Análise de Algoritmos

Tamanho: px
Começar a partir da página:

Download "Análise de Algoritmos"

Transcrição

1 Análise de Algoritmos Indução Matemática - parte II Profa. Sheila Morais de Almeida DAINF-UTFPR-PG setembro

2 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z 1, então S tem 2 n subconjuntos. Base: Quando n = 0, S = {}. Subconjuntos de S: {}. Pelo enunciado, S tem 2 0 = 1 subconjunto. A fórmula é condizente com o que verificamos. Portanto, o enunciado está correto quando n = 0. 1 Z denota o conjunto dos números inteiros não-negativos

3 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Hipótese de Indução: Suponha que S é um conjunto com k elementos, k Z, então S tem 2 k subconjuntos. Passo: Considere um conjunto S com k + 1 elementos. S'

4 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Seja a um dos elementos em S. Sabemos que a existe, pois S tem k + 1 elementos e k Z. S' a

5 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. O conjunto S a tem k elementos. Pela hipótese de indução, S a tem 2 k subconjuntos. S'-a a

6 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Cada subconjunto X S a é um subconjunto de S, assim como o subconjunto X {a}. S' X a

7 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Cada subconjunto X S a é um subconjunto de S, assim como o subconjunto X {a}. S' X X a X U a

8 Indução Matemática - Exemplo 1 Provar que se S é um conjunto finito com n elementos, n Z, então S tem 2 n subconjuntos. Cada subconjunto X S a é um subconjunto de S, assim como o subconjunto X {a}. Então, S tem o dobro do número de subconjuntos de S a. Portanto, S tem 2(2 k ) subconjuntos, isto é, 2 k+1 subcojuntos. Como essa quantidade de subconjuntos corresponde ao valor que se obtém ao aplicar a fórmula do enunciado para n = k + 1, então a fórmula está correta.

9 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Base: n = 2 A1 A2 A1 A2 U U A 1 A 2 U A1 A 2 U

10 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Base: n = 2 A1 A2 A1 A2 U U A 1 A2 A1 A2 U A 1 U A 2

11 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Hipótese de indução: k j=1 A j = k j=1 A j, onde A 1, A 2,..., A k são subconjuntos de um universo U, com k 2. Passo: k+1 j=1 A j = k j=1 A j Ak+1

12 Indução Matemática - Exemplo 2 Provar que n j=1 A j = n j=1 A j, sempre que A 1, A 2,..., A n forem subconjuntos de um universo U, com n 2. Passo: k+1 j=1 A j = k j=1 A j Ak+1 Observe que k j=1 A j é um conjunto e A k+1 é um conjunto. Como está provado na base que 2 j=1 A j = 2 j=1 A j, tem-se: k+1 j=1 A j = k j=1 A j Ak+1 = k j=1 A j Ak+1 Pela hipótese de indução, k j=1 A j = k j=1 A j, portanto: k j=1 A j Ak+1 = k j=1 A j Ak+1 = k+1 j=1 A j.

13 Indução Matemática - Exemplo 3 Problema de Escalonamento Suponha que exista um grupo de palestras com horários pré-agendados. Gostaríamos de realizar o maior número de palestras possíveis no salão de conferências principal. Como escolher quais as palestras que serão apresentadas nesse salão?

14 Indução Matemática - Exemplo 3 Problema de Escalonamento - Algoritmo Guloso Entrada: inteiro n e conjunto de palestras t 1, t 2,..., t n, onde cada tarefa t i começa no tempo b i e termina no tempo e i. Passo 1: Ordene as tarefas em ordem não-decrescente de término: S = (e 1, e 2,..., e n ), de forma que e 1 e 2... e n. Passo 2: Inicie o conjunto C de palestras agendadas: C = {t 1 }. Passo 3: Remova e 1 de S: S = (e 2, e 3,..., e n ). Passo 4: Para i de 2 a n faça: Se b i é maior que o término da última tarefa incluída em C, então C = C {t i }. Remova e i de S. Passo 5: Apresente o conjunto de tarefas C.

