Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados

Tamanho: px
Começar a partir da página:

Download "Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados"

Transcrição

1 Demostações Geométicas, Algébicas e Solução de Equações Discetas utilizado as Sequêcias de Númeos Figuados José Atoio Salvado Depatameto de Matemática - CCET - Uivesidade Fedeal de São Calos , Via Washigto Luiz, km 35 São Calos, SP salvado@dmufscab Resumo: Os povos atigos como os babilôios, maias e outas cultuas atigas atibuíam aos úmeos sigificados místicos e divios No século VI a C os pitagóicos cosideaam as coisas da atueza divesas mas ogaizadas e elacioadas com os úmeos Itoduziam os úmeos figuados, expessos como euião de potos uma detemiada cofiguação geomética Neste tabalho popomos a utilização de sequêcias de úmeos figuados e de Fiboacci como atividades lúdicas estabelecedo um elo ete a geometia e a aitmética paa motiva e exploa coceitos matemáticos como os evolvidos a esolução de equações discetas Patimos de exemplos de costução de modelos matemáticos dos úmeos figuados ou de Fiboacci o ituito essalta a impotâcia da utilização de feametas matemáticas simples paa a ivestigação, geealização e demostação de esultados jutamete com os ecusos da visualização geomética e geometia diâmica Estudates de disciplias básicas do cuso de Liceciatua em que foam aplicadas estas atividades mostaam-se motivados e avaliaam positivamete a expeiêcia que também pode se aplicada em tumas do Esio Médio A costução geomética das sequêcias de úmeos figuados Começamos popodo aos estudates a ivestigação de modelagem de situações bem simples como fizeam os pitagóicos que costuíam epesetações geométicas paa sequêcias de úmeos figuados No caso dos úmeos ímpaes epesetados po potos fomado um âgulo eto com metade meos um a hoizotal e metade meos um a vetical, chamados de gomos pelos atigos gegos, cofome a Figua : Figua : Pimeios úmeos gomos Paa um gomo de odem,,, 3, temos G() potos, costuídos passo a passo, patido de um poto, G(), acescetamos mais dois potos, um de cada lado da figua e obtemos o gomo de odem, G() 3, até um gomo de odem -, que acescetado mais um poto de cada lado os dá o gomo de odem, G() Levamos os estudates a esceveem a sequêcia G : N N, defiida po G() -, paa N, N {,, 3,} G() é a sequêcia de úmeos ímpaes epesetada geometicamete pelos gomos De um modo geal, defiimos uma sequêcia eal como um fução s : N R Uma popiedade iteessate que podemos deduzi é a soma dos pimeios úmeos desta sequêcia Somado os úmeos gomos até o -, os pitagóicos obtiham os úmeos quadados ; + 3 4; ; de modo que ( -) 67

2 Pesado o gomo G() epesetado po um quadado degeeado a um poto, o G() com mais 3 potihos a foma de âgulo eto complemeta o gomo G() de modo a epeseta um quadado, ou seja, sempe que acescetamos o gomo seguite ao ateio obtemos o quadado seguite De fato, a soma dos temos da pogessão aitmética de pimeio temo G() e azão, é um quadado ( ) 3 5 ( ) ( ) Po sua vez, os úmeos quadados também são úmeos figuados De fato, obsevamos a Figua, eles são defiidos como o úmeo de elemetos de um cojuto de potos ecessáios paa foma uma sequêcia de quadados ecaixates, 4, 9, 6, etc Figua : Pimeios úmeos quadados Escevemos os úmeos quadados da sequêcia Q : N N defiida po Q() Ao costuimos os úmeos quadados exploamos o picípio da geealização, escevedo passo a passo: Q() ; Q() Q() + *-; Q(3) 9 Q() + 5 Q() + * 3 ; Q(4) 6 Q(3) + 7 Q(3) + * 4 Desse modo, paa todo maio ou igual a, obtemos a equação disceta de pimeia odem ão homogêea: Q ( ) Q( ) + Geometicamete obsevamos que todo úmeo quadado é igual à soma de dois úmeos tiagulaes sucessivos como a Figua 3: Figua 3: Númeo quadado Q(5) T(5) + T(4) Os úmeos tiagulaes, são defiidos como o úmeo de potos que são ecessáios paa foma uma sequêcia de tiâgulos:, 3, 6, 0, Um úmeo tiagula T() é igual à soma dos pimeios iteios positivos De fato; T() ; T() 3 + T() + ; T(3) 6 ( + ) + 3 T() + 3; T(4) 0 ( + + 3) + 4 T(3) + 4, etc Geealizado, obtemos a equação disceta de pimeia odem ão homogêea como Chicoello [] aplicou o Esio Médio: T ( ) T ( ) + cuja solução epeseta os úmeos tiagulaes Da mesma foma, um úmeo é a difeeça ete dois úmeos tiagulaes cosecutivos T () e T ( ) : T ( ) T ( ) Os estudates podem se levados a veifica que os úmeos tiagulaes estão dispostos a teceia diagoal do tiâgulo de Pascal e pova algebicamete que todo úmeo quadado é a soma de dois úmeos tiagulaes sucessivos 673

