Teorema de Euclides O conjunto dos números primos é infinito. O número de primos menores ou iguais a um dado x é representado

Tamanho: px
Começar a partir da página:

Download "Teorema de Euclides O conjunto dos números primos é infinito. O número de primos menores ou iguais a um dado x é representado"

Transcrição

1 Teorema de Euclides O conjunto dos números primos é infinito Definição O número de primos menores ou iguais a um dado x é representado por π(x) sendo π designada a função de distribuição, ou de contagem, de números primos exemplos: π(10) = 4, π(50) = 15, π(100) = 25, π(200) = 46 Pelo Teorema de Euclides sobre números primos, conclui-se que lim x + π(x) = + M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

2 Teorema dos Números Primos π(x) x ln x Este Teorema foi conjeturado por Legendre (1798), depois foi reescrito por Gauss e adquiriu a forma acima, e finalmente provado por Hadamard e por Valleé-Poussin (1896) Temos assim uma estimativa do valor de π(x) para cada x (M Deleglise e J Rivat, 1994) Notar que: π(10 18 ) = π(10 18 ) /ln M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

3 Exemplo de aplicação: Quantos primos existem com 20 algarismos? Se n tem 20 dígitos, então n < 10 20, pelo que π(10 20 ) π(10 19 ) 1020 ln 10 = ln M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

4 Aproximação de π(n) por n ln n n π(n) n ln n π(n) n/ln n M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

5 Teorema de Chebyshev Existem constantes c 1 e c 2 tais que c 1 para n suficientemente grande n ln n < π(n) < c n 2 ln n Por exemplo, para c 1 = 2 3 e c 2 = 17 este enquadramento é válido para n > 200 Os valores de c 1 e c 2 têm vindo a ser melhorados ao longo do tempo M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

6 n ln n A aproximação de π(n) por é uma boa aproximação para valores elevados de n O estudo do comportamento assintótico da função π(x) conduziu a vários resultados A função que a seguir se define é um outro exemplo de função permite obter melhores estimativas de π(x) para valores não muito elevados de x, mas em que o cálculo dos seus valores é mais difícil Definição Seja x > 1 Então define-se Teorema Li(x) = x 0 1 ln t dt π(x) Li(x) M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

7 Funções úteis no Mathematica: PrimePi, LogIntegral M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

8 Aproximação de π(n) por Li(n) n π(n) Li(n) π(n) Li(n) M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

9 Escolhendo ao acaso um inteiro positivo menor do que x, qual a probabilidade de escolher um número primo? Então, π(x) x π(x) lim x + x = lim 1 x + ln x = 0 À medida que se percorre o conjunto ordenado dos números naturais, os números primos tendem a ocorrer com menor frequência M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

10 n Distribuição de frequência de números primos π(n) π(n) n , , M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

11 In[1] := PrimePi[10 3 ] Out[1] = 168 In[2] := PrimePi[ ] PrimePi[10 3 ] Out[2] = 135 In[3] := PrimePi[ ] PrimePi[ ] Out[3] = 127 In[4] := PrimePi[ ] PrimePi[ ] Out[4] = 54 In[5] := PrimePi[ ] PrimePi[ ] Out[5] = 44 No entanto este decréscimo não é contínuo M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

12 Decréscimo de ocorrências de números primos Intervalo Número de primos M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

13 Decréscimo de ocorrências de números primos Intervalo Número de primos M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

14 Proposição Seja k N Existem k inteiros consecutivos que não são primos Demonstração: Para qualquer j {2,, k + 1}, (k + 1)! + j não é primo, porque é divisível por j Exemplo No intervalo [1001! + 2, 1001! ] não há números inteiros primos Postulado de Bertrand Para todo o inteiro positivo m existe um primo entre m e 2m Mais, tem-se que π(2m) π(m) > m 3ln(2m) Este resultado foi conjeturado por JFBertrand e provado por Chebyshev em 1850 M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

15 O menor intervalo entre primos verifica-se entre os números 2 e 3, após o que um intervalo entre primos tem no mínimo comprimento 2, como por exemplo entre 5 e 7 Definição Se p e p + 2 são dois números inteiros primos, então tais números designam-se primos gémeos Definição Dado x um número real, o número de pares de primos gémeos (p, p + 2) em que p x é representado por π 2 (x) Definição Seja x > 1 e considere-se que (p, p + 2) representa um qualquer par de primos gémeos Então define-se L 2 (x) = 2 p 3 p(p 2) x (p 1) ln 2 t x dt ln 2 t dt M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