15 Indução Matemática - Exemplo 3 Problema de Escalonamento - Algoritmo Guloso Prove que o algoritmo guloso do Problema do Escalonamento é ótimo, ou seja, sempre seleciona o maior número de palestras possíveis para a sala de conferências principal. Vamos provar P(m): se o algoritmo escolhe m palestras para a sala principal de um conjunto qualquer, então m é o número máximo de palestras que poderiam ocorrer na sala principal.

16 Indução Matemática - Exemplo 3 Vamos provar P(m): se o algoritmo escolhe m palestras para a sala principal de um conjunto qualquer, então m é o número máximo de palestras que poderiam ocorrer na sala principal. Base: Se m = 1. O algoritmo escolhe a palestra t 1 para a sala principal (Passo 2). Como as palestras estavam ordenadas em ordem não-decrescente de tempo de término (Passo 1), t 1 é a palestra que termina mais cedo. Observe que todas as outras palestras, que foram descartadas sem serem incluídas em C, obrigatoriamente terminam junto com ou após t 1, ou seja, no tempo e 1 ou depois.

17 Indução Matemática - Exemplo 3 Lembre: todas as outras palestras, que foram descartadas sem serem incluídas em C, obrigatoriamente terminam no tempo e 1 ou depois. Como as palestras foram descartadas, pelo Passo 4 toda palestra t i, para 2 i n, tem tempo de início menor ou igual a e 1. Então todas as palestras t i, 2 i n, estariam ocorrendo no tempo e 1 e não podem usar a sala principal ao mesmo tempo. Portanto, o algoritmo está correto ao escolher apenas uma palestra.

18 Indução Matemática - Exemplo 3 Vamos provar P(m): se o algoritmo escolhe m palestras para a sala principal de um conjunto qualquer, então m é o número máximo de palestras que poderiam ocorrer na sala principal. Hipótese de indução: Se o algoritmo escolhe k palestras para a sala principal de um conjunto qualquer, então k é o número máximo de palestras que poderiam ocorrer na sala principal. Passo: Suponha que o algoritmo escolhe k + 1 palestras para a sala principal de um conjunto qualquer. Pela prova da base, sabemos que nenhuma palestra que comece antes de e 1 pode ser escolhida. Portanto, considere o conjunto Q das palestras que se iniciam após e 1.

19 Indução Matemática - Exemplo 3 Portanto, considere o conjunto Q das palestras que se iniciam após e 1. Observe que excetuando-se t 1, as demais k palestras escolhidas pelo algoritmo pertencem à Q (pelo Passo 4). Pela hipótese de indução, se o algoritmo escolhe k palestras para a sala principal pertencentes ao conjunto Q, então k é o máximo de palestras que podem ocorrer na sala principal dentre as pertencentes a Q. Como Q contém todas as palestras que poderiam ser escolhidas após e 1, o número máximo de palestras que podem ocorrer na sala principal é k + 1.

20 Indução Matemática - Exemplo 4 Prove que uma postagem que custa pelo menos $12, 00 sempre pode ser feita utilizando-se selos postais que custam $4, 00 e $5, 00. Base: Se o custo da postagem é $12, basta usar 3 selos que custam $4, 00. Hipótese de indução: Uma postagem que custa $k, k inteiro e k 12, pode ser feita utilizando-se selos postais que custam $4, 00 e $5, 00. Passo: Considere uma postagem que custa $k + 1. Pela hipótese de indução, a postagem que custa $k pode ser feita com selos que custam $4 e $5.

21 Indução Matemática - Exemplo 4 Pela hipótese de indução, a postagem que custa $k pode ser feita com selos que custam $4 e $5. Se a postagem que custa $k utiliza algum selo que custa $4, substitua-o por um selo que custa $5. Se a postagem que custa $k usa somente selos que custam $5, então essa postagem usa pelo menos 3 selos que custam $5, já que k 12. Então troque 3 selos que custam $5 por quatro selos que custam $4..

22 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1.

23 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Base: Suponha que a cerca tem 1 estaca (n = 1). Não há seções. Coincide com o enunciado que diz que há n 1 = 1 1 = 0 seções.