3 De fato, cosideado o -ésimo úmeo tiagula T , ele é escito como a soma da pogessão aitmética de pimeio temo a e a e azão igual a : + ( + ) T ( ) Po outo lado, cosideado o -ésimo úmeo quadado Q, podemos decompô-lo da seguite foma: + Q ( ) + ( ) T + T o que demosta a afimação Outos úmeos figuados iteessates são os oblogos que possuem um padão etagula Eles são epesetados pela sequêcia de potos, 6,, 0, 30, 4, 56, 7, 90, Geometicamete, dobado um úmeo tiagula obtemos um úmeo oblogo: Ob( ) Do mesmo modo, itoduzimos os úmeos figuados petagoais:, 5,,, 35, O pimeio úmeo petagoal também é eduzido à uidade, P() O segudo é o meo úmeo de potos com que podemos foma um petágoo, ou seja, P() P() + 4 Paa costui P() a pati de P() jutamos mais 4 potos Assim, acescetado potos de modo a foma um ovo petágoo cujos lados possuem tês potos O total de potos obtido é o teceio úmeo petagoal, cuja costução geomética passo a passo os dá: P(3) P() + 7 ( + 4) + 7 ; P(4) P(3) + 0 ( ) + 0 ; P(5) P(4) + 3 ( ) , Neste caso, estudates ecotam mais dificuldades de deseha maualmete, etão oietamos a utilização do softwae GeoGeba Ao passamos de um úmeo petagoal de odem -, P(-) ao seguite P(), pecisamos juta tês lados de compimeto igual a, descotado as duas sobeposições que apaecem os catos Este fato, os leva a equação disceta ou de ecoêcia de pimeia odem ão homogêea paa os úmeos petagoais: P ( ) P( ) + 3 Os úmeos petagoais estão elacioados com os tiagulaes, pois um úmeo petagoal de odem pode se decomposto em tês úmeos tiagulaes de odem - mais potos, cofome Figua 4, de modo que: P ( ) 3T ( ) + T Figua 4: Númeos petagoais e tiagulaes:, 5,,, Obsevamos que -ésimo úmeo petagoal, P() é dado pela soma de uma sequêcia de pimeio temo P azão 3 : (3 ) 3( ) 3 P (3 ) + 3T + Assim, decompomos o -ésimo úmeo petagoal P() como tês vezes o (-)-ésimo úmeo tiagula, T(-), mais 674

4 f Do mesmo modo, obtemos os outos úmeos figuados como os hexagoais, heptagoais, etc e as suas espectivas equações discetas A sequêcia de Fiboacci, com os dois pimeios temos F(), F() e cada um a pati do teceio igual à soma dos dois ateioes: F(+) F(+) + F(),,, 3, também é figuada como uma sequêcia de quadados com a caacol cofome Figua 5: 35 Fiboacci Figua5: a) Ilustação figuada da Sequêcia de Fiboacci e b) Numeicamete Os pimeios úmeos figuados e a sequêcia de Fiboacci são fáceis de seem obtidos, mas se quisemos o temo geal de odem, paa gade? Neste caso, se tivemos uma equação disceta ou de ecoêcia egedo um feômeo de modo que elacioa um temo de odem com o(s) ateio(es), a solução da mesma com as codições iiciais pode se obtida iteativamete ou ecotado uma expessão paa a sequêcia solução em fução de Equações discetas Quado tatamos de poblemas que evolvem vaiáveis iteias gealmete podemos obte uma ou mais equações discetas ou de ecoêcia Também é comum quado tabalhamos com modelagem matemática disceta ou esolvemos umeicamete poblemas de valoes iiciais e/ou de cotoo evolvedo equações difeeciais Paa defii uma equação disceta, cosideamos o cojuto dos úmeos atuais N e um subcojuto S do cojuto dos úmeos eais R Uma fução f : N S X, em que x f (, x ), N é uma equação disceta liea de pimeia odem, em que a icógita é uma fução iteia x() Comumete deotamos x() po x o seu -ésimo temo A solução da equação disceta com uma codição iicial x(0) x 0, é uma sequêcia {x } cujos elemetos são x 0, x f, ), x f, x ) f (, f (, )), ( x0 ( x0 Um exemplo da aplicação de uma equação disceta autôoma é a equação x qx, N, em que q é uma costate ão ula A solução desta equação com a codição iicial x 0, é uma sequêcia {x }, cohecida como P G (Pogessão Geomética) de azão q Paa obtemos uma solução desta equação liea em temos da codição iicial x 0 e, supomos que a mesma é do tipo potêcia: x λ, com λ 0 e N Assim, x λ, que substituídos a equação disceta os dá: λ qλ, ( λ q) λ 0 Segue que λ q Logo a solução é múltipla de q e com a codição iicial obtemos x x0q A epesetação da equação disceta em que a expessão do temo geal é escita dietamete em fução da vaiável : g( ), N é chamada equação disceta fucioal Assim, seus elemetos podem se obtidos dietamete, como x x Cetamete x0q se fossemos escevedo passo a passo, cada elemeto a pati do seu ateio: x 0, x q x 0, x q x q (q x 0 ) q x 0, x 3 q x q (q x 0 ) q 3 x 0, depois de algum tempo azoável também 00 chegaíamos em x 00 qx99 x0q 675