16 n π 2 (n) L 2 (n) π 2 (n) L 2(n) Conjetura Existe uma infinidade de primos gémeos, isto é lim x + π 2 (x) = + π 2 (x) L 2 (x) M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

17 Teorema (Clemant, 1949) Seja n 2 O par de inteiros (p, p + 2) é um par de primos gémeos se e só se 4((p 1)! + 1) + p 0(mod p(p + 2)) No entanto esta caraterização dos primos gémeos não fornece um método para calcular primos gémeos Maiores primos gémeos Primos gémeos N dígitos Ano ± ± ± ± M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

18 Sequências especiais de números primos Uma progressão aritmética de n primos é uma sequência de números primos do tipo p, p + d, p + 2d,, p + (n 1)d em que p é o primeiro termo, d é a amplitude constante dos intervalos entre termos e p + (n 1)d é o último termo Exemplo 5, 11, 17, 23, 29 Três grandes progressões aritméticas de primos n p d Ano M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

19 Sequências especiais de números primos Até à data a maior progressão aritmética conhecida tem comprimento 26 e o primeiro elemento é (ver dsl522332/math/aprecordshtm) Teorema (Green-Tao, 2004) Existem progressões aritméticas finitas arbitrariamente longas M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

20 Sequências especiais de números primos Proposição Existe uma infinidade de primos da forma 4k + 3 Demonstração: Por contradição supondo que há um número finito n de primos p 1,, p n deste tipo e estudando os fatores primos de m = 4p 1 p n 1 Exercício Mostre que existe uma infinidade de primos da forma 3k + 2 Teorema - Dirichlet,1837 Se a e b são primos entre si, então existe uma infinidade de primos da forma ak + b M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

21 Números de Fermat Lema Se 2 m + 1 é primo, então m = 2 n para algum inteiro n 0 Demonstração: Se m não é do tipo 2 n, então é do tipo 2 n q para q > 1 número ímpar O polinómio y q + 1 que é divisível por y + 1 e fazendo a mudança de variável y = x 2n conclui-se que x 2n + 1 é fator próprio de x m + 1 Caso x = 2, conclui-se que 2 2n m + 1 o que é impossível pois 2 m + 1 é primo M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

22 Números de Fermat Definição Os números do tipo F n = 2 2n +1 designam-se números de Fermat Os números de Fermat que são primos designam-se primos de Fermat Exemplos Os números de Fermat F 0 = 3 F 1 = 5 F 2 = 17 F 3 = 257 F 4 = são primos F 5 = = é composto F 14 não é primo (demonstrado em 1963, mas a fatorização de F 14 só foi conhecida em 2010) M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

23 Números de Fermat Lema Números de Fermat distintos são primos entre si Demonstração: Para k > 0, o polinómio x + 1 divide o polinómio x 2k 1 Fazendo x = 2 2n, resulta que F n F n+k 2 Logo, d = mdc(f n, F n+k ) 2 e, como os números de Fermat são ímpares, então d = 1 M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

24 Números de Mersenne Teorema Se m > 1 e a m 1 é primo, então a = 2 e m é primo Demonstração: Se a > 2, então a m 1 = (a 1)(a m 1 + a m ) pelo que a m 1 é composto Logo a = 2 Se m = r s com r, s > 1, então a m 1 = (a r ) s 1 = (a r 1)((a r ) s ) pelo que a m 1 é composto Logo m é primo O recíproco deste teorema não é válido M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

25 Números de Mersenne Definição Os números do tipo M p = 2 p 1, onde p é primo, designamse números de Mersenne Os números de Mersenne que são primos designam-se primos de Mersenne Exemplos Os números de Mersenne M 2 = 3 M 3 = 7 M 5 = 31 M 7 = 127 são primos M 11 = 2047 = é composto M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

26 Números de Mersenne Lema Números de Mersenne distintos são primos entre si Problemas em aberto: Existe uma infinidade de primos de Fermat? Existe uma infinidade de primos de Mersenne? Curiosidades sobre números primos: dsl522332/math/aprecordshtm M Lurdes Teixeira DMA-ECUM Teoria de Números Computacional LCC