24 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Hipótese de indução: Se a cerca tem k estacas, k inteiro positivo, então a cerca tem k 1 seções. Passo: Considere uma cerca com k + 1 estacas k k+1

25 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Remova a última estaca da cerca k Observe que a cerca que restou tem k estacas e uma seção a menos. Pela hipótese de indução, a cerca com k estacas tem k 1 seções.

26 Indução Matemática - Exemplo 5 Prove que em uma cerca com n estacas existem n 1 seções, para n inteiro, n 1. Remova a última estaca da cerca k Pela hipótese de indução, a cerca com k estacas tem k 1 seções. Então a cerca antes de removermos a estaca tinha k seções.

27 Referências Kenneth ROSEN. Discrete Mathematics and Its Applications. McGraw-Hill Education, 6th edition (July 26, 2006).

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 69 Este material é preparado usando como referências os

Leia mais

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril Matemática Discreta Indução Matemática Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG Abril - 2017 Indução Matemática Se desejamos provar que A(n) B(n) é verdade para números inteiros k maiores

Leia mais

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG Matemática Discreta Teoria de Conjuntos - Parte 2 Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Operações em conjuntos As operações entre conjuntos podem ser unárias, binárias, ternárias,

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo

Leia mais

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 38 Este material é preparado usando como referências os

Leia mais

Relações de Recorrência

Relações de Recorrência Relações de Recorrência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Relações de Recorrência junho - 2018 1 / 102 Este material é preparado usando como referências

Leia mais

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Como expressar a proposição Para todo número inteiro x, o valor de x é positivo. usando

Leia mais

Invariantes de Laço. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Invariantes de Laço. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Invariantes de Laço Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Invariantes de Laço junho - 2018 1 / 28 Este material é preparado usando como referências

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Equivalências Lógicas Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 36 Este material é preparado

Leia mais

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Somatórios. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG. Sheila Almeida (DAINF-UTFPR-PG) Somatórios junho / 30

Somatórios. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG. Sheila Almeida (DAINF-UTFPR-PG) Somatórios junho / 30 Somatórios Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Somatórios junho - 2018 1 / 30 Este material é preparado usando como referências os textos dos seguintes

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado

Leia mais

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Agrupados Dois quantificadores estão agrupados se um está no escopo do outro. Exemplo:

Leia mais

11º ano - Indução matemática

11º ano - Indução matemática 1 O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir (associar) a cada número racional um número natural Abaixo, os números racionais positivos estão representados na forma de

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Soluções dos exercícios propostos

Soluções dos exercícios propostos Indução e Recursão Soluções dos exercícios propostos 1 Iremos demonstrar que a expressão proposta a seguir é correta: i = 0 + + + + + (n 1) = n(n 1), para n > 0 0 i

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de outubro de 2016 Marco Antonio

Leia mais

Indu c ao Matem atica Indu c ao Matem atica T opicos Adicionais

Indu c ao Matem atica Indu c ao Matem atica T opicos Adicionais Indução Matemática Indução Matemática Tópicos Adicionais Indução Matemática Indução Matemática Eercícios Introdutórios Eercício Prove por indução que: + + + n n(n + ) Eercício Prove que + + 5 + + (n )

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

Algoritmos de aproximação - Problema de cobertura por conjuntos

Algoritmos de aproximação - Problema de cobertura por conjuntos Algoritmos de aproximação - Problema de cobertura por conjuntos Marina Andretta ICMC-USP 22 de setembro de 205 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M.

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

Lógica Matemática - Indução

Lógica Matemática - Indução Lógica Matemática - Indução Prof. Elias T. Galante - 017 Breve introdução losóca à indução Raciocinar é inferir, ou seja, passar do que já se conhece de algum modo ao que ainda não se conhece. Este processo

Leia mais

Algoritmos gulosos (greedy)

Algoritmos gulosos (greedy) Algoritmos gulosos (greedy) CLRS 16.1 e mais... Algoritmos p. 1 Algoritmos gulosos Algoritmo guloso procura ótimo local e acaba obtendo ótimo global costuma ser muito simples e intuitivo muito eficiente

Leia mais

Teoria dos Grafos. Coloração de Vértices

Teoria dos Grafos. Coloração de Vértices Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Coloração de

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza

Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza Análise Combinatória Matemática Discreta Prof Marcelo Maraschin de Souza Introdução Combinatória é o ramo da matemática que trata de contagem. Esses problema são importantes quando temos recursos finitos,

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Sumário. 2 Índice Remissivo 9

Sumário. 2 Índice Remissivo 9 i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................