5 Quado a azão 0 < q <, temos modelos matemáticos de decaimetos geométicos como do tipo: decaimeto adioativo, de poluetes, de tempeatua, de dogas o ogaismo, etc e se q >, apaecem em poblemas de cescimetos geométicos como de bactéias, etc O método gáfico epeseta a fução disceta x um sistema de coodeadas catesiaas, escolhedo a vaiável o eixo hoizotal e a vaiável depedete x o eixo vetical como a Figua 5b Vejamos as equações discetas oiudas dos úmeos figuados 3 Equação disceta fucioal paa os úmeos figuados Paa esolve as equações discetas pelo método teóico devemos tasfomá-la uma equação fucioal, de modo a obte o temo geal em fução de Questioamos como esceve T da equação disceta ão homogêea T T +, N, epesetado os úmeos tiagulaes com a codição iicial T(), em fução de Pocuamos uma solução geal da equação ão homogêea, como o caso de equações h difeeciais lieaes, decomposta uma soma da solução da equação homogêea T mais uma p solução paticula T da equação ão homogêea h h A equação disceta liea homogêea associada T T tem solução do tipo h λ, com λ 0 T De fato, substituido-a a equação homogêea, obtemos λ λ, e o valo de λ Assim a solução da equação homogêea é costate, um múltiplo de p A solução paticula T da equação ão homogêea deveia se um poliômio de pimeio gau em, c + c, já que o temo ão homogêeo é deste tipo; Mas como já temos p uma costate como solução da equação homogêea, devemos escolhe T ( c + c) p Substituido a equação geal, obtemos os valoes c, c e T ( + ) Assim, a solução h p geal obtida T T + T c + ( + ) deve satisfaze T() Logo c 0, e potato + T ( ),,, 3, que coicide, evidetemete, com a obtida ao somamos os temos da Pogessão Aitmética T Do mesmo modo, ivestigamos o temo geal das equações discetas que epesetam os outos úmeos figuados esolvedo-as do mesmo modo Númeos Hexagoais:, 6, 5, 8, dados po H H + 4 3, que podem se vistos como combiação de úmeos tiagulaes H T + 3T dode H Númeos Heptagoais:, 7, 8, dados pela equação Hep T + 4T Númeos Octogoais:, 8, povidos da equação O T + 5T Geealizado, obtemos os úmeos K-goais, fomados po polígoos de k lados, de modo que obtemos K T + ( k 3) T Eles podem se vistos como uma combiação de úmeos tiagulaes e, epesetados po sequêcias polígoos de k lados, satisfazedo uma equação disceta liea que pode se esolvida algebicamete, obtedo uma sequêcia a foma de uma equação fucioal, ou seja em fução de (e de k) De modo geal, paa obte uma solução de uma equação disceta A k x +k + A k- x +k- + + A 0 x 0, N, obtemos a equação caacteística associada à equação disceta + k + k Ak λ + Ak λ + + A0λ 0 Supodo que esta equação caacteística possui aízes λ, λ,, λ com multiplicidade α, α,, α N espectivamete, etão as soluções são 676

