Associação Catarinense das Fundações Educacionais ACAFE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Associação Catarinense das Fundações Educacionais ACAFE"

Transcrição

1 Associação Catarinense das Fundações Educacionais ACAFE PROCESSO SELETIVO PARA ADMISSÂO DE PROFESSORES EM CARÁTER TEMPORÁRIO 2017 PARECER RECURSOS PROVA 2 MATEMÁTICA MATEMÁTICA - PENOA 11) Numa escola, no ano letivo de determinado ano, em uma turma de 60 alunos, 55% eram moças. Nessa turma, ao final do ano, todas as moças foram aprovadas e alguns rapazes foram reprovados. No ano seguinte, nenhum aluno novo foi matriculado nessa nova turma e todos os aprovados confirmaram suas matrículas. Essa nova turma, nesse ano, passou a ter, então, 25% de rapazes. O número de rapazes que foram reprovados no ano anterior é: A múltiplo de 3. B maior que 20. C divisor de 8. D quadrado perfeito. Em determinado ano: Moças: Rapazes: Ano seguinte: A turma passa a ter 25% de rapazes, portanto 75% são moças, ou seja, 33 são moças. A turma terá 44 alunos, em que 25% são rapazes, isto é, 11 rapazes. Como no ano anterior a turma tinha 27 rapazes, significa que rapazes foram reprovados. 16 é um número quadrado perfeito. E primo. Os recursos não têm procedência única alternativa correta letra D conforme

2 13) Uma pequena empresa produz determinada peça ao custo de R$ 200,00 cada uma. Quando cada peça é vendida por reais, então, a empresa vende mensalmente ( ) unidades dessa peça, com. Para obter lucro máximo com a venda dessas peças, a empresa deve vender mensalmente: A 250 peças. B 100 peças. C 50 peças. Função Custo é dada por valor de cada peça vezes a quantidade produzida. Função Venda é dada por número de peças vendidas vezes o valor de cada peça. Função Lucro é : ( ) ( ) ( ) e Portanto, para obter lucro máximo a empresa deve vender mensalmente ( ) peças, isto é, peças. D 150 peças. E 200 peças. O erro de impressão que ocorreu na questão, não impossibilita a sua resolução. É facilmente observado que o valor de está entre 0 e 300, quando se diz a empresa vende mensalmente ( ) unidades dessa peça. O intervalo é dado, para se obter um maior rigor matemático, no enunciado da questão. Ver resolução acima. 14) O valor numérico da expressão representada por quando é um número: A múltiplo de 11. Calculando as raízes de Temos: e Forma fatorada da equação:

3 Simplificando, temos: ( ) ( ) Valor numérico: O número 1111 é múltiplo de 11. B divisível por 5. C divisível por 3. D fracionário. E primo. Os recursos não têm procedência única alternativa correta letra A conforme 15) Em um açude de tilápias, a probabilidade de um peixe estar doente é. Quando um peixe está doente, a probabilidade de ser devorado por algum peixe predador é, e, quando não está doente, a probabilidade de ser devorado por algum peixe predador é. Portanto, a probabilidade de um peixe desse açude, escolhido aleatoriamente, ser devorado por algum peixe predador é de: A 6,9%. B 9,3%. C 9,8%. D 6,0% E 7,8%. Probabilidade de o peixe estar doente é:. Probabilidade de o peixe não estar doente é : Probabilidade de um peixe doente ser devorado é igual a :. Probabilidade de um peixe ser devorado quando não está doente é igual a:. Então, Peixes doentes: Peixes não doentes: Logo a probabilidade pedida é:

4 . Os recursos não têm procedência única alternativa correta letra E conforme 17) Analise as proposições abaixo e classifique-as em V - verdadeiras ou F - falsas. ( ) O volume, em litros, de uma caixa de lados 20 cm, 35 cm e 70 cm é um quadrado perfeito. ( ) A área da base de uma piscina com volume de litros, na forma de um cilindro reto com 50 cm de profundidade, é de 200. ( ) litros. ( ) Uma loja vende três tipos de canetas (x, y e z). Um estudante comprou 3 canetas tipo x, 7 tipo y e 1 tipo z, pagando R$ 48,10 pela compra. Seu colega comprou 4 canetas tipo x, 10 tipo y e 1 tipo z, o que totalizou R$ 57,80. Nas condições dadas, a compra de três canetas, sendo uma de cada tipo, custa nessa loja mais de R$ 29,00. ( ) Uma partícula luminosa desloca-se em movimento retilíneo uniforme a 25 mm/s. Mantendo-se constante essa velocidade, ela percorrerá 2 km em segundos. A sequência correta é: A V - F - V - F - F B F - F - V - V - V C V - V - F - F - V 1 a afirmação verdadeira (V). Volume 2 a afirmação verdadeira (V) litros equivale a 50 cm equivale a 5 dm Volume Logo, 3 a afirmação falsa (F). (quadrado perfeito) 4 a afirmação falsa (F). equação I litros equação II Multiplicando a equação I por 3 e a equação II por 2, temos:

5 (III) (IV) Fazendo, temos: A compra custa menos de R$ 29,00. 5 a afirmação verdadeira (V). D F V - F - V - F E V - V - F - V - V s. Os recursos não têm procedência única alternativa correta letra C conforme Todas as proposições estão contempladas no edital do concurso. 18) Em um triângulo retângulo, a hipotenusa mede 30 cm e a mediana relativa a hipotenusa tem 27 cm a menos que a soma das medidas dos catetos. Portanto, o perímetro do triângulo, em cm, é um número: A múltiplo de 7. B múltiplo de 8. Na figura abaixo, temos que: A mediana AM mede metade da hipotenusa, isto é, ( ) ( ) e e.

6 Perímetro do triângulo Perímetro é igual a 72 ( múltiplo de 8). C divisível por 10. D quadrado perfeito. E maior que 80. Os recursos não têm procedência única alternativa correta letra B conforme 19) Sejam ( ) uma progressão geométrica e ( ) uma progressão aritmética cuja razão é 7/10 da razão da progressão geométrica ( ) e, ainda, sabendo que nas sequências e que, então, a razão da progressão aritmética é um número: A decimal. Na P.G. temos: e Na P.A. temos: razão Como: Temos então: A razão da PA é. B divisível por 3. C quadrado perfeito D múltiplo de 7. E menor que 10. Os recursos não têm procedência única alternativa correta letra A conforme PA e PG são sequências. 20) O número complexo, com e reais, satisfaz a equação. Então, é igual a: A 10.

7 B 28. C 136. D 100. Resolvendo a equação, temos: e Então: E 64. Os recursos procedem. DECISÃO DA BANCA ELABORADORA: Anular a questão.

Associação Catarinense das Fundações Educacionais ACAFE

Associação Catarinense das Fundações Educacionais ACAFE Associação Catarinense das Fundações Educacionais ACAFE PROCESSO SELETIVO PARA ADMISSÂO DE PROFESSORES EM CARÁTER TEMPORÁRIO 2017 PARECER RECURSOS PROVA 1 MATEMÁTICA METODOLOGIA DO ENSINO DE MATEMÁTICA

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/2016 Prova A MATEMÁTICA 01. Uma loja reajustou em 20% o preço de certo modelo de televisão. Todavia, diante da queda nas vendas, a loja pretende dar

Leia mais

Seqüências Numéricas

Seqüências Numéricas Seqüências Numéricas É uma seqüência composta por números que estão dispostos em uma determinada ordem pré-estabelecida. Alguns exemplos de seqüências numéricas: (,, 6, 8, 0,,... ) (0,,, 3,, 5,...) (,,

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA E SUAS TECNOLOGIAS Lista de Exercícios de Matemática / º ano Professor(: Leonardo Data: / JANEIRO / 06. De sonhos e Aluno(: Questão 0) Um casal tem três filhos cujas idades estão em progressão

Leia mais

MATEMÁTICA QUESTÕES DE PORCENTAGEM EXTRAS. B no valor de R$ ,00. O valor de cada. 40% do número de carros no modelo A e 60%