1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL

1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL 1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL Licenciatura em Matemática 30 de março de 2012 duração 1h 45m Responda, justificando cuidadosamente, às seguintes questões: 1. Calcule uma estimativa

Leia mais

Aquilo que ainda não sabe(mo)s sobre números primos

Aquilo que ainda não sabe(mo)s sobre números primos Aquilo que ainda não sabe(mo)s sobre números primos José Carlos Santos Seminário Diagonal 2 de Novembro de 2011 Números primos Um número primo é um número natural p > 1 que não tem outros divisores além

Leia mais

Sobre números primos

Sobre números primos Sobre números primos Profs.: Joaby de Souza Jucá & Thaynara Arielly de Lima Universidade Federal de Goiás 23 de outubro de 2014 1 Introdução 2 Resultados preliminares 3 Sobre distribuição dos números primos

Leia mais

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos 1 Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG Primos Definição: Livro VII dos Elementos de Euclides de Alexandria (360 a.c - 295 a.c). Dado qualquer número inteiro n,

Leia mais

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p.

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 16 Binomiais e Primos Começamos lembrando a Proposição 1 (Fatores do Fatorial) Seja p um primo Então a maior

Leia mais

Sobre o número de números primos que não excedem uma grandeza dada

Sobre o número de números primos que não excedem uma grandeza dada Sobre o número de números primos que não excedem uma grandeza dada José Carlos Santos Seminário Diagonal 12 de Dezembro de 2012 Números primos Um número primo é um número natural p > 1 que não tem outros

Leia mais

Universidade do Minho

Universidade do Minho Teórica n o 1 2007-02-22 Apresentação do docente e da disciplina. Algumas revisões de teoria de números elementar. O algoritmo de Euclides estendido; demonstração do teorema que fundamenta o algoritmo.

Leia mais

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial

Leia mais

NÚMEROS ESPECIAIS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II

NÚMEROS ESPECIAIS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II Sumário NÚMEROS ESPECIAIS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 27 de outubro de 2017 Sumário 1 Primos de Fermat, de Mersenne e em

Leia mais

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m) Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,

Leia mais

Teorema Chinês dos Restos. Tópicos Adicionais

Teorema Chinês dos Restos. Tópicos Adicionais Teorema Chinês dos Restos Teorema Chinês dos Restos Tópicos Adicionais Tópicos Adicionais Teorema Chinês dos Restos 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre o menor

Leia mais

Existem infinitos números de Carmichael, mas não provaremos isso neste curso.

Existem infinitos números de Carmichael, mas não provaremos isso neste curso. 6 Pseudoprimos 6.1 O Pequeno Teorema de Fermat nos diz que, se n é primo, então temos b n b (mod n) para todo b Z. Portanto, a contrapositiva diz que se temos b n b (mod n) ( ) para algum b Z, então n

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

Software de Telecomunicações. Teoria dos números

Software de Telecomunicações. Teoria dos números Software de Telecomunicações Teoria dos números Prof RG Crespo Software de Telecomunicações Teoria números : 1/37 Números primos (1) O conjunto dos inteiros {...,-2,-1,0,1,2,...} é representado por Z.

Leia mais

Números Primos e Divisibilidade: Estudo de Propriedades

Números Primos e Divisibilidade: Estudo de Propriedades Universidade Estadual Paulista Júlio de Mesquita Filho Instituto de Geociências e Ciências Exatas Campus de Rio Claro Números Primos e Divisibilidade: Estudo de Propriedades Cristina Helena Bovo Batista

Leia mais

1 n s = s s s p s. ζ(s) = p

1 n s = s s s p s. ζ(s) = p Introdução A chamada série harmónica, n= n = + 2 + 3 + +... desde cedo suscitou interesse entre os 4 matemáticos. Infelizmente esta série diverge, o que se verifica por os termos termo n, apesar de tenderem

Leia mais

Explorando o universo dos Números Primos

Explorando o universo dos Números Primos Universidade Estadual Paulista Júlio de Mesquita Filho Instituto de Geociências e Ciências Exatas Campus de Rio Claro Explorando o universo dos Números Primos Rafael Américo de Oliveira Dissertação apresentada