Leia mais

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1 DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a

Leia mais

Problema de seleção de atividades. Aula 14. Exemplo. Algoritmos Gulosos. Algoritmos Gulosos. Intervalo: par ordenado de números

Problema de seleção de atividades. Aula 14. Exemplo. Algoritmos Gulosos. Algoritmos Gulosos. Intervalo: par ordenado de números Problema de seleção de atividades Aula 14 Algoritmos Gulosos Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Intervalo: par ordenado de números [s[i],f[i]): início e fim do intervalo

Leia mais

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Projeto de Algoritmos por Indução

Projeto de Algoritmos por Indução Projeto de Algoritmos por Indução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Projeto de Algoritmos por Indução junho - 2018 1 / 40 Este material é preparado

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

apenas os caminhos que passam só por vértices em C, exceto, talvez, o próprio v A Figura 1 a seguir ilustra o significado do conjunto C edovalordist.

apenas os caminhos que passam só por vértices em C, exceto, talvez, o próprio v A Figura 1 a seguir ilustra o significado do conjunto C edovalordist. CAMINHO DE CUSTO MÍNIMO Dados dois pontos A e B, em muitos problemas práticos fazemos 2 perguntas: 1. existe um caminho de A para B? ou 2. se existe mais de um caminho de A para B, qual deles é o mais

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução) Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos

Leia mais

Lista de Exercícios 9 (Extra): Soluções Grafos

Lista de Exercícios 9 (Extra): Soluções Grafos UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 9 (Extra): Soluções Grafos Ciências Exatas & Engenharias 1 o Semestre de 018 Para cada uma das seguintes armações, diga se é verdadeira ou falsa

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Alguns comentários. Segunda prova. Programação dinâmica em grafos. Guloso em grafos. Algoritmos p. 1

Alguns comentários. Segunda prova. Programação dinâmica em grafos. Guloso em grafos. Algoritmos p. 1 Alguns comentários Segunda prova Programação dinâmica em grafos Guloso em grafos Algoritmos p. 1 Problema dos intervalos disjuntos Problema: Dados intervalos [s[1],f[1]),...,[s[n],f[n]), encontrar coleção

Leia mais

Algoritmos Greedy. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/ / 40

Algoritmos Greedy. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/ / 40 Algoritmos Greedy Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Algoritmos Greedy 2014/2015 1 / 40 Algoritmos Greedy Vamos falar de algoritmos greedy. Em português são conhecidos como: Algoritmos

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de:

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Planaridade AULA META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir grafo planar e plano; Determinar o dual de um grafo; Caracterizar

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio Reservado para a correção Prova Probl. 1 Probl. Probl. 3 Probl. 4 Probl. 5 Total # 3000 Nota - - - - - - - - - - - - - - - - - - - - - - - -

Leia mais

Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5)

Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5) 1 Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (5) DECOM/UFOP 2012/2 5º. Período Anderson Almeida Ferreira Adaptado do material de Andréa Iabrudi Tavares BCC241/2012-2 3 Algoritmos Gulosos

Leia mais

Método Guloso. Troco mínimo. Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) junho/2012. Troco mínimo. Troco mínimo

Método Guloso. Troco mínimo. Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) junho/2012. Troco mínimo. Troco mínimo Notas de aula da disciplina IME - ALGORITMOS E ESTRUTURAS DE DADOS II Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) Troco mínimo Dados os tipos de moedas de um país, determinar o número mínimo

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Instituto de Matemática e Estatística, UFF Abril de 2013

Instituto de Matemática e Estatística, UFF Abril de 2013 Instituto de Matemática e Estatística, UFF Abril de 2013 Sumário.... Hermann Grassmann Famoso em sua época como linguista, somente hoje é valorizado como matemático. Foi o primeiro a usar o método de prova

