola. Objetivos 1. Introduzir o conceito matemático de infinito. Hotel de Hilbert Série Matemática na Escola Objetivos 1. Introduzir o conceito matemático de infinito. Hotel de Hilbert Série Matemática na Escola Conteúdos Conceito de infinitos, injetividade de funções

Leia mais

Lixo. Série Estimativas

Lixo. Série Estimativas Lixo Série Objetivos 1. Estimar a quantidade de lixo produzida no Brasil em uma semana. 2. Estimar o volume de lixo produzido pela cidade de São Paulo anualmente. Lixo Série Conteúdos Estimativa, proporção,

Leia mais

O que é parábola? Série O que é? Objetivos. 1. Discutir os significados da palavra parábola no contexto da Matemática.

O que é parábola? Série O que é? Objetivos. 1. Discutir os significados da palavra parábola no contexto da Matemática. O que é parábola? Série O que é? Objetivos 1. Discutir os significados da palavra parábola no contexto da Matemática. O que é parábola? Série O que é? Conteúdos Geometria Analítica: Cônicas, Parábola.

Leia mais

Abelhas Matemáticas. Série Matemática na Escola

Abelhas Matemáticas. Série Matemática na Escola Abelhas Matemáticas Série Matemática na Escola Objetivos 1. Mostrar que os alvéolos hexagonais das abelhas têm a forma ótima em relação à capacidade para armazenar mel; 2. Interpretar uma situação contextualizada

Leia mais

Formigas. Série Rádio Cangalha. Objetivos

Formigas. Série Rádio Cangalha. Objetivos Formigas Série Rádio Cangalha Objetivos 1. Apresentar a demonstração de que 2 é irracional; Formigas Série Rádio Cangália Conteúdos Aritmética. Duração Aprox. 10 minutos. Objetivos 1. Apresentar a demonstração

Leia mais

Experimento. Guia do professor. Mágica das cartelas. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. Mágica das cartelas. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância números e funções Guia do professor Experimento Mágica das cartelas Objetivos da unidade 1. Relembrar diferentes sistemas de numeração; 2. Aprofundar o estudo sobre a base binária; 3. Conhecer aplicações

Leia mais

O sonho dourado. Série Matemática na Escola

O sonho dourado. Série Matemática na Escola O sonho dourado Série Matemática na Escola Objetivos 1. Identificar de modo claro os conceitos de fluxo monetário, tempo e equivalência financeira; 2. Reconhecer e analisar critérios para resolução de

Leia mais

Teste de Gravidez. Série Matemática na Escola

Teste de Gravidez. Série Matemática na Escola Teste de Gravidez Série Matemática na Escola Objetivos 1. Exercitar a regra do produto e a construção da árvore de probabilidades; 2. Apresentar e exercitar o conceito de probabilidade condicional; 3.

Leia mais

Vou de Taxi. Série Matemática na Escola

Vou de Taxi. Série Matemática na Escola Vou de Taxi Série Matemática na Escola Objetivos 1 Utilizar coordenadas cartesianas no plano introduzindo uma nova noção de distância onde a função módulo aparece de forma natural 2 Apresentar a Geometria

Leia mais

Atuário e Estatística

Atuário e Estatística Série Qual é a sua profissão? Atuário e Estatística Objetivos 1. Apresentar algumas características de duas profissões; 2. Mostrar a presença da matemática nas profissões; 3. Incentivar o estudo para a

Leia mais

Na cauda do cometa. Série Matemática na Escola. Objetivos 1. Motivar o estudo das cônicas para a astronomia;

Na cauda do cometa. Série Matemática na Escola. Objetivos 1. Motivar o estudo das cônicas para a astronomia; Na cauda do cometa Série Matemática na Escola Objetivos 1. Motivar o estudo das cônicas para a astronomia; Na cauda do cometa Série Matemática na Escola Conteúdos Geometria analítica, cônicas, elipse,

Leia mais

Software. Guia do professor. Geometria do táxi Distâncias. Ministério da Educação. Ministério da Ciência e Tecnologia

Software. Guia do professor. Geometria do táxi Distâncias. Ministério da Educação. Ministério da Ciência e Tecnologia Números e funções Geometria e medidas Guia do professor Software Geometria do táxi Distâncias Objetivos da unidade 1. Consolidar o uso de coordenadas cartesianas no plano e introduzir uma nova noção de