MATEMÁTICA QUESTÕES DE PORCENTAGEM EXTRAS. B no valor de R$ ,00. O valor de cada. 40% do número de carros no modelo A e 60% MATEMÁTICA Prof. Favalessa QUESTÕES DE PORCENTAGEM EXTRAS 1. (Faculdade Albert Einstein) Suponha que, em certo país, observou-se que o número de exames por imagem, em milhões por ano, havia crescido segundo

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

PROCESSO SELETIVO/ O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15

PROCESSO SELETIVO/ O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 PROCESSO SELETIVO/005 1 O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. As prefeituras das cidades A, B e C construíram uma ponte sobre o rio próximo a estas cidades. A ponte dista 10 km de A, 1

Leia mais

AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ

AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ a AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA 0 - (ESPM RS) Um capital aplicado à taxa de juros simples de

Leia mais

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV. Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)

Leia mais

1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4,

1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4, 1. Um exemplo de número irracional é (A) 4,2424242... (B) 4,2426406... (C) 4,2323... (D) 3,42 4,2426406... Solução: Número irracional é o número decimal infinito e não periódico. (A) A parte decimal é

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f

Leia mais

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade

PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade Nome: N.º Turma Data: / / Avaliação Professor Encarregado Educação Parte 1: 35 minutos. (é permitido o uso de calculadora) 1 2 1. Sabe-se que A ]3, 21 21 ] = ] 2, ]. 2 2 Qual dos conjuntos seguintes poderá

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA O 8 Ọ ANO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA O 8 Ọ ANO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O Ọ ANO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (ENEM) Uma editora pretende despachar um lote de livros, agrupados

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa E. alternativa B. alternativa B. alternativa D

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa E. alternativa B. alternativa B. alternativa D Questão TIPO DE PROVA: A No ano de 00, no Brasil, foram emplacados aproimadamente.0.000 veículos nacionais e 5.000 veículos importados, sendo que % dos importados eram japoneses. Do total de veículos emplacados

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por

Leia mais

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21. MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS PROGRESSÃO ARITMÉTICA P.A.

PROF. LUIZ CARLOS MOREIRA SANTOS PROGRESSÃO ARITMÉTICA P.A. TEXTO: 1 Tales, um aluno do Curso de Matemática, depois de terminar o semestre com êxito, resolveu viajar para a Europa. Questão 01) O Portão de Brandemburgo, em Berlim, possui cinco entradas, cada uma

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração

Leia mais

Proposta de teste de avaliação Matemática 9

Proposta de teste de avaliação Matemática 9 Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos

x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos 0) Nas figuras a seguir, a curva é o gráfico da função x retângulos hachurados para infinitos que possuem as mesmas características. f x. Observe atentamente o que ocorre com os x. Em cada uma das figuras,

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância

Leia mais

x + 2 com o eixo dos x, respectivamente.

x + 2 com o eixo dos x, respectivamente. PASES 1 a ETAPA TRIÊNIO 004-006 1 o DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 10 01. Sejam A e B os pontos de interseção dos gráficos das funções f ( x) = 1 x + e g ( x) = 1 x + com o eixo dos x, respectivamente.

Leia mais

30's Volume 18 Matemática

30's Volume 18 Matemática 0's Volume 18 Matemática wwwcursomentorcom 0 de dezembro de 2014 Q1 Num cilindro reto de base circular, cujo diâmetro mede 2 m, e de altura igual a 10 m, faz-se um furo central, vazando-se esse cilindro,

Leia mais

PROVAS DA SEGUNDA ETAPA PS2007/UFG

PROVAS DA SEGUNDA ETAPA PS2007/UFG UFG-PS/7 PROVAS DA SEGUNDA ETAPA PS7/UFG Esta parte do relatório mostra o desempenho dos candidatos do grupo na prova de Matemática da ª etapa do PS7. Inicialmente, são apresentados os dados gerais dos

Leia mais

MATEMÁTICA SEGUNDO ANO

MATEMÁTICA SEGUNDO ANO O único lugar onde o sucesso vem antes do trabalho é no dicionário Albert Einstein MATEMÁTICA SEGUNDO ANO NOME COMPLETO: TURMA: TURNO: ANO: PROFESSORA: Progressão Aritmética Conceito; Termo Geral; Soma

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Roteiro de estudos para recuperação final