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 7 de janeiro de 2013 Aula 1 Fundamentos de Matemática 1 Apresentação Aula 1

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Árvores Algoritmo de Kruskal O algoritmo de Kruskal permite determinar a spanning tree de custo mínimo. Este custo corresponde à soma dos pesos (distância, tempo, qualidade,...) associados

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/10 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Matemática Discreta. Aula nº 22 Francisco Restivo

Matemática Discreta. Aula nº 22 Francisco Restivo Matemática Discreta Aula nº 22 Francisco Restivo 2006-05-26 Definição: Um grafo cujos vértices são pontos no plano e cujos lados são linhas no plano que só se encontram nos vértices do grafo são grafos

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

Árvores Árvores Geradoras de Custo Mínimo 0/16

Árvores Árvores Geradoras de Custo Mínimo 0/16 Conteúdo 1 Árvores 2 Árvores Geradoras de Custo Mínimo Árvores Árvores Geradoras de Custo Mínimo 0/16 Árvores Definição (Grafo Acíclico) Um grafo acíclico é um grafo que não contém ciclos. Árvores Árvores

Leia mais

Aula 6: Dedução Natural

Aula 6: Dedução Natural Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado

Leia mais

Estruturas de Dados 2

Estruturas de Dados 2 Estruturas de Dados 2 Recorrências IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/31 Recorrências Análise da Eficiência de Algoritmos: Velocidade de Execução; Análise

Leia mais

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas. 1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um

Leia mais

Problema do Caminho Mínimo

Problema do Caminho Mínimo Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 17: Coloração de Vértices Preparado a partir do texto: Rangel, Socorro. Teoria

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

A resolução desses problemas pode geralmente ser feita com o seguinte procedimento: Problemas de divisibilidade 1

A resolução desses problemas pode geralmente ser feita com o seguinte procedimento: Problemas de divisibilidade 1 Três VIPs da Teoria dos Números É claro, VIP significa Very Important Problems. Os problemas discutidos aqui, além de suas variações, são bastante comuns em Olimpíadas de Matemática e costumam ser resolvidos

Leia mais

2 Erro comum da indução. 3 Corretude de Algoritmos. > Indução Forte X Indução Fraca Erro comum da indução Corretude de Algoritmos 0/17

2 Erro comum da indução. 3 Corretude de Algoritmos. > Indução Forte X Indução Fraca Erro comum da indução Corretude de Algoritmos 0/17 Conteúdo 1 Indução Forte X Indução Fraca 2 Erro comum da indução 3 Corretude de Algoritmos > Indução Forte X Indução Fraca Erro comum da indução Corretude de Algoritmos 0/17 Indução Forte X Indução Fraca

Leia mais

Coloração de intervalos

Coloração de intervalos Coloração de intervalos Problema: Dados intervalos de tempo [s 1,f 1 ),...,[s n,f n ), encontrar uma coloração dos intervalos com o menor número possível de cores em que dois intervalos de mesma cor sempre

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 18: Coloração de Arestas Preparado a partir do texto: Rangel, Socorro. Teoria

Leia mais

Célia Borlido 07/09/2007 Encontro Nacional dos Novos Talentos em Matemática

Célia Borlido 07/09/2007 Encontro Nacional dos Novos Talentos em Matemática Sistemas de Numeração Célia Borlido 7/9/27 Encontro Nacional dos Novos Talentos em Matemática Alguma notação para começar Є representa a palavra vazia. Se é um alfabeto, isto é, um conjunto não vazio de

Leia mais

MA21: Resolução de Problemas - gabarito da primeira prova

MA21: Resolução de Problemas - gabarito da primeira prova MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam

Leia mais

3 Sistema de Steiner e Código de Golay

3 Sistema de Steiner e Código de Golay 3 Sistema de Steiner e Código de Golay Considere o sistema de Steiner S(5, 8, 24, chamaremos os seus blocos de octads. Assim, as octads são subconjuntos de 8 elementos de um conjunto Ω com 24 elementos

Leia mais

Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por

Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por GEOMETRIA ESPACIAL Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por P e Q. Axioma I 2 : Toda reta possui

Leia mais

Colóquio Brasileiro de Matemática - Exercícios de Algoritmos Randomizados

Colóquio Brasileiro de Matemática - Exercícios de Algoritmos Randomizados olóquio Brasileiro de Matemática - Exercícios de Algoritmos Randomizados apítulo 1 Exercício 2. onsidere os seguintes eventos associados a uma execução do algoritmo que consiste na aplicação do exame de

Leia mais

Introdução aos Métodos de Prova

Introdução aos Métodos de Prova Introdução aos Métodos de Prova Renata de Freitas e Petrucio Viana IME-UFF, Niterói/RJ II Colóquio de Matemática da Região Sul UEL, Londrina/PR 24 a 28 de abril 2012 Sumário Provas servem, principalmente,

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

14 Coloração de vértices Considere cada um dos grafos abaixo:

14 Coloração de vértices Considere cada um dos grafos abaixo: 14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual

Leia mais

Estruturas Discretas

Estruturas Discretas Estruturas Discretas 2017.2 Marco Molinaro > Indução Forte Corretude de Algoritmos 1/20 Indução Forte > Indução Forte Corretude de Algoritmos 2/20 Indução Forte X Indução Fraca Para provar Propriedade

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

Bases Matemáticas. Juliana Pimentel. 15 de junho de 2016

Bases Matemáticas. Juliana Pimentel. 15 de junho de 2016 Bases Matemáticas Juliana Pimentel juliana.pimentel@ufabc.edu.br 15 de junho de 016 Princípio de Indução Finita Uma propriedade particularmente importante dos números naturais é expressa pelo Princípio

Leia mais

Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6

Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6 Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo

Leia mais

Matemática Discreta - 06

Matemática Discreta - 06 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 06 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Predicados e Quantificadores

Predicados e Quantificadores Predicados e Quantificadores Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Predicados e Quantificadores junho - 2018 1 / 57 Este material é preparado usando

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto

Leia mais

Projeto de Algoritmos e Indução Matemática

Projeto de Algoritmos e Indução Matemática Capítulo 3 Projeto de Algoritmos e Indução Matemática Um algoritmo é uma descrição precisa de um método para a resolução de determinado problema. Este capítulo apresenta a relação entre a prova de teoremas

Leia mais

Teoria Combinatória dos Números

Teoria Combinatória dos Números Teoria Combinatória dos Números Samuel Feitosa, Yuri Lima, Davi Nogueira 27 de fevereiro de 2004 O objetivo deste artigo é mostrar algumas propriedades dos números inteiros, que combinadas podem originar

Leia mais

15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 3º ANO DO ENSINO MÉDIO NOME: ESCOLA: CIDADE:

15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 3º ANO DO ENSINO MÉDIO NOME: ESCOLA: CIDADE: 15 a ORMUB/007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 3º ANO DO ENSINO MÉDIO NOME: ESCOLA: CIDADE: INSTRUÇÕES AVALIAÇÃO Este caderno contém 5 (cinco) questões. A solução de cada questão,

Leia mais

Algoritmos Gulosos. Norton T. Roman

Algoritmos Gulosos. Norton T. Roman Algoritmos Gulosos Norton T. Roman Apostila baseada no trabalho de Delano M. Beder, Luciano Digianpietri, David Matuszek, Marco Aurelio Stefanes e Nivio Ziviani Algoritmos Gulosos São aqueles que, a cada

Leia mais

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização

Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização Dedução Indução Contra-exemplos Contradição Contrapositiva Construção Diagonalização 1 Provas, lemas, teoremas e corolários Uma prova é um argumento lógico de que uma afirmação é verdadeira Um teorema

Leia mais

Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof.

Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 7 Aula de Revisão e Aprofundamento Observação 1. É recomendável que o professor instigue seus alunos a pensarem

Leia mais

3. Resolução de problemas por meio de busca

3. Resolução de problemas por meio de busca Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 13: Árvores. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 13: Árvores. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 13: Árvores Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 O Princípio da Indução Finita e Aplicações [01] Usando

Leia mais