6 sequêcias x da foma: x ( ) + p ( ) λ + + p λ p ( ) λ em que p i () são poliômios com gau gau( p i ( )) < α i, paa i Se λi é uma aiz simples da equação caacteística associada, etão o poliômio p i () se eduz a uma costate Vimos que a equação disceta homogêea de seguda odem com coeficietes costates, Fiboacci, F F F 0, paa 0, com F e F, os dá como + + solução os úmeos de Fiboacci:,,, 3, 5, Pocuamos a sua solução também supodo que F 0 λ, ( λ 0 ) que substituído a equação de Fiboacci, obtemos a equação caacteística associada + λ λ + λ 0 cujas aízes são λ e λ Assim a solução geal F c c ) ( ) + ( Com as codições iiciais, obtemos a solução: F ( ) ( ) 5 5 Iteessate faze os estudates obseva o fato de que a combiação de úmeos iacioais pode gea um úmeo atual como a solução F da equação de Fiboacci No espaço tidimesioal, como em Gullbeg [], podemos exploa os úmeos poliédicos como os Tetaédicos:, 4, 0, 0, obtidos passo a passo, epesetado o úmeo de potos ecessáios paa costui uma sequêcia de tetaedos, cujas bases da piâmide e seções paalelas são tiagulaes e, potato, costituídas po úmeos tiagulaes, ( + )( + ) satisfazedo Te( ) Ti, em que Te() é o -ésimo úmeo tetaédico e i 6 T o i-ésimo úmeo tiagula como a Figua 6 i Figua 6: Númeo tetaédico: Te(3) 0 Os úmeos tetaédicos também estão localizados a quata diagoal do tiâgulo de Pascal 4 Coclusão As atividades de exploação dos úmeos figuados foam avaliadas positivamete uma expeiêcia com estudates do cuso de Liceciatua em Matemática da UFSCa Exploamos também úmeos cúbicos, petatopes e supetetaedos paa icetiva os estudates e aguça a visualização geomética, exploa a costução (maual e computacioal) dos temos das sequêcias passo a passo, obteção do temo geal, demostações geométicas e algébicas bem como esolução de equações discetas, gealmete pouco abodadas As descobetas pelos estudates de elações evolvedo úmeos figuados, cotempla váios tópicos e demostaam iteessates e motivadoas cofome apotaam Refeêcias [] Chicoello, L A, "Númeos Figuados e as sequêcias ecusivas: uma atividade didática evolvedo úmeos tiagulaes e quadados", Dissetação de Mestado, UFSCa, 03 [] Gullbeg, J, Mathematics fom the bith of umbe, W W Noto & Compay, NY, (997) 677

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias,

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matemática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas bem defiidas a que se

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse

Leia mais

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15 MATEMÁTICA Sejam a i, a + si e a + ( s) + ( + s) i ( > ) temos de uma seqüêcia. Detemie, em fução de, os valoes de e s que toam esta seqüêcia uma pogessão aitmética, sabedo que e s são úmeos eais e i -.

Leia mais

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,

Leia mais

3.1 Campo da Gravidade Normal Terra Normal

3.1 Campo da Gravidade Normal Terra Normal . Campo da avidade Nomal.. Tea Nomal tedeemos po Tea omal um elipsóide de evolução qual se atibui a mesma massa M e a mesma velocidade agula da Tea eal e tal que o esfeopotecial U seja uma fução costate

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

1 - CORRELAÇÃO LINEAR SIMPLES rxy

1 - CORRELAÇÃO LINEAR SIMPLES rxy 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações

Leia mais

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética Distibuição Equipovável

Leia mais

2*5$',(17('2327(1&,$/( (1(5*,$12&$032(/(75267È7,&2

2*5$',(17('2327(1&,$/( (1(5*,$12&$032(/(75267È7,&2 3 *5',7'37&,/ 5*,&3/7567È7,& ÃÃÃ*5',7Ã'Ã37&,/ A expessão geéica paa o cálculo da difeeça de potecial como uma itegal de liha é: dl ) 5) Se o camiho escolhido fo um L, tal que se possa cosidea costate esse

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico

Leia mais

NÚMEROS IRRACIONAIS E TRANSCENDENTES

NÚMEROS IRRACIONAIS E TRANSCENDENTES UNIVERSIDADE FEDERAL DE SANTA CATARINA UNIVERSIDADE VIRTUAL DO MARANHÃO DEPARTAMENTO DE MATEMÁTICA E FÍSICA CURSO DE ESPECIALIZAÇÃO EM MATEMÁTICA NÚMEROS IRRACIONAIS E TRANSCENDENTES IMPERATRIZ 009 JULIMAR

Leia mais

Problemas e Soluções

Problemas e Soluções FAMAT e Revista Revista Cietífica Eletôica da Faculdade de Mateática - FAMAT Uivesidade Fedeal de Ubelâdia - UFU - MG Pobleas e Soluções Núeo 09 - Outubo de 007 www.faat.ufu.b Coitê Editoial da Seção Pobleas

Leia mais

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA//0 CARGO/ARÉA MATEMÁTICÁ CONTEÚDO PROGRAMÁTICOSISTEMAS LINEARES/ VETORES NO R /GEOMETRIA ANALÍTICA EMR. NÍVEL DE

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson.

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson. CAPÍTULO 5 DISTRIBUIÇÃO BINOMIAL E DISTRIBUIÇÃO DE POISSON Veemos este capítulo as distibuições a vaiável disceta: Distibuição Biomial e Distibuição de Poisso. 1. Pobabilidade de Beoulli Seja um expeimeto

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 Aálise em espaço de estados Sistemas e Siais 009/010 Repesetação de Sistemas Sistemas descitos po equações difeeciais Sistemas descitos po sistemas de equações difeeciais Repesetação em espaço de estados

Leia mais

Reticulados densos nas dimenso es 2,3,4,5,7 e 8 com diversidade ma xima

Reticulados densos nas dimenso es 2,3,4,5,7 e 8 com diversidade ma xima ISSN 984-828 Reticulados desos as dimeso es 2,3,4,5,7 e 8 com divesidade ma xima Gasiele C. Joge,, 3 Agaldo J. Feai2 gajoge@gmail.com agaldofeai@ig.com.b Depatameto de Matema tica Aplicada/Matema tica

