9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

Tamanho: px
Começar a partir da página:

Download "9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla"

Transcrição

1 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1

2 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual é a equação? usar a equação para predição 2

3 9-2 Correlação 3

4 Definição Correlação existe entre duas variáveis quando uma delas está, de alguma forma, relacionada com a outra. 4

5 Suposições 1. A amostra de dados emparelhados (x,y) é uma amostra aleatória. 2. Os pares de dados (x,y) tem uma distribuição normal bivariada. 5

6 Definição Diagrama de Dispersão é um gráfico de dados amostrais emparelhados (x,y) com o eixo x horizontal e o eixo y vertical. Cada par individual (x,y) é plotado como um ponto. 6

7 Diagrama de Dispersão 7

8 Correlação Linear Positiva y y y (a) Positiva x (b) Positiva Forte x (c) Positiva Perfeita x Figura 9-1 Diagramas de Dispersão 8

9 Correlação Linear Negativa y y y (d) Negativa x (e) Negativa Forte x (f) Negativa Perfeita x Figura 9-1 Diagramas de Dispersão 9

10 Sem Correlação Linear y y (g) Não há Correlação x (h) Correlação não-linear x Figura 9-1 Diagramas de Dispersão 10

11 Notação S xx = Σ(x x) - 2 = (Σx 2 ) n( x - ) 2 S yy = Σ(y y) - 2 = (Σy 2 ) n( y - ) 2 S xy = Σ (x x)(y - y) - = (Σxy) n( x - )( y - ) 11

12 Definição Coeficiente de Correlação Linear r mede o grau de relacionamento linear entre os valores emparelhados x e y em uma amostra r = S xy (S xx ) (S yy ) Fórmula 9-1 Calculadoras podem fornecer r ρ (rô) é o coeficiente de correlação linear de todos os dados emparelhados da população. 12

13 Notação para o Coeficiente de Correlação Linear n Σ número de pares de dados presentes denota a adição dos itens indicados. Σx denota a soma de todos os valores de x. Σx 2 (Σx) 2 Σxy r ρ indica que devemos ao quadrado cada valor de x e somar os resultados. indica que devemos somar os valores de x e elevar o total ao quadrado. indica que devemos multiplicar cada valor de x pelo valor correspondente de y e somar então todos estes produtos. representa o coeficiente de correlação linear para uma amostra. representa o coeficiente de correlação linear para uma população 13

14 Interpretando o Coeficiente de Correlação Linear Se o valor absoluto de r excede o valor na Tabela A - 6, concluímos que há correlação linear significativa. Caso contrário, não há evidência suficiente para apoiar a existência de uma correlação linear significativa. 14

15 TABELA A-6 Valores Críticos do Coeficiente de Correlação de Pearson r n α =.05 α =.01,950,878,811,754,707,666,632,602,576,553,532,514,497,482,468,456,444,396,361,335,312,294,279,254,236,220,207,196,999,959,917,875,834,798,765,735,708,684,661,641,623,606,590,575,561,505,463,430,402,378,361,330,305,286,269,256 15

16 Propriedades do Coeficiente de Correlação Linear r r 1 2. O valor de r não varia se todos os valores de qualquer uma das variáveis são convertidos para uma escala diferentes. 3. O valor de r não é afetado pela escolha de x ou y. Permutando todos os valores de x e y, o valor de r permanecerá inalterado. 4. r mede a intensidade, ou grau, de um relacionamento linear. 16

17 Erros Comuns Envolvendo Correlação 1. Causalidade: É errado concluir que correlação implica causalidade. 2. Médias ou Taxas: Taxas ou médias suprimem a variação individual e podem inflacionar o coeficiente de correlação. 3. Linearidade: Pode haver alguma relação entre x e y mesmo quando não há correlação linear significativa. 17

18 Erros Comuns Envolvendo Correlação FIGURA Distância (pés) Tempo (segundos) Diagrama de dispersão da distância acima do solo e do tempo para um objeto lançado para cima 18