Leia mais

Direitos do Consumidor. Série Matemática na Escola

Direitos do Consumidor. Série Matemática na Escola Direitos do Consumidor Série Matemática na Escola Objetivos 1. Introduzir o conceito de função afim; 2. Aplicar o conceito de função afim na resolução de um problema simples. Direitos do consumidor Série

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. análise de dados e probabilidade

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. análise de dados e probabilidade análise de dados e probabilidade Guia do professor Objetivos da unidade 1. Apresentar aos alunos o Princípio da Casa dos Pombos na versão simples e generalizada; 2. Apresentar uma variedade não trivial

Leia mais

Experimento. O experimento. Engenharia de grego. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. O experimento. Engenharia de grego. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Geometria e medidas O experimento Experimento Engenharia de grego Objetivos da unidade 1. Aplicar conceitos básicos de geometria plana na solução de um problema de construção civil; 2. Planejar, construir

Leia mais

O que é logaritmo? Série O que é? Objetivos. 1. Discutir o significado da palavra logaritmo no contexto da Matemática.

O que é logaritmo? Série O que é? Objetivos. 1. Discutir o significado da palavra logaritmo no contexto da Matemática. O que é logaritmo? Série O que é? Objetivos 1. Discutir o significado da palavra logaritmo no conteto da Matemática. O que é logaritmo? Série O que é? Conteúdos Logaritmo. Duração Apro. 10 minutos. Objetivos

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

Problemas Gregos. Série Cultura

Problemas Gregos. Série Cultura Problemas Gregos Série Cultura Objetivos 1. Descrever os três famosos problemas gregos, duplicação do cubo, quadratura do círculo e trissecção de ângulos, e contar um ouço da sua história; Problemas Gregos

Leia mais

As aventuras do Geodetetive 1: A circunferência da Terra. Série Matemática na Escola

As aventuras do Geodetetive 1: A circunferência da Terra. Série Matemática na Escola As aventuras do Geodetetive 1: A circunferência da Terra Série Matemática na Escola Objetivos 1. Apresentar o método de Eratóstenes (276 194 a.c.) para o cálculo da circunferência da Terra. Este é um exemplo

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Newton e os Números. Série Mátema

Newton e os Números. Série Mátema Newton e os Números Série Mátema Objetivos 1. Mostrar como o conceito de número se transformou ao longo da história; 2. Apresentar a classificação feita por Newton para conceituar os diferentes tipos de

Leia mais

Agrônomo e Fisioterapeuta

Agrônomo e Fisioterapeuta Série Qual é a sua profissão? Agrônomo e Fisioterapeuta Objetivos 1. Apresentar algumas características de duas profissões; 2. Mostrar a presença da matemática nas profissões; 3. Incentivar o estudo para

Leia mais

Sinfonia de Poliedros. Série Matemática na Escola

Sinfonia de Poliedros. Série Matemática na Escola Sinfonia de Poliedros Série Matemática na Escola Objetivos 1. Introduzir a idéia matemática de simetria; 2. Apresentar os poliedros, ou sólidos, de Platão; 3. Verificar a validade da característica de

Leia mais

Farmacêutica e Produtora de Eventos

Farmacêutica e Produtora de Eventos Série Qual é a sua profissão? Farmacêutica e Produtora de Eventos Objetivos 1. Apresentar algumas características de duas profissões; 2. Mostrar a presença da matemática nas profissões; 3. Incentivar o

Leia mais

Celulas-tronco. Série Rádio Cangália

Celulas-tronco. Série Rádio Cangália Celulas-tronco Série Rádio Cangália Objetivos 1. Apresentar alguns resultados novos de pesquisa sobre células-tronco. 2. Mostrar analogia das diferenciações das células-tronco com as transformações que

Leia mais

Experimento. Guia do professor. Curvas de nível. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Curvas de nível. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação geometria e medidas Guia do professor Experimento Curvas de nível Objetivos da unidade 1. Desenvolver experimentalmente a ideia de projeção ortogonal; 2. Aprimorar a capacidade de visualização e associação

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Experimento. O experimento. Duplicação do Cubo. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. O experimento. Duplicação do Cubo. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação geometria e medidas O experimento Experimento Duplicação do Cubo 1. 2. 3. Objetivos da unidade Experimentalmente, obter a aresta de um cubo, que possui o dobro do volume de um outro cubo de arestas já

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

História da Probabilidade. Série Cultura. Objetivos 1. Apresentar alguns fatos históricos que levaram ao desenvolvimento da teoria da probabilidade.