Leia mais

Teste à Primalidade. (Método de Monte Carlo) Geração de Números Primos (Grandes)

Teste à Primalidade. (Método de Monte Carlo) Geração de Números Primos (Grandes) Teste à Primalidade (Método de Monte Carlo) Margarida Mamede, DI FCT/UNL APD, 2010/11, Teste à Primalidade 1 Geração de Números Primos (Grandes) Como se pode obter um número primo grande? Gerando números

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal)

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) NÚMEROS DE FERMAT (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) Intrudução: O matemático francês Pierre de fermat (1601-1665) é famoso pelo seu extensivo trabalho em teoria dos números. Suas

Leia mais

Proposta de resolução do exame nacional de Matemática A (PROVA 635) 1ªFASE 27 Junho Grupo I

Proposta de resolução do exame nacional de Matemática A (PROVA 635) 1ªFASE 27 Junho Grupo I Proposta de resolução do exame nacional de Matemática A (PROVA 35) 1ªFASE 7 Junho 011 Grupo I 1. Como os acontecimentos são independentes, então, a probabilidade de se verificar um acontecimento não se

Leia mais

1 TESTE TEORIA DE NÚMEROS COMPUTACIONAL

1 TESTE TEORIA DE NÚMEROS COMPUTACIONAL 1 TESTE TEORIA DE NÚMEROS COMPUTACIONAL Licenciatura em Matemática 17 de abril de 2012 duração 1h 45m Responda, justificando cuidadosamente, às seguintes questões: 1. (a) Sem utilizar o Mathematica, calcule

Leia mais

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por

Leia mais

CIC 111 Análise e Projeto de Algoritmos II

CIC 111 Análise e Projeto de Algoritmos II CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 21 Number theory Primes and factors Modular arithmetic Solving equations Other results

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios

Leia mais

Técnicas de Demonstração. Raquel de Souza Francisco Bravo 17 de novembro de 2016

Técnicas de Demonstração. Raquel de Souza Francisco Bravo   17 de novembro de 2016 Técnicas de Demonstração e-mail: raquel@ic.uff.br 17 de novembro de 2016 Técnicas de Demonstração O que é uma demonstração? É a maneira pela qual uma proposição é validada através de argumentos formais.

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores

NÚMEROS PRIMOS. Os números primos são os números naturais com exatamente dois divisores. primo? Número divisores quantidade de divisores 5. NÚMEROS PRIMOS O conhecimento dos números primos e da decomposição dos números inteiros como produto de primos estão entre os conhecimentos mais úteis e importantes da Aritmética. K. F. Gauss Estudos

Leia mais

O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos.

O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos. O Teorema de Ramsey e o Último Teorema de Fermat em Corpos Finitos. Leandro Cioletti Eduardo A. Silva 12 de setembro de 2011 Resumo O objetivo deste texto é apresentar a prova do Último Teorema de Fermat

Leia mais

Material Teórico - Módulo Progressões Aritméticas. PAs Inteiras e Soma dos Termos de uma PA. Primeiro Ano

Material Teórico - Módulo Progressões Aritméticas. PAs Inteiras e Soma dos Termos de uma PA. Primeiro Ano Material Teórico - Módulo Progressões Aritméticas PAs Inteiras e Soma dos Termos de uma PA Primeiro Ano Autor: Prof. Ulisses Lima Parente Autor: Prof. Antonio Caminha M. Neto 1 A soma dos termos de uma

Leia mais

Números Primos e Criptografia RSA

Números Primos e Criptografia RSA Números Primos e Criptografia RSA Jean Carlo Baena Vicente Matemática - UFPR Orientador: Carlos Henrique dos Santos 6 de outubro de 2013 Sumário Criptografia RSA Por que o RSA funciona? Fatoração Primalidade

Leia mais

Polos Olímpicos de Treinamento. Aula 11. Curso de Teoria dos Números - Nível 2. O Teorema Chinês dos Restos. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 11. Curso de Teoria dos Números - Nível 2. O Teorema Chinês dos Restos. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 11 O Teorema Chinês dos Restos Iremos estudar um antigo teorema descoberto pelos chineses no início século