19 Teste de Hipótese Formal Para determinar se existe uma correlação linear significativa entre duas variáveis Dois métodos Ambos métodos utilizam: H 0 : ρ = 0 (não há correlação linear significativa) H 1 : ρ 0 (correlação linear significativa) 19

20 Método 1: Estatística de Teste é t (segue formato apresentado anteriormente) Estatística de Teste: t = r 1 - r 2 n -2 Valores Críticos: utilizar a Tabela A-3 com graus de liberdade = n -2 20

21 Método 1: Estatística de Teste é t (segue formato apresentado anteriormente) Figura

22 Método 2: Estatística de Teste é r (exige menos cálculos) Estatística de teste: r Valores críticos: Consulte a Tabela A-6 (não há graus de liberdade) Rejeitar ρ = 0 Não rejeitar ρ = 0 Rejeitar ρ = 0-1 Figura 9-5 r = - 0,811 0 r = 0,811 1 Valor amostral: r = 0,828 22

23 FIGURA 9-3 Teste para a Correlação Linear Início Seja: H 0 : ρ = 0 H 1 : ρ 0 Escolha um nível de significância l α Calcule r com a Fórmula 9-1 MÉTODO 1 MÉTODO 2 A estatística de teste é r t = 1 - r 2 n -2 Os valores críticos de t estão na Tabela A-3, ( n -2 graus de liberdade) A estatística de teste é r Os valores críticos de r encontram-se na Tabela A-6 Se o valor absoluto da estatística de teste excede os valores críticos, rejeitar H 0 : ρ = 0 Caso contrário, não rejeitar H 0 Se H 0 é rejeitada, concluir que há Correlação linear significativa. Se H 0 não é rejeitada, então não há evidência suficiente para concluir pela existência de uma correlação linear. 23

24 Há correlação linear significativa? Dados do Projeto do Lixo: Análise de plástico descartado x Plástico (kg) y Tamanho da residência 0, , , ,284 n = 8 α = 0,05 H 0 : ρ = 0 6 H 1 :ρ 0 0, , , ,383 5 Estatística de teste é r = 0,842 24

25 Há correlação linear significativa? n = 8 α = 0,05 H 0 : ρ = 0 H 1 :ρ 0 Estatística de teste é r = 0,842 Valores críticos são r = - 0,707 e 0,707 (Tabela A-6 com n = 8 e α = 0,05) TABELA A-6 Valores Críticos do Coeficiente de Correlação de Pearson r n α =,05 α =,01,950,878,811,754,707,666,632,602,576,553,532,514,497,482,468,456,444,396,361,335,312,294,279,254,236,220,207,196,999,959,917,875,834,798,765,735,708,684,661,641,623,606,590,575,561,505,463,430,402,378,361,330,305,286,269,256 25

26 Há correlação linear significativa? 0,842 > 0,707, ou seja, a estatística de teste está na região crítica. REJEITAMOS, pois, H 0 : ρ = 0 (ausência de correlação) e concluímos que há correlação linear significativa entre o Peso de plástico descartado e o tamanho das residências. Rejeitar ρ = 0 Não Rejeitar ρ = 0 Rejeitar ρ = 0-1 r = - 0,707 0 r = 0,707 1 Dados amostrais: r = 0,842 26

27 Justificação para a Fórmula de r Fórmula 9-1 é desenvolvida de Σ (x -x) (y -y) r = (x, y) centróide dos pontos (n -1) s x s y 24 y x = 3 x - x = 7-3 = 4 (7, 23) da amostra 20 y - y = = II Quadrante III Quadrante (x, y) I Quadrante IV Quadrante x y = 11 FIGURA

28 Definição 9-3 Regressão Equação de Regressão Dada uma coleção de dados amostrais emparelhados, a equação de regressão y ^ = b 0 + b 1 x descreve a relação entre as duas variáveis Reta de Regressão (reta de melhor ajuste ou reta de mínimos quadrados) o gráfico da equação de regressão 28

29 Reta de Regressão em Diagrama de Dispersão 29

30 A Equação de Regressão x é a variável independente (variável preditora) ^y é a variável dependente (variável resposta) y ^= b +b x 0 1 y = mx +b b 0 = y - intercepto b 1 = inclinação 30