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

Estatística. 5 - Distribuição de Probabilidade de Variáveis Aleatórias. Discretas

Estatística. 5 - Distribuição de Probabilidade de Variáveis Aleatórias. Discretas Estatística 5 - Distibuição de Pobabilidade de Vaiáveis Aleatóias Discetas UNESP FEG DPD Pof. Edgad - 0 05 - Piciais Distibuições de Pobabilidades Euiovável Beoulli Biomial Poisso Geomética Pascal Hiegeomética

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20 Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula

Leia mais

DIMENSÕES Matemática A 12.o ano de escolaridade Caderno de preparação para o exame Índice PROVA 1 PROVA 2 PROVA 3 PROVA 4 PROVA 5 PROVA 6 RESOLUÇÕES

DIMENSÕES Matemática A 12.o ano de escolaridade Caderno de preparação para o exame Índice PROVA 1 PROVA 2 PROVA 3 PROVA 4 PROVA 5 PROVA 6 RESOLUÇÕES DIMENSÕES Matemática A. o ao de escolaidade Cadeo de pepaação paa o eame Ídice PROVA p. PROVA p. 7 PROVA p. PROVA p. PROVA p. 0 PROVA p. RESOLUÇÕES p. 8 Cao aluo, Este livo tem po base o pessuposto de

Leia mais

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO PROPAGAÇÃO D ONDAS LCTROMAGNÉTICAS NM GIA CILÍNDRICO po Calos Vaadas e Maia mília Maso IST, Maio de 5 t j e. Itodução Vamos estuda a popagação de odas electomagéticas um guia cilídico de aio a. Podeiamos

Leia mais

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t ? Equilíbio da estutua PROVA COMENTADA a) Diagama de copo live (DCL): Paa monta o diagama de copo live deve-se inclui todas as foças atuando no bloco de massa m. Obseve que o bloco pode movimenta-se somente

Leia mais

2 Formulação Matemática

2 Formulação Matemática Fomlação Matemática. Descição do poblema A fim de aalisa o escoameto atavés de m meio pooso, foi cosideado m meio pooso ideal, com ma geometia composta po caais covegetesdivegetes. Dessa foma, obtém-se

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

Transformada de z Sistemas Discretos

Transformada de z Sistemas Discretos Sistemas de Pocessameto Digital Egehaia de Sistemas e Ifomática Ficha 5 005/006 4.º Ao/.º Semeste Tasfomada de Sistemas Discetos Tasfomada de A tasfomada de Z foece uma vesão o domíio da fequêcia dum sial

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdáia D. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dação: 90 itos Maço/ 06 Noe N.º T: Classificação Pof. (Lís Abe).ª PARTE Paa cada a das segites qestões de escolha últipla, selecioe

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Exame Final Nacional de Matemática B Prova ª Fase Ensino Secundário º Ano de Escolaridade

Exame Final Nacional de Matemática B Prova ª Fase Ensino Secundário º Ano de Escolaridade Exame Fial Nacioal de Matemática B Pova 735.ª Fase Esio Secudáio 019 11.º Ao de Escolaidade Deceto-Lei.º 139/01, de 5 de julho Deceto-Lei.º 55/018, de 6 de julho Duação da Pova: 150 miutos. Toleâcia: 30

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (3 de agosto de 0) Nível α ( o e 7 o anos do Ensino Fundamental) Gabaitos www.opm.mat.b PROBLEMA a) Na sequência esnúfica, 3,, 3, o quinto temo

Leia mais

MATEMÁTICA SUAS TECNOLOGIAS. 05. A função logarítmica RC = log é logarítmica crescente C8, 4 =

MATEMÁTICA SUAS TECNOLOGIAS. 05. A função logarítmica RC = log é logarítmica crescente C8, 4 = RESOLUÇÃO E Resolva Eem I TEÁTI SUS TENOLOGIS III) No tiâgulo equiláteo JI: ai 60 ssim, sedo JÎH, devemos te: + 60 + 0 + 08 60 7 0. O obô pecoeá o peímeto de um polígoo egula de lados, cujo âgulo eteo

Leia mais

Dois resultados em combinatória contemporânea. Guilherme Oliveira Mota

Dois resultados em combinatória contemporânea. Guilherme Oliveira Mota Dois esultados em combiatóia cotempoâea Guilheme Oliveia Mota Tese apesetada ao Istituto de Matemática e Estatística da Uivesidade de São Paulo paa obteção do título de Douto em Ciêcias Pogama: Ciêcia

Leia mais

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA 5 ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA Jai Medes Maques Uivesidade Tuiuti do Paaá R. Macelio Champagat, 55 CEP 87-5 e-mail: jaimm@utp.b RESUMO O objetivo deste tabalho cosiste o desevolvimeto