Roteiro de estudos para recuperação final Roteiro de estudos para recuperação final Disciplina: Matemática 1 Professor (a): Pedro Costa Júnior Semelhança de triângulos. Apostila 2 - Bernoulli: 6V Módulo: 5 Frente B Páginas: 37 a 44. Fixação (3

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162 0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5

Leia mais

PLANTÕES DE JULHO MATEMÁTICA

PLANTÕES DE JULHO MATEMÁTICA Página 1 PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 9º ANO Profª CAROL MARTINS Data: JULHO 2016 Teorema de Pitágoras e Relações Métricas no Triângulo Retângulo 1) Determine o valor x da medida do lado

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Canguru Matemático sem Fronteiras 2010 Duração: 1h30min Destinatários: alunos do 12 Ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões

Leia mais

PLANTÕES DE JULHO MATEMÁTICA

PLANTÕES DE JULHO MATEMÁTICA Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada

Leia mais

FUNÇÃO DO 2 GRAU TERÇA FEIRA

FUNÇÃO DO 2 GRAU TERÇA FEIRA FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),

Leia mais

Simulado 1 Matemática IME Soluções Propostas

Simulado 1 Matemática IME Soluções Propostas Simulado 1 Matemática IME 2012 Soluções Propostas 1 Para 0, temos: para cada um dos elementos de, valores possíveis em (não precisam ser distintos entre si, apenas precisam ser pertencentes a, pois não

Leia mais

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica

Universidade Federal do Pará - PARFOR. Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Universidade Federal do Pará - PARFOR Disciplina: Álgebra Básica e Laboratório de Ensino de Álgebra Básica Lista de Exercícios para Prova Substitutiva Assuntos Abordados: Polinômios, Produtos notáveis

Leia mais

a) 6% b) 7% c) 70% d) 600% e) 700%

a) 6% b) 7% c) 70% d) 600% e) 700% - MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM 8% de aprovação na ESPM ESPM NOVEMBRO/008 PROVA E MATEMÁTICA. A produção total de uma fábrica de calçados no ano passado foi de 80 mil pares, sendo que os modelos infantis atingiram 0% da produção de todos

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se

Leia mais

PROVAS DE NÍVEL MÉDIO DA FUNDATEC

PROVAS DE NÍVEL MÉDIO DA FUNDATEC PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.

Leia mais

Resolução UFTM. Questão 65

Resolução UFTM. Questão 65 UFTM Questão 65 Sabe-se que a diferença entre as medidas do comprimento a e da largura b de um tapete retangular é igual a x, e que o seu perímetro é igual a 1x. A área desse tapete pode ser corretamente

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 016-17 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA Sejam

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

9(67,%8/$5 '$ 0$&.(1=,( 63 *UXSRV,, H,,, 3URYD 7LSR $ 3529$ '( 0$7(0È7,&$ 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$

9(67,%8/$5 '$ 0$&.(1=,( 63 *UXSRV,, H,,, 3URYD 7LSR $ 3529$ '( 0$7(0È7,&$ 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$ 9(67,%8/$5 '$ 0$&.(1=,( 63 *UXSRV,, H,,, 3URY 7LSR $ 3529$ '( 0$7(0È7,&$ 5(62/8d 2 ( &20(17È5,26 325 352)$ 0$5,$ $1721,$ *289(,$ Questão nº 01 Os números compreendidos entre 400 e 1 500, divisíveis ao

Leia mais

(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.

(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500. (UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5

Leia mais

COLÉGIO PEDRO II - CAMPUS CENTR0

COLÉGIO PEDRO II - CAMPUS CENTR0 COLÉGIO PEDRO II - CAMPUS CENTR0 Teste de Matemática / /2015 Coord.: Cláudio 1 o Turno Prof. : Sérgio Antoun Serrano 1 2x 3 1) Seja a função bijetora definida em IR { } IR {a} com f ( x), onde a IR. Calcule

Leia mais

EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA 1ª Série do E. M. 4º Bimestre

EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA 1ª Série do E. M. 4º Bimestre EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA 1ª Série do E. M. 4º Bimestre 01. Interpolando-se sete termos aritméticos entre os números 10 e 98, obtém-se uma progressão aritmética cujo termo central é: a) 45.

Leia mais

Nome: nº Data: / / FICHA DE TRABALHO MATEMÁTICA

Nome: nº Data: / / FICHA DE TRABALHO MATEMÁTICA Nome: nº Data: / / Professora: Tosca Regina Xocaira Hannickel FICHA DE TRABALHO MATEMÁTICA QUESTÃO 01 (Descritor: calcular o perímetro de um circuito utilizando a conseqüência do Teorema de Tales ) Assunto:

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA 01. (UNESP 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Prof. Dr. Aldo Vieira

Prof. Dr. Aldo Vieira . Um estudo das condições ambientais na região central de uma grande cidade indicou que a taxa média diária (C) de monóxido de carbono presente no ar é de C(p) = 0,5p + partes por milhão, para uma quantidade

Leia mais

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Verifique se as afirmações abaixo são verdadeiras ou falsas Justifique sua resposta a) O número é irracional; (0,5

Leia mais

Cone Nível Fácil

Cone Nível Fácil Cone 016 Nível Fácil 1. (Ufjf-pism 016) São dados dois cones equiláteros C 1 e C tais que a área total de C é o dobro da área total de C 1 e que o raio da base de C 1 é cm. Sabendo que em um cone equilátero,

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998 PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log

Leia mais

Escola Secundária com 3º CEB de Lousada

Escola Secundária com 3º CEB de Lousada Escola Secundária com º CE de Lousada Ficha de Trabalho de Matemática do 8º no N.º7 ssunto: Ficha de Preparação para o Teste Intermédio (Parte ) bril 011 1. Indique qual das seguintes afirmações é verdadeira:

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 7 Ọ ANO EM Disciplina:

Nome: N.º: endereço: data: telefone:   PARA QUEM CURSA O 7 Ọ ANO EM Disciplina: Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 203 Disciplina: MateMática Prova: desafio nota: QUESTÃO 6 (UFR RJ ADAPTADO) Em uma divisão cujo divisor é 29, temos o quociente

Leia mais

n! (n r)!r! P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = n A n,r = n! (n r)! Probabilidade número de resultados favoráveis a A P(A) = número de resultados possíveis Progressões aritméticas a n = a +(n

Leia mais

Gabarito Final com Distribuição dos Pontos - Questão 1. (1 ponto) Assim, Logo,. Daí,. (2 pontos) Portanto, Agora, como é uma P.G. com e razão, temos:

Gabarito Final com Distribuição dos Pontos - Questão 1. (1 ponto) Assim, Logo,. Daí,. (2 pontos) Portanto, Agora, como é uma P.G. com e razão, temos: PROCESSO SELETIVO 009- Gabarito Final com Distribuição dos Pontos - Questão 1 A) De acordo com o enunciado, temos a P.A. 4. Assim, de razão r= e soma igual a () Logo,. () Daí,. Portanto, ( pontos) Agora,

Leia mais

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. alternativa E. alternativa C. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. alternativa E. alternativa C. alternativa E Questão TIPO DE PROVA: A Pedro e Luís tinham, em conjunto, a importância de R$690,00. Pedro gastou de seu 5 dinheiro e Luís gastou do que possuía, ficando ambos com quantias iguais. Pedro ti- nha a quantia

Leia mais

Gabarito - Matemática - Grupos I e J

Gabarito - Matemática - Grupos I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor x O gráfico da função exponencial f, definida por f( x) = k a, foi construído utilizando-se o programa de geometria dinâmica gratuito GeoGebra (http://www.geogebra.org),

Leia mais

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³

Leia mais

CPV conquista 93% das vagas do ibmec

CPV conquista 93% das vagas do ibmec conquista 9% das vagas do ibmec (junho/008) Prova REsolvida IBMEC 09/Novembro /008 (tarde) ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA 0. Renato decidiu aplicar R$ 00.000,00 em um fundo de previdência privada.

Leia mais

Exame Nacional de Matemática 23 2.ª Chamada 2008 (9.º ano) Proposta de Resolução

Exame Nacional de Matemática 23 2.ª Chamada 2008 (9.º ano) Proposta de Resolução Eame Nacional de Matemática 3.ª Chamada 008 (9.º ano) Item 1 Proposta de Resolução O mínimo múltiplo comum entre dois ou mais números primos diferentes é o produto desses números. Neste caso, considerando

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

1 Curso Eduardo Chaves-www.eduardochaves.com

1 Curso Eduardo Chaves-www.eduardochaves.com 1 Curso Eduardo Chaves-www.eduardochaves.com Lista de exercícios de equação do 2º grau, biquadrada e equações irracionais, para estudar para prova do 2º bimestre. 1) Resolva as seguintes equações do 2º

Leia mais

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

CPV - especializado na ESPM

CPV - especializado na ESPM - especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 18 DE JULHO 2013 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 2ª FASE 18 DE JULHO 2013 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) ª FASE 18 DE JULHO 013 GRUPO I 1.1. Como o professor não abriu a porta com a primeira chave, ficou com duas chaves

Leia mais

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ)

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) [ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec =, sen 0 sen sen cos tg cotg = sec =, cos 0 cos tg = sen cos, cos 0 cos sen, sen 0 sen + cos = ) a n = a + (n ) r ) A = onde b h D = ou y A = D y y a + an )

Leia mais

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

2º trimestre Lista de exercícios Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Lista de exercícios Ensino Médio º ano classe: Prof. Maurício Nome: nº --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO DEPARTAMENTO DE MATEMÁTICA E TECNOLOGIAS ÁREA DISCIPLINAR DE MATEMÁTICA PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO CALENDARIZAÇÃO DO ANO LETIVO Período Início Fim Nº Semanas

Leia mais

Como a PA é decrescente, a razão é negativa. Então a PA é dada por

Como a PA é decrescente, a razão é negativa. Então a PA é dada por Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada

Leia mais

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área. Colégio Providência Avaliação por Área 1ª SÉRIE ENSINO MÉDIO

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área. Colégio Providência Avaliação por Área 1ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias ª ETAPA Data: 6//0 ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias ª ETAPA Data: 6//0 ª SÉRIE

Leia mais

Exercícios: comandos condicionais

Exercícios: comandos condicionais Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de programação em linguagem Python Exercícios: comandos condicionais 1. Faça um programa que receba dois números

Leia mais

DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS:

DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS: DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO,ADRIANA E MAGNO DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS: ALUNO (A): Nº: 01. RELAÇÃO DO CONTEÚDO PARA RECUPERAÇÃO

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

(6$0& 9HVWLEXODU B. Questão 26. Questão 27. 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD

(6$0& 9HVWLEXODU B. Questão 26. Questão 27. 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD (6$0& 9HVWLEXODU B M A T E M Á T I C A 5HVROXomR H FRPHQWiULR ² 3URID 0DULD $QW{QLD &RQFHLomR *RXYHLD Questão 26 Para todo x real, seja Int(x) o maior número inteiro que não supera x. Dessa forma, o valor

Leia mais

Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola de Sargentos das Armas EsSA

Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola de Sargentos das Armas EsSA Soluções Comentadas Matemática Curso Mentor Provas de Matemática do Concurso de Admissão à Escola de Sargentos das Armas EsSA Barbosa, L.S. leonardosantos.inf@gmail.com 15 de outubro de 2013 2 Sumário

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 01/013 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 0 E TRANSCREVA

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

Matemática. Progressão Aritmética. Eduardo. Matemática Progressões

Matemática. Progressão Aritmética. Eduardo. Matemática Progressões Matemática Progressão Aritmética Eduardo Progressão Aritmética P.A. CRESCENTE r > 0 Ex: (-4, -2, 0,...) P.A. DECRESCENTE r < 0 Ex: (10, 8, 6,...) P.A. CONSTANTE r = 0 Ex: (8, 8, 8,...) Progressão Aritmética

Leia mais

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3

:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3 Questão 26 - Alternativa D Proporcionalidade Dados: Em 24 horas temos: 25 0,2 = 5 ml por minuto 25 gotas por minuto 0,2 ml por gota 24. 60 = 1440 minutos 5 ml _ 1 minuto x _ 1.440 minutos x = 5 1.440 =

Leia mais