31 Notação para a Equação de Regressão Parâmetro Populacional Estatística Amostral y-intercepto da equação de regressão β 0 b 0 Inclinação da equação de regressão β 1 b 1 Equação da reta de regressão y = β 0 + β 1 x y ^ = b 0 + b 1 x 31

32 Suposições 1. Estamos investigando apenas relações lineares. 2. Para um dado valor de x, y é uma variável aleatória com distribuição normal (em forma de sino). Todas essas distribuições de y tem a mesma variância. E ainda, para um dado valor de x, a média da distribuição dos valores de y está sobre a reta de regressão. (Os resultados não são afetados seriamente se os desvios da normalidade e da igualdade da variância não são grandes.) 32

33 Fórmula para b 0 e b 1 Fórmula b 0 = y - b 1 x (intercepto y) Fórmula 9-3 b 1 = (S xy ) (S xx ) (coeficiente angular Calculadoras ou computadores podem determinar estes valores Fórmula

34 A reta de regressão é a que melhor se ajusta aos pontos amostrais. 34

35 Predições Ao predizer um valor de y com base em determinado valor de x Se não há uma correlação linear significativa, o melhor valor predito de y é y. 2. Se há uma correlação linear significativa, obtém-se o melhor valor predito de y substituindo-se o valor de x na equação de regressão. 35

36 FIGURA 9-7 Predizendo o Valor de uma Variável Iniciar Calcular r e testar a hipótese que ρ = 0 Há correlação linear significativa? Não Dado um valor arbitrário de uma variável, o melhor valor Predito da outra variável é sua média amostral. Sim Utilizar a equação de regressão para fazer predições. Levar o valor Dado na equação de regressão. 36

37 Diretrizes para o Uso da Equação de Regressão 1. Se não há correlação linear significativa, não use a equação de regressão para fazer predições. 2. Ao aplicar a equação de regressão para predições, mantenha-se dentro do âmbito dos dados amostrais. 3. Uma equação de regressão baseada em dados passados não é necessariamente válida hoje. 4. Não devemos fazer predições sobre uma população diferente daquela de onde provêm os dados amostrais. 37

38 Qual é a melhor predição do tamanho de uma residência que descarta 0,227 kg de plástico? Dados do Projeto Lixo: Análise de plástico descartado x Plástico (kg) y Tamanho da residência 0, , , ,284 Usando uma calculadora: b 0 = 0, , , , ,383 5 b 1 = 3,263 y = 0, ,263 (0,227) y = 1,29 Uma residência que que descarta 0,227 kg de plástico tem aproximadamente uma pessoa. 38

39 Definições Variação Marginal a quantia que uma variável varia quando a outra variável sofre uma variação de exatamente 1 unidade Outlier um ponto que está muito afastado dos demais pontos. Pontos de Influência pontos que afetam fortemente o gráfico da reta de regressão. 39

40 Resíduos e Propriedade de Resíduos Mínimos Quadrados Definições dado um par de dados amostrais (x,y), um resíduo é a diferença (y - y) ^ entre um valor amostral observado y e ^ o valor y predito com base na equação de regressão. Propriedade dos Mínimos Quadrados Uma reta verifica a propriedade dos mínimos quadrados se a soma dos quadrados dos resíduos é a menor possível. 40

41 Resíduos e a Propriedade dos Mínimos Quadrados x y y = 5 + 4x ^ FIGURA y Resíduo = 11 Resíduo = Resíduo = 7 Resíduo = -13 x 41

42 9-4 Intervalo de Variação e de Predição 42

43 Definições Desvio Total (de um particular ponto (x, y) em relação à média) é a distância vertical y - y, que é a distância entre o ponto (x, y) e a reta horizontal que passa pela média amostral y. Desvio Explicado ^ é a distância vertical y - y, que é a distância entre o valor predito y e a reta horizontal que passa pela média amostral y. Desvio não-explicado ^ é a distância vertical y - y, que é a distância vertical entre o ponto (x, y) e a reta de regressão. (A distância y - ^y também é chamada resíduo, definido na Seção 9-3.) 43