Leia mais

AVALIAÇÃO DAS APROXIMAÇÕES DE BETHE-PLACZEK NA FUNÇÃO DE ALARGAMENTO DOPPLER. Felipe Costa de Paiva

AVALIAÇÃO DAS APROXIMAÇÕES DE BETHE-PLACZEK NA FUNÇÃO DE ALARGAMENTO DOPPLER. Felipe Costa de Paiva AVALIAÇÃO DAS APROXIMAÇÕES DE BETHE-PLACZEK NA FUNÇÃO DE ALARGAMENTO DOPPLER Felipe Costa de Paiva Dissetação de Mestado apesetada ao Pogama de Pós-Gaduação em Egehaia Nuclea, COPPE, da Uivesidade Fedeal

Leia mais

Sobre a Dedução da Equação da Onda e da Solução segundo a Fórmula de Kirchhoff

Sobre a Dedução da Equação da Onda e da Solução segundo a Fórmula de Kirchhoff ais do CNMC v ISSN 984-8X Sobe a Dedução da Equação da Oda e da Solução segudo a Fómula de Kichhoff Robeto Toscao Couto Uivesidade Fedeal Flumiese Dep Matemática plicada 4-4, Campus do Valoguiho, Ceto,

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO MATERIAL DIDÁTICO IMPRESSO CURSO: Física DISCIPLINA: Ifomática paa o Esio de Física CONTEUDISTA: Calos Eduado Aguia AULA 4 TÍTULO:

Leia mais

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução 4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática B 11.º Ano de Escolaidade Deceto-Lei n.º 139/01, de 5 de julho Pova 735/.ª Fase Citéios de Classificação 1 Páginas 016 Pova 735/.ª F.

Leia mais

Revisão Vetores em R n

Revisão Vetores em R n Revisão Vetoes em R Deiição O espaço vetoial R é o cojuto R : {( x1,, x) xi R, i 1,, } o qual deiimos as opeações: a) Se u ( x 1,, x ) e v ( y 1,, y ) estão em R temos que u + v ( x1 + y1,, x + y) ; b)

Leia mais

SÉRIES DE FOURIER E O FENÔMENO DE GIBBS

SÉRIES DE FOURIER E O FENÔMENO DE GIBBS UNIVERSIDADE FEDERA DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA SÉRIES DE FOURIER E O FENÔMENO DE GIBBS UIZ FERNANDO NAZARI FORIANÓPOIS, JUNHO DE 8 UIZ FERNANDO

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME NACIONAL DO ENSINO SECUNDÁRIO Deceto-Lei n.º 139/01, de 5 de julho Pova Escita de Matemática B 10.º e 11.º Anos de Escolaidade Pova 735/.ª Fase 13 Páginas Duação da Pova: 150 minutos. Toleância:

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 istemas Lieaes e Ivaiates o Tempo (Tasf. Laplace e Aálise Tempoal) istemas e iais 9/ LITs aálise tempoal istemas: defiições e popiedades LITs causais Resposta atual e foçada Tasfomada de Laplace uilateal

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PME 3100 MECÂNIC I Teceia Pova 6 de uho de 015 Duação da Pova: 110 miutos (ão é pemitido uso de calculadoas) 1ª Questão (4,0 potos) fiua mosta um disco de ceto, massa m e aio, que pate do epouso e ola

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Funções analíticas complexas

Funções analíticas complexas Capítulo 5 Fuções aalíticas complexas 5 Itodução As fuções aalíticas são as fuções epesetáveis po séies de potêcias Até meados do séc XVII a oção de fução cofudia-se com a de fómula algébica com vaiáveis,

Leia mais

Cinemática de Mecanismos

Cinemática de Mecanismos Cinemática de Mecanismos. nálise de Posição e Deslocamento Paulo Floes J.C. Pimenta Clao Univesidade do Minho Escola de Engenhaia Guimaães 007 ÍNDICE. nálise de Posição e Deslocamento..... Definição.....

Leia mais

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas

Leia mais

MARCOS VINICIUS ANDRIOLO

MARCOS VINICIUS ANDRIOLO MARCOS VINICIUS ANDRIOLO Aálise de Métodos ão Lieaes paa Pevisão de Vazões Médias Mesais Dissetação apesetada como equisito pacial à obteção do gau de Meste, o Pogama de Pós-Gaduação em Egehaia de Recusos

Leia mais

Como. Caso 2: senβ = cosα. tgα= e tgβ= x, segue a igualdade. = x = x+ 1 0 = 1, um absurdo. Assim, esse caso não convém. Como. a) 3. b) 6.