História da Probabilidade. Série Cultura. Objetivos 1. Apresentar alguns fatos históricos que levaram ao desenvolvimento da teoria da probabilidade. História da Probabilidade Série Cultura Objetivos 1. Apresentar alguns fatos históricos que levaram ao desenvolvimento da teoria da probabilidade. História da Probabilidade Série Cultura Conteúdos História

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II)

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II) 1 AULA ONZE: Análise Combinatória (Parte II) Olá, amigos! Tudo bem com vocês? Esta é nossa décima primeira aula, e ainda sequer chegamos à metade de nosso curso! Longo é o caminho do Raciocínio Lógico...

Leia mais

Primos Gêmeos. Série Rádio Cangália

Primos Gêmeos. Série Rádio Cangália Primos Gêmeos Série Rádio Cangália Objetivos 1. Apresentar o conceito de números primos gêmeos. 2. Revisar a demonstração de que há infinitos números primos. Primos Gêmeos Série Rádio Cangália Conteúdos

Leia mais

O desafio das correlações espúrias. Série Matemática na Escola

O desafio das correlações espúrias. Série Matemática na Escola O desafio das correlações espúrias Série Matemática na Escola Objetivos 1. Apresentar o conceito de correlação; 2. Discutir correlação entre variáveis. O desafio das correlações espúrias Série Matemática

Leia mais

As aventuras do Geodetetive 4: As quatro estações. Série Matemática na Escola. Objetivos. As aventuras do Geodetetive 4 1/16

As aventuras do Geodetetive 4: As quatro estações. Série Matemática na Escola. Objetivos. As aventuras do Geodetetive 4 1/16 As aventuras do Geodetetive 4: As quatro estações. Série Matemática na Escola Objetivos 1. Mostrar como os movimentos de translação e de rotação da Terra determinam as estações do ano e a variação da duração

Leia mais

As aventuras do Geodetetive 5: Como viajar e chegar no dia anterior. Série Matemática na Escola

As aventuras do Geodetetive 5: Como viajar e chegar no dia anterior. Série Matemática na Escola As aventuras do Geodetetive 5: Como viajar e chegar no dia anterior. Série Matemática na Escola Objetivos 1. Mostrar como são estabelecidos os fusos horários e fatos a estes relacionados. 2. Apresentar

Leia mais

Experimento. O experimento. Mensagens secretas com matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Experimento. O experimento. Mensagens secretas com matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia Números e funções O experimento Experimento Mensagens secretas com matrizes Objetivos da unidade 1. Introduzir o conceito de criptografia; 2. Fixar conteúdos como multiplicação e inversão de matrizes.

Leia mais

Software. Guia do professor. Aviões e matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Software. Guia do professor. Aviões e matrizes. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Software Aviões e matrizes Objetivos da unidade 1. Mostrar uma aplicação muito importante de matrizes à análise de grafos; 2. Reforçar o significado da multiplicação

Leia mais

XXXVIII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (9 de agosto de 2014) Nível (6 o e 7 o anos do Ensino Fundamental)

XXXVIII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (9 de agosto de 2014) Nível (6 o e 7 o anos do Ensino Fundamental) Instruções: XXXVIII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (9 de agosto de 2014) Nível (6 o e 7 o anos do Ensino Fundamental) Folha de Perguntas A duração da prova é de 3h30min. O tempo

Leia mais

Analista de Sistemas e Engenheiro da Computação. Série Qual é a sua profissão? Objetivos. 1. Apresentar algumas características de duas profissões;

Analista de Sistemas e Engenheiro da Computação. Série Qual é a sua profissão? Objetivos. 1. Apresentar algumas características de duas profissões; Série Qual é a sua profissão? Analista de Sistemas e Engenheiro da Computação Objetivos 1. Apresentar algumas características de duas profissões; 2. Mostrar a presença da matemática nas profissões; 3.