Leia mais

A Hipótese de Riemann

A Hipótese de Riemann A Hipótese de Riemann Gustavo Granja Departamento de Matemática, IST 21 de Novembro de 2012 Gustavo Granja (IST) A Hipótese de RIemann 21 de Novembro de 2012 1 / 16 Resumo 1 O enunciado da conjectura 2

Leia mais

Capítulo 5. séries de potências

Capítulo 5. séries de potências Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 9 O Teorema de Euler Nesta aula, obteremos uma generalização do teorema de Fermat. Definição 1. Dado n N,

Leia mais

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série Séries Numéricas Nosso maior objetivo agora é dar um sentido a uma soma de infinitas parcelas, isto é, estudar a convergência das chamadas séries numéricas. Inicialmente, seja (a n ) uma sequência e formemos

Leia mais

Testes Formativos de Computação Numérica e Simbólica

Testes Formativos de Computação Numérica e Simbólica Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste

Leia mais

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas. 1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um

Leia mais

Folhas de exercícios

Folhas de exercícios Folhas de exercícios Fernando Ferreira Introdução à Teoria dos Números 2017/2018 1. Dado a Z e n N, mostre que (a 1) (a n 1). Sugestão: note que o polinómio X n 1 tem raíz 1. 2. Calcule o cociente e o

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011-1 a Fase Proposta de resolução GRUPO I 1. A igualdade da opção A é válida para acontecimentos contrários, a igualdade da opção B é válida para acontecimentos

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

Problemas e Soluções

Problemas e Soluções FAMAT em Revista Revista Científica Eletrônica da Faculdade de Matemática - FAMAT Universidade Federal de Uberlândia - UFU - MG Problemas e Soluções Número 0 - Abril de 008 www.famat.ufu.br Comitê Editorial

Leia mais

Introdução aos Métodos de Crivos em Teoria dos Números (Aula 1)

Introdução aos Métodos de Crivos em Teoria dos Números (Aula 1) Introdução aos Métodos de Crivos em Teoria dos Números (Aula 1) Julio Andrade j.c.andrade.math@gmail.com http://www.math.brown.edu/ de-andrade/ ICERM - Brown University e University of Bristol 29 o Colóquio

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

Matemática Computacional

Matemática Computacional folha de exercícios 5 :: página 1/5 exercício 5.1. Defina a função f : R R, f(x) = 4x 4 3x 3 + 2x 2 + x. Calcule f(0), f( 1), f(4/3) e f(2.88923). exercício 5.2. Defina a função g : R R R, g(x, y) = x

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

DISTRIBUIÇÃO DOS NÚMEROS PRIMOS

DISTRIBUIÇÃO DOS NÚMEROS PRIMOS DISTRIBUIÇÃO DOS NÚMEROS PRIMOS Rosimara Flores Nodário 1 Ana Maria Beltrame 2 Resumo Primus é a palavra latina que significa primeiro e único. Ela foi escolhida para denominar o grupo dos números inteiros

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por

Leia mais

Aula 1: Introdução ao curso

Aula 1: Introdução ao curso Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer carla.negri@ufabc.edu.br Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos

Leia mais

MA14 - Aritmética Unidade 6 - Parte 3 Resumo

MA14 - Aritmética Unidade 6 - Parte 3 Resumo MA14 - Aritmética Unidade 6 - Parte 3 Resumo A Equação Pitagórica Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Gabarito da lista de Exercícios sobre Técnicas de Demonstração

Gabarito da lista de Exercícios sobre Técnicas de Demonstração Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Técnicas de Demonstração

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Números Primos: Propriedades, Aplicações e Avanços

Números Primos: Propriedades, Aplicações e Avanços Universidade Estadual Paulista Júlio de Mesquita Filho Instituto de Geociências e Ciências Exatas Campus de Rio Claro Números Primos: Propriedades, Aplicações e Avanços Ricardo Minoru Morimoto Dissertação

Leia mais

Álgebra I Israel. Bárbara Lopes Amaral. 19 de novembro de Universidade Federal de Minas Gerais. Fatoração de Polinômios. Lagrange.