Como. Caso 2: senβ = cosα. tgα= e tgβ= x, segue a igualdade. = x = x+ 1 0 = 1, um absurdo. Assim, esse caso não convém. Como. a) 3. b) 6. OS MELHOES GABAITOS DA ITEET: www.elitecampias.com.b (9) 5-0 O ELITE ESOLVE IME 0 - TESTES MATEMÁTICA QUESTÃO 0 Seja o tiâgulo etâgulo ABC com os catetos medido cm e 4 cm. Os diâmetos dos tês semicículos,

Leia mais

2.3 - Desenvolvimento do Potencial Gravitacional em Série de Harmônicos Esféricos

2.3 - Desenvolvimento do Potencial Gravitacional em Série de Harmônicos Esféricos . - Desevovieto do otecia avitacioa e Séie de Haôicos Esféicos O potecia gavitacioa de u copo que te distibuição de assa hoogêea e foa geoética sipes, e gea, aite ua epesetação ateática eata. Mas o potecia

Leia mais

Equações diferenciais lineares com coeficientes constantes e derivação da equação característica

Equações diferenciais lineares com coeficientes constantes e derivação da equação característica ISSN 2316-9664 Volume 9, jul. 2017 Ricado da Silva Santos Instituto Fedeal do Espíito Santo - Campus Itapina icado.santos@ifes.edu.b Ole Pete Smith Univesidade Fedeal de Goiás ole@ufg.b Equações difeenciais

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME NACIONAL DO ENSINO SECUNDÁRIO Deceto-Lei n.º 139/01, de de julho Pova Escita de Matemática B 10.º e 11.º Anos de Escolaidade Pova 73/.ª Fase Citéios de Classificação 1 Páginas 013 COTAÇÕES GRUPO

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA (CÁLCULO DIFERENCIAL EM ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Cálculo Dieecial em Cálculo dieecial em

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA... DISTÂNCIA ENTRE DOIS PONTOS... 5 RAZÃO DE SECÇÃO... DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 4 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Capítulo I Erros e Aritmética Computacional

Capítulo I Erros e Aritmética Computacional C. Balsa e A. Satos Capítulo I Eos e Aitmética Computacioal. Itodução aos Métodos Numéicos O objectivo da disciplia de Métodos Numéicos é o estudo, desevolvimeto e avaliação de algoitmos computacioais

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Depatameto de ísica - ICE/UJ Laboatóio de ísica II - Itodução Pática : Medida da Aceeação Gavitacioa A iteação avitacioa é uma das quato iteações fudametais que se ecotam a atueza e é a úica que afeta

Leia mais

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte 5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.

Leia mais

Faculdade de Ciências da Universidade de Lisboa Departamento de Matemática. Geodesia Física. João Catalão

Faculdade de Ciências da Universidade de Lisboa Departamento de Matemática. Geodesia Física. João Catalão Faculdade de Ciêcias da Uivesidade de Lisboa Depatameto de Matemática Geodesia Física João Catalão Lisboa, Fudametos do campo gavítico Ídice Capítulo - Fudametos do Campo gavítico. O campo gavítico...

Leia mais

EFEITOS DE SOLVENTE SOBRE PROPRIEDADES ELÉTRICAS ESTÁTICAS DE COMPOSTOS MESOIÔNICOS ORLEI LUIZ DOS SANTOS

EFEITOS DE SOLVENTE SOBRE PROPRIEDADES ELÉTRICAS ESTÁTICAS DE COMPOSTOS MESOIÔNICOS ORLEI LUIZ DOS SANTOS UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE FÍSICA EFEITOS DE SOLVENTE SOBRE PROPRIEDADES ELÉTRICAS ESTÁTICAS DE COMPOSTOS MESOIÔNICOS ORLEI LUIZ DOS SANTOS GOIÂNIA/GO 00 UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO

Leia mais

Fundação Getúlio Vargas (FGV-RJ) Graduação em Administração Microeconomia II Prof: Paulo Coimbra Monitor: Flavio Moraes GABARITO LISTA 4

Fundação Getúlio Vargas (FGV-RJ) Graduação em Administração Microeconomia II Prof: Paulo Coimbra Monitor: Flavio Moraes GABARITO LISTA 4 Fudação Getúlio Vagas (FGV-RJ) Gaduação em dmiistação Micoecoomia II of: aulo oimba Moito: Flavio Moaes GRITO LIT 4 O piloto tem duas estatégias possíveis: segui viagem ou desvia paa uba Já o seüestado

Leia mais

Métodos da descida mais rápida para otimizar a atividade catalítica de um polímero

Métodos da descida mais rápida para otimizar a atividade catalítica de um polímero Métodos da descida mais ápida paa otimiza a atividade catalítica de um polímeo Camila Bece Univesidade de Santa Cuz do Sul - UNISC 96815-9, Campus Sede, Santa Cuz do Sul, RS E-mail: camilabece@ibest.com.b

Leia mais

Modelagem e Simulação Numérica da Radiação Sonora de um Cilindro Infinito Pulsante

Modelagem e Simulação Numérica da Radiação Sonora de um Cilindro Infinito Pulsante CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Dietoia de Pesquisa e Pós-Gaduação Pogama de Pós-Gaduação em Modelagem Matemática e Computacioal Modelagem e Simulação Numéica da Radiação Sooa de

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório Física Expeimental: Mecânica Aula 1 Intodução ao laboatóio 1 Conteúdo desta aula: -Objetivos... slides 3 6 -Divisão de gupos... slides 6 8 -Uso de equipamentos... slides 9 11 -Unidades Intenacionais...