Leia mais

Esfera com cabelo e nanotecnologia. Série Rádio Cangália. Objetivos 1. Apresentar um teorema matemático com aplicação tecnológica.

Esfera com cabelo e nanotecnologia. Série Rádio Cangália. Objetivos 1. Apresentar um teorema matemático com aplicação tecnológica. Esfera com cabelo e nanotecnologia Série Rádio Cangália Objetivos 1. Apresentar um teorema matemático com aplicação tecnológica. Esfera com cabelo e nanotecnologia Série Rádio Cangália Conteúdos Geometria

Leia mais

Gráficos estatísticos: histograma. Série Software ferramenta

Gráficos estatísticos: histograma. Série Software ferramenta Gráficos estatísticos: histograma Série Software ferramenta Funcionalidade Este software permite a construção de histogramas a partir de uma tabela de dados digitada pelo usuário. Gráficos estatísticos:

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas geometria e medidas Guia do professor Objetivos da unidade 1. Estudar linhas de simetria com espelhos; 2. Relacionar o ângulo formado por dois espelhos e o número de imagens formadas; 3. Estudar polígonos

Leia mais

Pelas lentes da Matemática. Série Matemática na Escola

Pelas lentes da Matemática. Série Matemática na Escola Pelas lentes da Matemática Série Matemática na Escola Objetivos 1. Apresentar ideias intuitivas de homotetia e semelhança; 2. Interpretar uma situação contextualizada utilizando conceitos matemáticos.

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA ANÁLISE COMBINATÓRIA NA EDUCAÇÃO DE JOVENS E ADULTOS: UMA PROPOSTA DE ENSINO A PARTIR

Leia mais

Experimento. Guia do professor. Qual é o cone com maior volume? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia

Experimento. Guia do professor. Qual é o cone com maior volume? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia geometria e medidas Guia do professor Experimento Qual é o cone com maior volume? Objetivos da unidade 1. Dado um círculo de cartolina, investigar qual seria o cone com maior volume que se poderia montar;

Leia mais

Princípio da Casa dos Pombos II

Princípio da Casa dos Pombos II Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 8 Princípio da Casa dos Pombos II Nesta aula vamos continuar praticando as ideias da aula anterior, aplicando o

Leia mais

Hit dos Bits. Série Matemática na Escola

Hit dos Bits. Série Matemática na Escola Hit dos Bits Série Matemática na Escola Objetivos 1. Apresentar o sistema de numeração binário; 2. Mostrar aplicações de sistemas de numeração diferentes do decimal; Hit dos Bits Série Matemática na Escola

Leia mais

O PRINCÍPIO DA CASA DOS POMBOS

O PRINCÍPIO DA CASA DOS POMBOS UNIVERSIDADE FEDERAL DE MINAS GERAIS Instituto de Ciências Exatas - ICEx Departamento de Matemática O PRINCÍPIO DA CASA DOS POMBOS Priscilla Alves Ferreira Belo Horizonte 2011 Priscilla Alves Ferreira

Leia mais

Comerciante e Corretor de Imóveis

Comerciante e Corretor de Imóveis Série Qual é a sua profissão? Comerciante e Corretor de Imóveis Objetivos 1. Apresentar algumas características de duas profissões; 2. Mostrar a presença da matemática nas profissões; 3. Incentivar o estudo

Leia mais

Experimento. O experimento. Mágica das cartelas. Ministério da Ciência e Tecnologia. Ministério da Educação. Educação a Distância.

Experimento. O experimento. Mágica das cartelas. Ministério da Ciência e Tecnologia. Ministério da Educação. Educação a Distância. números e funções O experimento Experimento Mágica das cartelas Objetivos da unidade 1. Relembrar diferentes sistemas de numeração; 2. Aprofundar o estudo sobre a base binária; 3. Conhecer aplicações da

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas geometria e medidas Guia do professor Objetivos da unidade 1. Estudar linhas de simetria com espelhos; 2. Relacionar o ângulo formado por dois espelhos e o número de imagens formadas; 3. Estudar polígonos

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco 1 / 24 Contagem (2) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 24 O princípio da multiplicação de outra forma O princípio da multiplicação

Leia mais

transmissão os fundamentos da hereditariedade da vida ética e EXPERIMENTO manipulação gênica Montagem de cariótipo Aula 2

transmissão os fundamentos da hereditariedade da vida ética e EXPERIMENTO manipulação gênica Montagem de cariótipo Aula 2 transmissão da vida ética e manipulação gênica os fundamentos da hereditariedade EXPERIMENTO Montagem de cariótipo Aula 2 Versão: novembro 11, 2010 4:06 PM 1. Resumo A atividade aqui proposta poderá ser

Leia mais

Existe, mas não sei exibir!