Álgebra I Israel. Bárbara Lopes Amaral. 19 de novembro de Universidade Federal de Minas Gerais. Fatoração de Polinômios. Lagrange. Álgebra I Israel Lopes Amaral Universidade Federal de Minas Gerais 19 de novembro de 2007 Lagange Lema Fatora polinômios em Z[x], utilizando uma idéia bastante simples. Esse método não é muito eficiente.

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries Numéricas DMAT Séries Numéricas Definições básicas Chama-se série numérica a uma expressão do tipo a a 2, em geral representada por, ou, onde é uma sucessão

Leia mais

Índice. Cálculo combinatório e probabilidades. Funções exponenciais e funções logarítmicas. Funções reais de variável real.

Índice. Cálculo combinatório e probabilidades. Funções exponenciais e funções logarítmicas. Funções reais de variável real. Índice 1 Cálculo combinatório e probabilidades Funções exponenciais e funções logarítmicas 1. Propriedades das operações sobre conjuntos. Cardinais. Fatorial. Arranjos 8. Arranjos. Combinações 1 5. Triângulo

Leia mais

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO 018/019 DISCIPLINA: Matemática A ANO: 11º CURSO GERAL DE CIÊNCIAS E TECNOLOGIAS Total de aulas previstas: 15 Mês Unidades Temáticas Conteúdos Conteúdos programáticos Descritores N.º Aulas Avaliação Primeiro

Leia mais

Lógica Computacional. Métodos de Inferência. Passos de Inferência. Raciocínio por Casos. Raciocínio por Absurdo. 1 Outubro 2015 Lógica Computacional 1

Lógica Computacional. Métodos de Inferência. Passos de Inferência. Raciocínio por Casos. Raciocínio por Absurdo. 1 Outubro 2015 Lógica Computacional 1 Lógica Computacional Métodos de Inferência Passos de Inferência Raciocínio por Casos Raciocínio por Absurdo 1 Outubro 2015 Lógica Computacional 1 Inferência e Passos de Inferência - A partir de um conjunto

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

Frisos imperfeitos de números inteiros

Frisos imperfeitos de números inteiros Frisos imperfeitos de números inteiros Mário Bessa Departamento de Matemática, Faculdade de Ciências Universidade da Beira Interior e-mail: bessa@ubi.pt Maria Carvalho Departamento de Matemática, Faculdade

Leia mais

NÚMEROS PRIMOS ROY WILHELM PROBST

NÚMEROS PRIMOS ROY WILHELM PROBST ROY WILHELM PROBST NÚMEROS PRIMOS Trabalho de Conclusão de Curso apresentado para avaliação na disciplina de Estágio Supervisionado do Curso de Bacharelado em Matemática do Centro de Ciências Exatas e

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 2017 / 2018 Teste N.º 2 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Criptografia e Segurança

Criptografia e Segurança Criptografia e Segurança das Comunicações Bases matemáticas: Teoria dos números Prof RG Crespo Criptografia e Segurança das Comunicações Teoria números : 1/40 Introdução A teoria dos números ( number theory

Leia mais

Sequências recorrentes e testes de primalidade

Sequências recorrentes e testes de primalidade Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 18 Sequências recorrentes e testes de primalidade 1 A Sequência de Fibonacci A sequência de Fibonacci é

Leia mais

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração

Leia mais

a n também estão em P.A.

a n também estão em P.A. Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof Cícero Thiago / Prof Marcelo Aula 16 Sequências I 1 Progressão Aritmética Definição 1: Uma progressão aritmética é uma sequência a 1, a, ou

Leia mais

MA14 - Aritmética Unidade 15 - Parte 2 Resumo

MA14 - Aritmética Unidade 15 - Parte 2 Resumo MA14 - Aritmética Unidade 15 - Parte 2 Resumo Aplicações de Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Progressões Aritméticas

Progressões Aritméticas 5 Progressões Aritméticas Sumário 5.1 Introdução....................... 2 5.2 Primeiros Exemplos.................. 2 5.3 Soma dos Termos de uma PA............ 6 5.4 Somas Polinomiais...................