44 Figura 9-9 Desvios: Não-explicado, Explicado e Total y Desvio total (y - y) y ^ = 3 + 2x (5, 19) (5, 13) (5, 9) y = 9 Desvio não-explicado (y - y) ^ Desvio explicado (y ^ - y) x 44

45 (desvio total) = (desvio explicado) + (desvio não-explicado) ^ (y - y) = (y - y) + (y - y) ^ (variação total) = (variação explicada) + (variação não-explicada) Σ (y - y) 2 = Σ (y ^- y) 2 + Σ ^ (y - y) 2 Fórmula

46 Definição Coeficiente de determinação é o valor da variação de y que é explicado pela reta de regressão R 2 = variação explicada. variação total ou simplesmente o quadrado de r (determinado pela Fórmula 9-1, seção 9-2) 46

47 Intervalos de Predição Definição Erro-padrão da estimativa é uma medida das diferenças (ou distâncias) entre os valores amostrais y observados e os valores preditos y^ obtidos através da reta de regressão. 47

48 Erro-padrão da Estimativa s e = Σ (y - y) 2 n -2 ^ ou s e = Σ y 2 -b 0 Σ y - b 1 Σ xy n -2 Fórmula

49 Intervalo de Predição para um ^ determinado y ^ y - E < y < y + E onde E = t α /2 s e n (x 0 x ) 2 S xx x 0 representa o valor dado de x t α /2 tem n - 2 graus de liberdade 49

50 9-5 Regressão Múltipla Definição Equação de Regressão Múltipla Um relacionamento linear entre uma variável dependente y e duas ou mais variáveis independentes (x 1, x 2, x 3..., x k ) ^y = b 0 + b x b x b x k k 50

51 Notação ^ y = b 0 + b 1 x 1 + b 2 x 2 + b 3 x b k x k (Forma geral da equação de regressão múltipla estimada) n = tamanho da amostra k = número de variáveis independentes ^ y = valor predito da variável dependente y x 1, x 2, x 3..., x k são as variáveis independentes 51

52 Notação ß 0 = intercepto y, ou valor de y quando todas as variáveis preditoras são 0. b 0 = estimativa de ß 0 baseada nos dados amostrais ß 1, ß 2, ß 3..., ß k são os coeficientes das variáveis independentes x 1, x 2, x 3..., x k b 1, b 2, b 3..., b k são as estimativas amostrais dos coeficientes ß 1, ß 2, ß 3..., ß k 52

53 Definições R 2 Ajustado Coeficiente de determinação múltipla uma medida do grau de ajustamento da equação de regressão múltipla aos dados amostrais Coeficiente de determinação ajustado o coeficiente múltiplo de determinação R 2 modificado de modo a levar em conta o número de variáveis e o tamanho da amostra. 53

54 R 2 Ajustado R 2 Ajustado = 1 - (n - 1) [n - (k + 1)] (1 - R 2 ) Fórmula 9-7 onde n = tamanho da amostra k = número de variáveis independentes (x) 54

55 Determinação da Melhor Equação de Regressão Múltipla 1. Use o bom senso e considerações de ordem prática para incluir ou excluir variáveis. 2. Em vez de incluir todas as variáveis disponíveis, inclua um número relativamente pequeno de variáveis independentes (x), eliminando as variáveis independentes que não tenham influência na variável dependente. 3. Escolha uma equação que tenha um valor de R 2 ajustado com esta propriedade: Se se inclui uma variável independente adicional, o valor de R 2 ajustado não é aumentado substancialmente. 4. Para um dado número de variáveis independentes (x), escolha a equação com o maior valor ajustado R Escolha uma equação que tenha significância global, tal como determinada pelo valor P na tela do computador. 55

REGRESSÃO E CORRELAÇÃO

REGRESSÃO E CORRELAÇÃO Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior ESTATÍSTICA INFERENCIAL Prof. Dr. Guanis de Barros Vilela Junior As Hipóteses A Hipótese Nula (H 0 ) é, em geral, uma afirmação conservadora sobre uma situação da pesquisa. Por exemplo, se você quer testar

Leia mais

AULAS 14 E 15 Modelo de regressão simples

AULAS 14 E 15 Modelo de regressão simples 1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem

Leia mais

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 5

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 5 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Disciplina: Estatística II LISTA DE EXERCÍCIOS 5 1. Quando que as amostras são consideradas grandes o suficiente,

Leia mais

Exercícios Selecionados de Econometria para Concursos Públicos

Exercícios Selecionados de Econometria para Concursos Públicos 1 Exercícios Selecionados de Econometria para Concursos Públicos 1. Regressão Linear Simples... 2 2. Séries Temporais... 17 GABARITO... 20 2 1. Regressão Linear Simples 01 - (ESAF/Auditor Fiscal da Previdência

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Estatística aplicada ao Melhoramento animal

Estatística aplicada ao Melhoramento animal Qual é a herdabilidade para uma característica? Qual é a variabilidade de desempenho para essa característica? Selecionando para a característica X, característica Y será afetada? Como predizer os valores

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

9 Regressão linear simples

9 Regressão linear simples 9 Regressão linear simples José Luis Duarte Ribeiro Carla ten Caten COMENTÁRIOS INICIAIS Em muitos problemas há duas ou mais variáveis que são relacionadas e pode ser importante modelar essa relação. Por

Leia mais

Material exclusivo para o livro ESTATÍSTICA (São Paulo, Pleiade, 2008). Proibida a reprodução, sob pena da lei.

Material exclusivo para o livro ESTATÍSTICA (São Paulo, Pleiade, 2008). Proibida a reprodução, sob pena da lei. Regressão Linear marcoscgarcia@gmail.com 2008). Proibida a reprodução, sob pena da lei. 1 O modelo estatístico de Regressão Linear Simples Regressão linear simples é usado para analisar o comportamento

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO DOUTORADO - TURMA 20 VERSÃO

Leia mais

Palavras-chave: Correlação entre variáveis. Definição de regressões para determinação de lucro.

Palavras-chave: Correlação entre variáveis. Definição de regressões para determinação de lucro. DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v4n11p9-20 PROGRAMAÇÃO LINEAR E OS CUSTOS PARA PLANEJAMENTO Valter Augusto Krauss Contador, professor da Furb, Mestre em Contabilidade e Controladoria pela

Leia mais

Gabarito da 1 a Lista de Exercícios de Econometria II

Gabarito da 1 a Lista de Exercícios de Econometria II Gabarito da 1 a Lista de Exercícios de Econometria II Professor: Rogério Silva Mattos Monitor: Delano H. A. Cortez Questão 1 Considerando que o modelo verdadeiro inicialmente seja o seguinte: C = a + 2Y

Leia mais

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO 3 ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 4

UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO 3 ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 4 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO 3 ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 4 Disciplina: Estatística I 1. Dado que z é uma variável aleatória normal padrão, calcule as

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

1 Introdução aos Métodos Estatísticos para Geografia 1

1 Introdução aos Métodos Estatísticos para Geografia 1 1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade

Leia mais

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME:

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: Observação: A resolução completa das perguntas inclui a justificação

Leia mais

= < 5. O segundo menor valor esperado estimado corresponde à célula (3,3), com Ê33 = 29 30

= < 5. O segundo menor valor esperado estimado corresponde à célula (3,3), com Ê33 = 29 30 ISTITUTO SUPERIOR DE AGROOMIA ESTATÍSTICA E DELIEAMETO 2 de ovembro, 205 PRIMEIRO TESTE 205-6 Uma resolução possível I Tem-se uma tabela de contingências de dimensão 3 4. Apenas o número total de observações

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO MESTRADO - TURMA 2012 PROVA

Leia mais

AULAS 13, 14 E 15 Correlação, Análise Fatorial e Regressão

AULAS 13, 14 E 15 Correlação, Análise Fatorial e Regressão 1 AULAS 13, 14 E 15 Correlação, Análise Fatorial e Regressão Ernesto F. L. Amaral 27 de setembro, 02 e 04 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Econometria Semestre

Econometria Semestre Econometria Semestre 2010.01 174 174 21.4. PROCESSOS ESTOCÁSTICOS INTEGRADOS O passeio aleatório é apenas um caso particular de uma classe de processos estocásticos conhecidos como processos integrados.

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013 Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos

Leia mais

Teoria da Correlação. Luiz Carlos Terra

Teoria da Correlação. Luiz Carlos Terra Luiz Carlos Terra Você poderá, através de cálculos matemáticos, verificar a forma como a variação de um dado observado pode estar associada às alterações de outra variável. (Luiz Carlos Terra) 1 Objetivo

Leia mais

Aula 14 - Correlação e Regressão Linear

Aula 14 - Correlação e Regressão Linear Aula 14 - Correlação e Regressão Linear Objetivos da Aula Fixação dos conceitos para Correlação e Regressão Linear; Apresentar exemplo solucionado com a aplicação dos conceitos; Apresentar exercício que

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Soluções da Colectânea de Exercícios

Soluções da Colectânea de Exercícios Soluções da Colectânea de Exercícios (Edição de Fevereiro de 2003) Capítulo 1 1.1 d) x = 3.167; s = 0.886 (dados não agrupados) e) mediana = x = 3.25; q 1 = 2.4 ; q 3 = 3.9 1.2 a) x = 2.866 ; x = 3; moda

Leia mais

OBJETIVOS DOS CAPÍTULOS

OBJETIVOS DOS CAPÍTULOS OBJETIVOS DOS CAPÍTULOS Capítulo 1 Nesse capítulo, você notará como muitas situações práticas nas áreas de administração, economia e ciências contábeis podem ser representadas por funções matemáticas.

Leia mais

HEP Bioestatística

HEP Bioestatística HEP 57800 Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

ESTATÍSTICA Medidas de Síntese

ESTATÍSTICA Medidas de Síntese 2.3 - Medidas de Síntese Além das tabelas e gráficos um conjunto de dados referente a uma variável QUANTITATIVA pode ser resumido (apresentado) através de Medidas de Síntese, também chamadas de Medidas

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

Distribuição t de Student

Distribuição t de Student Distribuição t de Student Introdução Quando o desvio padrão da população não é conhecido (o que é o caso, geralmente), usase o desvio padrão da amostra como estimativa, substituindo-se σ x por S x nas

Leia mais

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 3 Prof.: Patricia Maria Bortolon, D. Sc. Estatística: Prof. André Carvalhal Dados quantitativos: medidas numéricas Propriedades Numéricas Tendência Central Dispersão Formato Média Mediana

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Teste Anova. Prof. David Prata Novembro de 2016

Teste Anova. Prof. David Prata Novembro de 2016 Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar

Leia mais

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo PROGRAMA e Metas Curriculares Matemática A Estatística António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo O tema da Estatística nos Cursos Científico-Humanísticos de

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

AULA 11 Heteroscedasticidade

AULA 11 Heteroscedasticidade 1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

Módulo IV Medidas de Variabilidade ESTATÍSTICA

Módulo IV Medidas de Variabilidade ESTATÍSTICA Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a designação de números a propriedades de objetos ou a eventos do mundo real de forma a descrevêlos quantitativamente. Outra forma

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Prof. MSc. David Roza José 1/44

Prof. MSc. David Roza José 1/44 1/44 Regressão Linear Objetivos: Familiarizar-se com estatística descritiva e distribuição normal; Saber como calcular coeficientes angular e linear da reta de melhor ajuste com regressão linear; Saber

Leia mais

Física Geral - Laboratório (2015/2) Organização e descrição de dados...continuação

Física Geral - Laboratório (2015/2) Organização e descrição de dados...continuação Física Geral - Laboratório (2015/2) Organização e descrição de dados...continuação 1 Física Geral - 2015/2 Bibliografia: Estimativas e Erros em Experimentos de Física (EdUERJ) 2 Dados e medidas Dados:

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

Observamos no gráfico acima que não passa uma reta por todos os pontos. Com base nisso, podemos fazer as seguintes perguntas:

Observamos no gráfico acima que não passa uma reta por todos os pontos. Com base nisso, podemos fazer as seguintes perguntas: Título : B1 AJUSTE DE CURVAS Conteúdo : Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais

CORRELAÇÃO LINEAR, TIPOS DE CORRELAÇÃO. REGRESSÃO LINEAR PELO ESTUDO DA CORRELAÇÃO E UTILIZANDO OS MÍNIMOS QUADRADOS

CORRELAÇÃO LINEAR, TIPOS DE CORRELAÇÃO. REGRESSÃO LINEAR PELO ESTUDO DA CORRELAÇÃO E UTILIZANDO OS MÍNIMOS QUADRADOS CORRELAÇÃO LINEAR, TIPOS DE CORRELAÇÃO. REGRESSÃO LINEAR PELO ESTUDO DA CORRELAÇÃO E UTILIZANDO OS MÍNIMOS QUADRADOS META Avaliar o grau de relacionamento entre variáveis e a tendência das mesmas com base

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Teste de hipóteses Objetivo: Testar uma alegação sobre um parâmetro: Média, proporção, variação e desvio padrão Exemplos: - Um hospital alega que o tempo de resposta de sua ambulância é inferior a dez

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE:

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: ESELAW 09 MARCOS ANTÔNIO P. & GUILHERME H. TRAVASSOS) 1 Aluna: Luana Peixoto Annibal

Leia mais

Distribuição de Probabilidade de Poisson

Distribuição de Probabilidade de Poisson 1 Distribuição de Probabilidade de Poisson Ernesto F. L. Amaral Magna M. Inácio 07 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4)

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.

Leia mais

Tratamento estatístico de observações

Tratamento estatístico de observações Tratamento estatístico de observações Prof. Dr. Carlos Aurélio Nadal OBSERVAÇÃO: é o valor obtido durante um processo de medição. DADO: é o resultado do tratamento de uma observação (por aplicação de uma

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados. INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários

Leia mais

AULAS 25 E 26 Heteroscedasticidade

AULAS 25 E 26 Heteroscedasticidade 1 AULAS 25 E 26 Heteroscedasticidade Ernesto F. L. Amaral 10 e 15 de junho de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à econometria:

Leia mais

Estatística descritiva básica: Medidas de associação ACH2021 Tratamento e Análise de Dados e Informações

Estatística descritiva básica: Medidas de associação ACH2021 Tratamento e Análise de Dados e Informações Estatística descritiva básica: Medidas de associação ACH2021 Tratamento e Análise de Dados e Informações Marcelo de Souza Lauretto marcelolauretto@usp.br www.each.usp.br/lauretto Referências Bergamaschi,

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 11º ano _ CCH 2016/2017 Início

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Testes t para médias

Testes t para médias Testes t para médias 1-1 Testes t para médias Os testes t aplicam-se tanto a amostras independentes como a amostras emparelhadas. Servem para testar hipóteses sobre médias de uma variável quantitativa

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

Aula 4 Medidas de dispersão

Aula 4 Medidas de dispersão AULA 4 Aula 4 Medidas de dispersão Nesta aula, você estudará as medidas de dispersão de uma distribuição de dados e aprenderá os seguintes conceitos: amplitude desvios em torno da média desvio médio absoluto

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 4 - Medidas de dispersão Departamento de Economia Universidade Federal de Pelotas (UFPel) Abril de 2014 Amplitude total Amplitude total: AT = X max X min. É a única medida de dispersão que não tem

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

X 1 X 2 Y

X 1 X 2 Y Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 3 Regressão Múltipla 2015/2016 1. Considere os seguintes dados: X 1 X 2 Y 8 0.7 1.8 1.8 6 6.4

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que

Leia mais

AULAS 20 E 21 Modelo de regressão simples

AULAS 20 E 21 Modelo de regressão simples 1 AULAS 20 E 21 Modelo de regressão simples Ernesto F. L. Amaral 22 e 24 de outubro de 2013 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem moderna.

Leia mais