Existe, mas não sei exibir! Existe, mas não sei exibir! Você já teve aquela sensação do tipo ei, isso deve existir, mas não sei exibir um exemplo quando resolvia algum problema? O fato é que alguns problemas existenciais são resolvidos

Leia mais

Princípio da Casa dos Pombos I

Princípio da Casa dos Pombos I Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 7 Princípio da Casa dos Pombos I O princípio da casa dos pombos também é conhecido em alguns países (na Rússia,

Leia mais

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda

Programa Olímpico de Treinamento. Aula 9. Curso de Combinatória - Nível 2. Tabuleiros. Prof. Bruno Holanda Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir

Leia mais

QUADRADO MÁGICO - ORDEM 4

QUADRADO MÁGICO - ORDEM 4 CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de igual ao número de ); b) domínio: com elementos assumindo valores

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática

PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/214 1 JOGOS E PROPOSTAS DE TRABALHO PARA OS ALUNOS JOGO DOS 6 PALITOS

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Experimento. O experimento. Curvas de nível. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. O experimento. Curvas de nível. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Geometria e medidas O experimento Experimento Curvas de nível 1. 2. 3. Objetivos da unidade Desenvolver experimentalmente a ideia de projeção ortogonal; Aprimorar a capacidade de visualização e associação

Leia mais

TRANSMISSÃO DA VIDA ÉTICA E MANIPULAÇÃO GÊNICA

TRANSMISSÃO DA VIDA ÉTICA E MANIPULAÇÃO GÊNICA TRANSMISSÃO DA VIDA ÉTICA E MANIPULAÇÃO GÊNICA OS FUNDAMENTOS DA HEREDITARIEDADE EXPERIMENTO Teste de paternidade 1. Resumo Essa aula propõe a simulação de um teste de paternidade por meio da análise de

Leia mais

5. BLOCOS ALEATORIZADOS QUADRADOS LATINOS

5. BLOCOS ALEATORIZADOS QUADRADOS LATINOS 5. BLOCOS ALEATORIZADOS e QUADRADOS LATINOS Vamos analisar 4 tipos de experimentos: I) Projetos completamente aleatorizados II) Projetos em blocos aleatorizados III) Quadrados Latinos IV) Quadrados Greco-Latinos

Leia mais

Métodos de Contagem e Probabilidade. Paulo Cezar Pinto Carvalho

Métodos de Contagem e Probabilidade. Paulo Cezar Pinto Carvalho Métodos de Contagem e Probabilidade Paulo Cezar Pinto Carvalho 3 Sobre o Autor Paulo Cezar Pinto Carvalho é formado em Engenharia pelo Instituto Militar de Engenharia, Mestre em Estatística pelo IMPA

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

Curva do Sino. Série Rádio Cangália

Curva do Sino. Série Rádio Cangália Curva do Sino Série Rádio Cangália Objetivos 1. Apresentar uma controvérsia envolvendo o QI e a curva Gaussiana; 2. Discutir os conceitos de média e mediana. Curva do Sino Série Rádio Cangália Conteúdos

Leia mais

GUIA MEGA DA VIRADA 2013 MINI CURSO

GUIA MEGA DA VIRADA 2013 MINI CURSO INDICE CAPITULO 1 INTRODUÇÃO ITENS ESTATISTICOS CAPITULO 2 ANALISE POR CICLO (COMPLETO E PARCIAL) CAPITULO 3 GRUPOS ESPECIAIS CARTELAS MAGICAS, GRUPO DAS 40, GRUPO DOS 10 CAPITULO 4 LINHAS, COLUNAS E QUADRANTES

Leia mais

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal?

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? Temos 5 grupos com 5 possibilidades cada uma, então: 5.5=25 casais Se fossem duplas: Teríamos 10

Leia mais