Leia mais

o tempo gasto por A para percorrê-la. Tomaremos t A como nossa unidade de tempo, como mostra o quadro a seguir: Atleta Tempo Distância percorrida

o tempo gasto por A para percorrê-la. Tomaremos t A como nossa unidade de tempo, como mostra o quadro a seguir: Atleta Tempo Distância percorrida GABARITO QUESTÕES DISSERTATIVAS MATEMÁTICA Questão dissertativa 1 Observamos que para cada uma das questões dissertativas há mais de uma resolução. Na questão dissertativa 1, a resposta à tarefa de listar

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Partições de inteiros

Partições de inteiros Encontro de Novos Talentos em Matemática 6 de Setembro de 2008 O que é uma partição em inteiros? Dado um inteiro n 0 uma partição em inteiros de n é uma representação de n como uma soma (não ordenada)

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br Um pouco de Teoria dos Números

Leia mais

MAT Álgebra I para Licenciatura 2 a Lista de exercícios

MAT Álgebra I para Licenciatura 2 a Lista de exercícios MAT0120 - Álgebra I para Licenciatura 2 a Lista de exercícios 1. Quais são os números de cifras iguais que são divisíveis por 3? Idem, por 9? Idem por 11? 2. Determinar mmc (56, 72) e mmc (119, 272). 3.

Leia mais

Elementos de Matemática Finita ( ) Exercícios resolvidos

Elementos de Matemática Finita ( ) Exercícios resolvidos Elementos de Matemática Finita (2016-2017) Exercícios resolvidos Ficha 3-2. Em que classes de congruência mod 8 estão os quadrados perfeitos? 4926834923 poderá ser a soma de dois quadrados perfeitos? Resolução:

Leia mais

AKS: um algoritmo para identificar números primos

AKS: um algoritmo para identificar números primos AKS: um algoritmo para identificar números primos IM-UFBA 08 de novembro de 2016 Índice 1 Preliminares 2 3 4 5 Introdução Números primos Comprovar a primalidade de um número natural significa comprovar

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral

Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral 4 4 13 + 1 = 53 Em que temos a fórmula geral: Exatamente um

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

Fundamentos: Algoritmos, Inteiros e Matrizes. Inteiros e. Primos e. Divisor Comum. Inteiros e. Algoritmos. Teoria dos Centro de Informática UFPE

Fundamentos: Algoritmos, Inteiros e Matrizes. Inteiros e. Primos e. Divisor Comum. Inteiros e. Algoritmos. Teoria dos Centro de Informática UFPE , Fundamentos:, Centro de Informática UFPE , 1 2 3 4 , Sejam a e b inteiros, com a 0. a divide b se existe um inteiro c, tal que b = ac. a divide b a b Por exemplo, a = 3, b = 12 , Sejam a e b inteiros,

Leia mais

Probabilidade em espaços discretos. Prof.: Joni Fusinato

Probabilidade em espaços discretos. Prof.: Joni Fusinato Probabilidade em espaços discretos Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade

Leia mais

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! =

30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. 35! = 0 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE 09- PRIMEIRA FASE. NÍVEL UNIVERSITÁRIO. Para cada questão, assinale uma alternativa como a resposta correta. NOME DO(A) ESTUDANTE: UNIVERSIDADE:. O fatorial

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

MA14 - Aritmética Unidade 20 Resumo. Teoremas de Euler e de Wilson

MA14 - Aritmética Unidade 20 Resumo. Teoremas de Euler e de Wilson MA14 - Aritmética Unidade 20 Resumo Teoremas de Euler e de Wilson Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos

Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos Álgebra A - Aula 02 Teorema da fatoração única, Propriedade fundamental dos primos, números primos Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Teorema da fatoração única

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO 3.º CICLO (CÓDIGO DA PROVA 92) 27 DE JUNHO 2019

PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO 3.º CICLO (CÓDIGO DA PROVA 92) 27 DE JUNHO 2019 ssociação de Professores de Matemática ontactos: Rua Dr. João outo, n.º 27-1500-26 Lisboa Tel.: +51 21 716 6 90 / 21 711 0 77 Fax: +51 21 716 64 24 http://www.apm.pt email: geral@apm.pt PROPOST DE RESOLUÇÃO

Leia mais

A hipótese de Riemann 150 anos

A hipótese de Riemann 150 anos A hipótese de Riemann 50 anos José Carlos Santos Em 859, Bernhard Riemann, então com 3 anos, foi eleito para a Academia das Ciências de Berlim. Fazia então parte do regulamento daquela instituição que

Leia mais