Leia mais

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular:

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular: Compaação de Médias Quando a análise de vaiância de um expeimento nos mosta que as médias dos tatamentos avaliados não são estatisticamente iguais, passamos a ejeita a hipótese da nulidade h=0, e aceitamos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

ANÁLISE TERMO-MECÂNICA EM ELASTICIDADE PLANA E SÓLIDOS DE REVOLUÇÃO

ANÁLISE TERMO-MECÂNICA EM ELASTICIDADE PLANA E SÓLIDOS DE REVOLUÇÃO AÁISE ERMO-MECÂICA EM EASICIDADE PAA E SÓIDOS DE REVOUÇÃO Joge Rodigo Gioda Pablo Adés Muñoz Rojas Miguel Vaz Júio giodaj@ahoo.com.b pablo@joiille.udesc.b M.Vaz@Joiille.udesc.b Depatameto de Egehaia Mecâica

Leia mais

Experimento 2 Espectro de potência e banda essencial de um sinal. Exercício preliminar. o gráfico de X(f).

Experimento 2 Espectro de potência e banda essencial de um sinal. Exercício preliminar. o gráfico de X(f). UnB - FT ENE Epeimento Especto de potência e banda essencial de um sinal Eecício pelimina O eecício deve se manuscito ou impesso em papel A4. As epessões matemáticas básicas e os passos pincipais do desenvolvimento

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Matemática 8A. b A medida de cada lado do pimeio quadado é igual à medida de cada diagonal do segundo quadado. Sendo x a medida de cada lado do segundo quadado, temos: x x x Potanto, a azão da PG é igual

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 19/2012, de 5 de julho Pova 65/1.ª Fase Citéios de Classificação 11 Páginas 2016 Pova 65/1.ª

Leia mais

MÉTODOS DE RESOLUÇÃO DE SISTEMAS LINEARES APLICADOS NA ANÁLISE DE REDES DE DISTRIBUIÇÃO DE ÁGUA

MÉTODOS DE RESOLUÇÃO DE SISTEMAS LINEARES APLICADOS NA ANÁLISE DE REDES DE DISTRIBUIÇÃO DE ÁGUA MÉTODOS DE RESOLUÇÃO DE SISTEMAS LINEARES APLICADOS NA ANÁLISE DE REDES DE DISTRIBUIÇÃO DE ÁGUA Robet Schiaveto de Souza e Fazal Hussai Chaudhy Resumo - Este tabalho ealiza uma compaação ete os métodos

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

Hipersuperfícies Completas tipo Espaço com Curvatura. Média Constante no Espaço de De Sitter. Ricardo Luiz Queiroz Freitas

Hipersuperfícies Completas tipo Espaço com Curvatura. Média Constante no Espaço de De Sitter. Ricardo Luiz Queiroz Freitas Uivesidade Fedeal da Bahia Istituto de Matemática Cuso de Pós-Gaduação em Matemática Dissetação de Mestado Hipesupefícies Completas tipo Espaço com Cuvatua Média Costate o Espaço de De Sitte Ricado Luiz

Leia mais

3 Modelagem do fluido interno

3 Modelagem do fluido interno 3 Modelage do fluido iteo Obseva-se que e uitas aplicações de cascas cilídicas há o cotato, total ou pacial, co u eio fluido. peseça do fluido ifluecia o copotaeto diâico da casca. pessão eecida pelo fluido

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Escol Secudái com º ciclo D. Diis º Ao de Mtemátic A Tem II Itodução o Cálculo Difeecil II Aul do plo de tblho º Resolve ctividde d pági 7, os eecícios ) e c), b) e c), 6 b) e c) d pági 8, ctividde d pági

Leia mais

UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONAL - PROFMAT

UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONAL - PROFMAT UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONAL - PROFMAT JOSÉ ROBYSON AGGIO MOLINARI NÚMEROS PRIMOS E A CRIPTOGRAFIA

Leia mais

Experiência 2 - Filtro de Wien - 7 aulas

Experiência 2 - Filtro de Wien - 7 aulas Instituto de Física - USP FGE0213 - Laboatóio de Física III - LabFlex Estudo de uma patícula em um campo eletomagnético Aula 5 - (Exp 2.1) Filto de Wien Mapeamento de Campo Elético Manfedo H. Tabacniks

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Deceto-Lei n.º 74/004 de 6 de maço Pova Escita de Matemática A 1.º Ano de Escolaidade Pova 635/.ª Fase Baille Citéios de Classificação 10 Páginas 01 COTAÇÕES GRUPO I

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais