GHIJKLMN8 % "&'9:;O"B PQRS I T U V W # X B 5 Y 8 ")*'56Z[ - PDF">

!"#$% "& ' ( ) *! " # $ +,-./01 & ' % " & ' 9 : ; < = BC DE 9 : ; F<=>GHIJKLMN8 % "&'9:;O"B PQRS I T U V W # X B 5 Y 8 ")*'56Z[

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "!"#$% "& ' ( ) *! " # $ +,-./01 & ' % " & ' 9 : ; < = BC DE 9 : ; F<=>GHIJKLMN8 % "&'9:;O"B PQRS I T U V W # X B 5 Y 8 ")*'56Z["
GHIJKLMN8 % "&'9:;O"B PQRS I T U V W # X B 5 Y 8 ")*'56Z[.pdf" class="btn bg-purple-seance" href="#" target="_blank" style="margin-top: 10px; display: none;"> Download Document

Transcrição

1 !"#$%&' ()*+,-. /! " # $ % & ' ( ) * +,-./01230* :;*45#$ 0*0 FG.HIJK0LMNO-!"HIPQRS0T2UV W X #$0WY 01* #$%&45#$!" #$% & '%! % "!" #$%!$ &'$ $ $ () *)+) #"$'",))-. /00"0) '1 )).' '%!0 #"$'" 2 3 ).'40' '1.'".'5"0$ "0-55.0' 0) 6)7 5'0 '1 0)-)0 8 % 0) ') '1 501'- )-9.). )11).09)7 -)".) 0).'0 '1 )9)'5)0.'0-".0' 1'- "0-55.0'% ' 00 )11).09) '90' )..'" 4) )0 "5 ) 00" 5-'4) '1 "0-55.0'."40' 501'- +)-) 0-'".) &7 )$$ 0) )-9.) 1".0' 4") ') '1 0) 501'-% 0) -.0).0"-) 4) ' 0).''$7 + 5"0 1'-+- ) 6)7 0).''$) 9'9) "..'0)- '4) :55 )9)'5)0 +)-) 7) :0 0 0) )9)'5)0 '1 0) 501'- + 5-'5).0) % "0-0)-)0% 501'- )-9.)% 55.0'."40' 501'- 9; ` abc CD 8 02? > * F * ] 5 * >* * * ` 0 B * 0,<P C * ] 5 P Q, < ] ]A] 5F2 234;;564;;2 789$:% % Z7[ E> '0* 45#$ \]^_%!" #%!$ & % $ *% /"0-55.0'."40' 501'- 4) ' ') '1.'".'5"0$ )).'".0'.).)%

2 !"#$% "& ' ( ) *! " # $ +,-./01 & ' % " & ' 9 : ; < = BC DE 9 : ; F<=>GHIJKLMN8 % "&'9:;O"B PQRS I T U V W # X B 5 Y 8 ")*'56Z[\ ]^_%"&'`a6bc01y " & ' I T U # $ [ T"%"&'9: c 8%"&' T "!"#$H > 8! " # $ 0 : ` a b 0 1 ;HT" P? )*?H U QR3 P?"DE 9:I!"<;)* S0T"JF> & R 3? U J F? T " 8 8 I9:!"9: 9 :! " D # $ % & I > ' T " ( ] ) * # 6 b "%"+&,-!"9:<> T " U. / S (! " 0 1! " & ' % > G ) * SPQR!"& '9:O86234 #$5T"+& 01 P Q R I 6 T " # $? 7 : 8 09:;#$?01 6 )Y<)YA=T"7T ">? A T " B B T C ` a D E 3ETC &'!"&'./Y I!"F B GH&'I J K L M V N O! " & ' T " H!"#$323H# $P,Q?T"R>%& SI!"`a ITUBVIWXYT "56SW X*3ESITU!"TU\ OHYT ")&'OI!"&'Z[D#$!"#$%& \&'834 8!"9 : ; 5 6 ]! " T " # $ T " / & ' Y ` a ; ^_34 +& 01 `a01#$bc E O01#$&') TU)QD Q a Q 8 < ) Q 'D_)Q56[T" J & ' S Q 5 6 &'5'H5H#XTU./YY S Y X S X. / % " & ' Y!"&'T" #$Y'Y ) YYEY XSX Y ` Y a ^ X S YY` SX U Y. / % " & ' Y ` S J"&'Y T "56 % Y ) 6 B!"#$ %"% &'!'Y &'`a #$%"&'TU`a)&'5 68;% #$Y01 >&'#$'`a ' &'``a% PT"

3 !"#$ %&'"()*!+,-./012'%& " 789:;!< A 'BCDE4F G H IJKL0MN!.O B C D E K K P Q R S T U V A K K "XY'< XGH!Z[\ ]^_` a! b c /. O I J H G ` B C D 3 4 T W + A G H, - Z [ \! /B34ST U V % & W 0 a B F 3 4 / />!'O3 4 J! J Z Z [ \ 8, - K 2 '! G B O! ! O BCDE +BCDE6! Z'Z%&9:Z! H Z B ', - [ 8 8Z4

4 !!" #$" # $ % & ' %&!!()!* +,-*./0/1*. 2 3 *.(456 *. 7 2! % ( : ; 6A *.BCDE'*. *. / *. F G *. ( HIJKL*.MN*. *.MO(*. *.DEP*.Q ' R F G *.S TPUVWGXYG H I *.Z[U\]^WG*. &' _ ` a b c *. 23 _`/MO G, N _ ` Q ' _ ` 3 ) _ ` GSTA L Q ' / ) _ G % Q % *.BCDE:89: ; 0 % H L G]) ()*+, U % UVG L %! % L % -./$ DMO $ *.MO /*.MO(_`*.MO % b ( G U b $ : % GGU 01.) M O ())-. % % Y $ % ) % % & % %! V W G G! " D # %& XY 23$"4!" "$"!"$ U! % & ( ' X Y / 1 M ) 4 6 U %! " D # %! 3/$ #L ()! 9* L +, # - =L.9Q/:) 5) % ) %!' % 0 1 < V 7 V 6,)%& %.78 '! D #! " D #! " X 2 3 L U 4 % 9% % 56,-< % % U%,-<5 %,-5 % 6 a b 5 -./$ 7 -./$ :2, - b 8 9 % *. Y $ ) *. :$_`*. / ; /G W G ;_`< 'X= V W G 2 A *. ` B CAADEL* W G U/Rb F G Q ' U R H F H & I W G C A J ' KbF A A G L ' 2 3 L M O *, A L P L G L $ ' / ' '

5 !"#$ %&'()*+,-. / 0 1 2*3, % & ' 8*3/01459:. ; * 3. < = A.BCDE?. F G. 45H.;IJKLMNO.<=. ; 7. L < =. A. X C. X C Y < = & ' Z S. X C. [\].XC^_`a b. c * 3 & ' Z \!"#$%&' b ( b < $ 4 $%& bijlm NO b ' " %" A Z S F VST ZS&' () b(^ ^ ^ A ( ^blmno ^ 9 A!"# $%& ^ PL%&'? ( ) * & ' +, & ' ) * +, )*#%&$ -,./b b b 1 * 3 1 ^ 0 U,--,./ P b +, [ \ ) * ( L2&'2b b 1 8 & ' P L 3 4 ' 56b17b 1 ZS839 : ; V < 317= >? A < BC&'RD *+,-./$ E 7, - c " F G. ' K $ / c $ L KMNO N N O 7 P O G 2 / 0 1, - ( b P \ U b Q & ' J R S T H I, -U3RVP LMW, - & ' \ J X Y J M P 9 (,-&'\JUXcY C 5 6ZYc28 [ \ \ HI]&' ( ^ ( H I _ ` a & '. G2bcS T A, - G c [HIJ&'G,-7 HI\JM7H I K I. & ' OG3b*3M8 K*37K (,-RR\ J45;_ 7 ( > U H, -\45

6 !" # $ % & ' () *+, -. / ' A B C D E 0 8 $ F G H I 8 ' JKL M N O I8" )AB PQRSTUVWXY TU Z[*\Q]^_` a b * + QRS3 ' )AB 9./RS]^. /, * + G 3 CD #I C" "CD4 VI8" 'QR S ")AB Q R S ABCD A B CD.I '5"$ )(0$%0"(% # -" +%'5%# +",$#$ -'"#% :) 6 Q R S! ; : ) % & 7 4.'($'.'($' 1#% $ '" 5"$ )%!%$*$ ",$#$ -'"#% '. /%0('$0# "#(1 (#' 8 R < )=>? (#' 8 ('($ 9(#%,1 8 " :!%$*$ &0$%(1 "#(1 +(%## ; AB " C D 5 O ) % & E -"! % 4 "#($ "#%( %%'5% /(%5(%%"($ 9% 0",$'!%$*$ 0$%0% (%## ' "C 9 AB F GH:) 3; -" 4 '#("0$' '. 9 #%($0% 5.'( '. $"#($ 0"#%(,#% ' + '% $ &%%.'($' 3; IJ K LM + A B N %&O 3 " + % " )(0$%0"(% '. +.'( $%(% 55$0$'# <'"( '.!%$*$ =$%(#$1 '. +'## 9%%0'"$0$'# 3 F P Q R S W X Y A B Q "!" #$ %& '!"#$%## &'% % $ %(% )%!%$*$ +",$#$ -'"#% '. /%0('$0# "#(1 (, )*+ A B, -. / 0 $ 1 %& % " +.'( (%1 ) %'"$' $ % 2',!"#$%## &'%!%$*$ $ $$0 +(%## Q R S Q % 4 '" 2'%(% &'% %#%(0!#% ' '"!FPQRSTUV WXYQRS TU "#$ F Q R S W X Y A B Q R S T U %&'FPQRS X

!"#$ %&' ()*+, +,*-./( * ( (

!#$ %&' ()*+, +,*-./( * ( ( 1 3 1 7 1 7 1 7 /456 1 7 1 7 1 7 & & 1 7 1 7 1 7 1 7 1 7 1 7 1 7! 1 7" 1 7 1 7# 1 7 1 7 1 7$ 1 7 1 7%& 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 @ 1 7 1 7 1 7 1 7 1 7 1 7 1 7!"#$ 1 7 1 7 1 7%&' 1 7!" 78.+/ 0 9:

Leia mais

!"#!$% %" & ' ( )*+,)-. / 0123144 56789 :;667

Leia mais

%./ Z.W;E[\]^C_` B H H

%./ Z.W;E[\]^C_` B H H 1 3 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7! 1 7! 1 7" 1 7 1 7 1 7! 1 7 1 7 1 7 1 7 1 7 1 7 1 7!"# $%&' 1 7 1 7' 1 7 1 7 1 7 1 7( 1 7) 1 7!!" 1 7 1 7 1 7 1 7 *+,-./# $%&' 1 7 1 701' 1 7 1 7 1 7"#) 1 7!!!!

Leia mais

Resultados de Pesquisa do Programa de Melhoramento de Soja: Ensaios de Avaliação Final

Resultados de Pesquisa do Programa de Melhoramento de Soja: Ensaios de Avaliação Final Resultados de Pesquisa do Programa de Melhoramento de Soja: Ensaios de Avaliação Final Resumo Alberto Francisco Boldt; Engenheiro agrônomo, pesquisador do Insituto Mato-Grossense do Algodão IMAmt; Caixa

Leia mais

Eles, possivelmente, servirão posteriormente de ideia para problemas mais difíceis.

Eles, possivelmente, servirão posteriormente de ideia para problemas mais difíceis. Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof Marcelo Mendes Aula 2 Equações e Sistemas de Equações Neste2o textodeálgebra, veremosdiversosexemplosdeequaçõesesistemasdeequações em nível

Leia mais

GERAÇÃO DE EMPREGO E RESPONSABILIDADE SOCIAL DAS EMPRESAS INSTALADAS NA REGIÃO METROPOLITANA DO CARIRI

GERAÇÃO DE EMPREGO E RESPONSABILIDADE SOCIAL DAS EMPRESAS INSTALADAS NA REGIÃO METROPOLITANA DO CARIRI XVI Semana de Iniciação Científica e II Semana de Extensão De 21 a 26 de outubro de 2013 ISSN: 1983-8174 Universidade Regional do Cariri - URCA - Crato, Ceará GERAÇÃO DE EMPREGO E RESPONSABILIDADE SOCIAL

Leia mais

INTRODUÇÃO. Em caso de dúvidas, procurar a Secretaria Executiva de Comunicação da Prefeitura do Recife, no 11º andar.

INTRODUÇÃO. Em caso de dúvidas, procurar a Secretaria Executiva de Comunicação da Prefeitura do Recife, no 11º andar. INTRODUÇÃO A seguir, você vai conhecer a nova identidade visual da Prefeitura do Recife. Logotipo, fonte, símbolos e cores que vão padronizar e unificar todos os materiais de comunicação das diversas secretarias

Leia mais

MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a +

MÓDULO 13. Fatoração. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. *, é: 4. Um possível valor de a + ITA_Modulos 3a6 prof 03/03/0 4:9 Página I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 3 Fatoração. Prove que se a e b são dois números reais então a + b ab a, b (a b) (a b) 0

Leia mais

*** Estão listados nesta planilha os produtos ATIVOS e ATIVOS COM COMERCIALIZAÇÃO SUSPENSA. Produtos Ativos na ANS

*** Estão listados nesta planilha os produtos ATIVOS e ATIVOS COM COMERCIALIZAÇÃO SUSPENSA. Produtos Ativos na ANS *** Estão listados nesta planilha os produtos ATIVOS e ATIVOS COM COMERCIALIZAÇÃO SUSPENSA Produtos Ativos na ANS.Registro/ Cód.Plano Nome Comercial Plano Contratação 435054015 Uniflex Empresarial - Apto

Leia mais

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B 1 GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA 1. Considere um quadrilátero RSTU, satisfazendo RS = ST = TU = UR, como o exemplo ilustrado abaixo. Considerando esses dados, podemos afirmar que: 0-0) SU é

Leia mais

7 * ": ) : : I* 5 6 7 < : # G I9 9 4 M N O* P " 7 "! M * : : # M

7 * : ) : : I* 5 6 7 < : # G I9 9 4 M N O* P  7 ! M * : : # M 7 ": ) : : I 5 6 7 < : # G I9 9 4 M N O P " 7 "! M : : # M # Q 7 97 8 ! # # I ) H3"K # : R : : 9 M ) # 9# Q ; : 9 : IM Q ; 9M O H8 7B3B K : 9 ) 4 4; 9 < : ) 9 # : M :!# ; : N : " 3 S T! S U # I T S # H3"K

Leia mais

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 6 VITON 5 RETENTORES CB 4,5 0X 16 X 7 6 RETENTORES CB 4,8 X 22 X 7 7 RETENTORES CC 5 X 15

Leia mais

DIMENSIONAMENTO. Versão 2014 Data: Março / 2014

DIMENSIONAMENTO. Versão 2014 Data: Março / 2014 5 DIMENSIONAMENTO Versão 2014 Data: Março / 2014 5.1. Parâmetros para o dimensionamento... 5.3 5.1.1. Escolha de parâmetros... 5.3 5.1.2. Tipologia construtiva da instalação predial... 5.3 5.1.3. Pressão

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

José Valente de Oliveira e Fernando Lobo. Introdução à. Programação de Computadores em Java

José Valente de Oliveira e Fernando Lobo. Introdução à. Programação de Computadores em Java José Valente de Oliveira e Fernando Lobo Introdução à Programação de Computadores em Java José Valente de Oliveira e Fernando Lobo The Ualg Informatics Lab Universidade do Algarve Índice...4 CONCEITOS

Leia mais

Disciplina: _Matemática Professor (a): _Valeria

Disciplina: _Matemática Professor (a): _Valeria COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 1ª Etapa 201 Disciplina: _Matemática Professor (a): _Valeria Ano: 201 Turma: _9.1 e 9.2 Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

A LÍNGUA BRASILEIRA DE SINAIS NA CIDADE DE CRATO-CE: O USO EM CONTEXTOS RELIGIOSOS

A LÍNGUA BRASILEIRA DE SINAIS NA CIDADE DE CRATO-CE: O USO EM CONTEXTOS RELIGIOSOS XVI Semana de Iniciação Científica e II Semana de Extensão de 21 a 26 de outubro de 213 ISSN: 1983-8174 Universidade Regional do Cariri - URCA - Crato, Ceará A LÍNGUA BRASILEIRA DE SINAIS NA CIDADE DE

Leia mais

Nome: Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE

Nome: Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE Nome: 015 Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE Nome: Turma: Unidade: 3 5 1. A expressão 10 a) 5. 11 b) 5. c) 5 d) 30 5

Leia mais

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) TERCEIRA FASE NÍVEL 1 (5 ª ou 6 ª Séries) Quantos inteiros positivos menores que 1000 têm a soma de seus algarismos igual a 7? PROBLEMA : Considere as seqüências de inteiros positivos tais que cada termo

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo

Leia mais

Perspectiva isométrica de modelos com elementos paralelos e oblíquos

Perspectiva isométrica de modelos com elementos paralelos e oblíquos Perspectiva isométrica de modelos com elementos paralelos e oblíquos Introdução Na aula anterior você aprendeu o traçado da perspectiva isométrica de um modelo simples: o prisma retangular. No entanto,

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

Projeção Perspectiva. Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui

Projeção Perspectiva. Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui Projeção Perspectiva Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui Definição Quando olhamos para um objeto, temos a sensação de profundidade e relevo; O desenho, para transmitir essa mesma idéia,

Leia mais

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros.

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros. MATEMÁTICA 1 c Para manter funcionando um chuveiro elétrico durante um banho de 15 minutos e um forno de microondas durante 5 minutos, as quantidades de água que precisam passar pelas turbinas de certa

Leia mais

MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 5 Geometria Plana I. Mostre que o ângulo inscrito em uma circunferência é a metade do ângulo central correspondente. 1. (MAM-Mathematical

Leia mais

Construções alternativas para problemas insolúveis com régua e compasso

Construções alternativas para problemas insolúveis com régua e compasso II BIENAL DA SBM II ENCONTRO DA RPM OFICINA DE PROBLEMAS - I Construções alternativas para problemas insolúveis com régua e compasso Elvia Mureb Sallum Sérgio Alves (Professores do IME-USP) Quatro grandes

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

QUESTÃO 1 ALTERNATIVA D

QUESTÃO 1 ALTERNATIVA D OBMEP 015 Nível 3 1 QUESTÃO 1 Como,5 = 5 x 0,5, o tempo que o frango deve ficar no forno é 5 x 1 = 60 minutos. Logo, Paula deve colocar o frango no forno às 19 h, mas 15 minutos antes deve acender o forno.

Leia mais

MUNDO. -CIAT existe mais de 38 mil genótipos de. Phaseolus vulgaris L.; -Outras coleções: EUA, México e Inglaterra. - Elevado número de cultivares;

MUNDO. -CIAT existe mais de 38 mil genótipos de. Phaseolus vulgaris L.; -Outras coleções: EUA, México e Inglaterra. - Elevado número de cultivares; 6 CULTIVARES MUNDO - Elevado número de cultivares; -CIAT existe mais de 38 mil genótipos de Phaseolus vulgaris L.; -Outras coleções: EUA, México e Inglaterra BRASIL - Mantidas coleções de linhagens e cultivares

Leia mais

PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães

PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães Nível Iniciante Propriedade 1 Num triângulo retângulo ABC, a mediana BM relativa à hipotenusa mede

Leia mais

r a t (I), ht rs (II) e (III) r s t r a

r a t (I), ht rs (II) e (III) r s t r a 01 De T 1 e T 3, temos: a h r s h r a t (I), ht rs (II) e (III) r s t r a De T e T 3, temos: h b s s b s b t (IV) e (V) r s t r h De (III) e (V): b h h a b (VI) h a Somando (I) e (IV) temos: r s at bt

Leia mais

OS PROFESSORES DE EDUCAÇÃO FÍSICA DO ENSINO MÉDIO E SEUS CONHECIMENTOS SOBRE AS SUBSTÂNCIAS PSICOATIVAS

OS PROFESSORES DE EDUCAÇÃO FÍSICA DO ENSINO MÉDIO E SEUS CONHECIMENTOS SOBRE AS SUBSTÂNCIAS PSICOATIVAS XVI Semana de Iniciação Científica e II Semana de Extensão de21 a 26 de outubro de 2013 ISSN: 1983-8174 Universidade Regional do Cariri - URCA- Crato, Ceará OS PROFESSORES DE EDUCAÇÃO FÍSICA DO ENSINO

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício

Leia mais

Introdução às Máquinas de Turing (TM)

Introdução às Máquinas de Turing (TM) Comparação com computadores: Introdução às Máquinas de Turing (TM) um modelo matemático simples de um computador Semelhanças: lê e escreve em posições arbitrarias de memoria Diferenças: sem limite no tamanho

Leia mais

Disciplina: Topografia Disciplina: Topografia Assunto: Correções de Rumos e Azimutes Prof. Ederaldo Azevedo Aula 8 e-mail: ederaldoazevedo@yahoo.com.br Disciplina: Topografia Quando obtemos os rumos ou

Leia mais

MA13 Geometria AV2 2014

MA13 Geometria AV2 2014 MA1 Geometria AV 014 Questão 1 [,0 pt ] Na figura a seguir temos que BAC = /, BAD = y/, medidos em radianos, e AB =. Com base nessas informações: a Epresse a área dos triângulos ABC e ABD como funções

Leia mais

INDÚSTRIAS NUCLEARES DO BRASIL. ---e Carvalho. rlgues. Ministério da Ciência, Tecnologia e Inovação

INDÚSTRIAS NUCLEARES DO BRASIL. ---e Carvalho. rlgues. Ministério da Ciência, Tecnologia e Inovação INDÚSTRIAS NUCLEARES DO BRASIL ---e Carvalho rlgues Ministério da Ciência, Tecnologia e Inovação GOVERNO FEDERAL Projeto da Mina Subterrânea Encontra-se em fase de licenciamento da Mina Subterrânea da

Leia mais

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Questão 1 Questão Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura. A figura mostra um sistema rotativo de irrigação sobre

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será:

= 30maneiras para sentar-se. Como são 20 filas, o número total de maneiras distintas que atende ao enunciado será: TEÁTIC 1ª QUESTÃO Um avião possui 10 poltronas de passageiros distribuídas em 0 filas. Cada fila tem poltronas do lado esquerdo (denotadas por, B, C) e do lado direito (denotadas por D, E, F), separadas

Leia mais

Diagnóstico de Vulnerabilidades através da Injecção de Ataques

Diagnóstico de Vulnerabilidades através da Injecção de Ataques Diagnóstico de Vulnerabilidades através da Injecção de Ataques, Covilhã, Portugal João Antunes 1, Nuno Neves 1, Miguel Correia 1, Paulo Veríssimo 1, Rui Neves 2 1 Faculdade de Ciências da Universidade

Leia mais

Estudo de alternativas para a remoção dos metais pesados em águas no semiárido

Estudo de alternativas para a remoção dos metais pesados em águas no semiárido XVI Semana de Iniciação Científica e II Semana de Extensão de 21 a 26 de outubro de 2013 ISSN: 1983-8174 Universidade Regional do Cariri - URCA - Crato, Ceará Estudo de alternativas para a remoção dos

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

A + 4 A+ $*^+FJG AQ02:;0$ID A+4 UV0XG# +3& 0 1 b $6ZQ% % %Q% A+;00X P.#M`_ +`Z[Z& \]^_=; O7`a B $ 6 Z A. 0 $ Z A+Z8.

A + 4 A+ $*^+FJG AQ02:;0$ID A+4 UV0XG# +3& 0 1 b $6ZQ% % %Q% A+;00X P.#M`_ +`Z[Z& \]^_=; O7`a B $ 6 Z A. 0 $ Z A+Z8. !!"! #$%&"$&' &(&$& FGHTR1 01IRHK * YZ [MP B KA- :KA G " `K #$% #$%&' Q% % %Q% A & + 0 ` @ A& $ 6 Z ` @ A.+3T`@*0$+2Qb $6Z`@ A+;0 &O UV0XB3Ga_B`@ A.0$'6 8 0$'6 8 +4E&# 8A+DU #^`@ A+9^ "8 P" 8 2"A"&`@ AV23$6ZQ%

Leia mais

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Tecnologia da Informação!" !" $%& '( ) %) * +, - +./0/1/+10,++$.(2

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

Aula 5. Mapas de Karnaugh. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira

Aula 5. Mapas de Karnaugh. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira Aula 5 Mapas de Karnaugh EL 44 - istemas Digitais Prof. Dr. Marcelo Andrade da Costa Vieira . Mapa de KARNAUGH ou Mapa K l É uma exposição visual de produtos fundamentais necessários para um solução de

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE AVALIAÇÃO MATEMÁTICA Duração: 90 minutos Data: 3 maio de 0 8º C Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres

Leia mais

Módulo de Elementos básicos de geometria plana. Condição de alinhamentos de três pontos e a desigualdade triangular. Oitavo Ano

Módulo de Elementos básicos de geometria plana. Condição de alinhamentos de três pontos e a desigualdade triangular. Oitavo Ano Módulo de Elementos básicos de geometria plana Condição de alinhamentos de três pontos e a desigualdade triangular Oitavo Ano Condição de alinhamentos de três pontos e a desigualdade triangular Exercícios

Leia mais

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas

Leia mais

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre LINHAS PROPORCIONAIS Geometria Plana PROF. HERCULES SARTI Mestre Exemplo 4: apostila Determine o perímetro do quadrilátero ABCD, circunscritível, da figura. Resolução: Exemplo 4: apostila Determine o perímetro

Leia mais

Atividades para classe

Atividades para classe Módulo 1: Expressões algébricas Página 78 Atividades para classe 1 Sérgio escreveu três expressões algébricas no caderno dele: uma racional inteira, uma racional fracionária e outra irracional. Identifique

Leia mais

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL

UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio

Leia mais

NOME :... NÚMERO :... TURMA :...

NOME :... NÚMERO :... TURMA :... 1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO Relações métricas envolvendo a circunferência Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... X - RELAÇÕES MÉTRICAS NO DISCO (Potência de Ponto) X.1) Relação

Leia mais

Questão 1. Espaço para rascunho. Solução

Questão 1. Espaço para rascunho. Solução Graduação FGV-Rio Vestibular 007 Questão No primeiro turno da eleição para governador em certo estado, suponha que todas as urnas tenham, aproximadamente, o mesmo número de votos. Tendo sido apuradas 75%

Leia mais

CANCELLI, MACEDO, GUERREIRO & BAUERMANN a b c d e f g h i j k l m n o p r s t q Figura1: Grãos de pólen da família Asteraceae: a-b. Achyrocline satureioides a. VP; b. VE; c-d. Aspilia montevidensis c.

Leia mais

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO C

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO C 1 GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA 1. Seja ABCDEF um hexágono regular inscrito em uma circunferência de centro O. Nesse contexto, é correto afirmar que: 0-0) o triângulo ABO é equilátero. 1-1)

Leia mais

Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Soja Ministério da Agricultura, Pecuária e Abastecimento.

Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Soja Ministério da Agricultura, Pecuária e Abastecimento. ISSN 1516-781X Dezembro, 2001 Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Soja Ministério da Agricultura, Pecuária e Abastecimento Documentos174 Informes da avaliação de

Leia mais

Prof. José Carlos Morilla

Prof. José Carlos Morilla 1 Cálculo Vetorial e Geometria Analítica Santos 009 1 CÁLCULO VETORIAL... 4 1.1 Segmentos Orientados... 4 1. Vetores... 4 1..1 Soma de um ponto com um vetor... 5 1.. Adição de vetores... 5 1..3 Diferença

Leia mais

A Baixela Germain ao serviço da Corte no Reinado de D. Maria I *

A Baixela Germain ao serviço da Corte no Reinado de D. Maria I * A Baixela Germain ao serviço da Corte no Reinado de D. Maria I *!!"# $ % &'( )*+,&' & - '%%) - ' -%&'. % / # $* % 0 123 4 / % 56 &' -5%7%&'5 % 8 5 % 9 - %,&') &' -'- : & ) %&*% ; < = >&()*+,&'?'- 4&@0;07

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

P3 da 2ª Etapa/2013 Valor: 3,0 pontos. Atividades usando o GEOGEBRA.

P3 da 2ª Etapa/2013 Valor: 3,0 pontos. Atividades usando o GEOGEBRA. ROTEIRO COMPONENTE CURRICULAR: Matemática 2 PROF.(A): Fabiano Maciel DATA: 9º An o EFII ALUNO(A): Nº: TURMA: P3 da 2ª Etapa/2013 Valor: 3,0 pontos Atividades usando o GEOGEBRA. As atividades deverão ser

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II 1 Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 03 Página 1 2 ÁLGEBRA - é o ramo que estuda as generalizações dos conceitos e operações aritméticas. Hoje em dia o termo Álgebra é bastante

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

mhtml:file://c:\documents and Settings\cbeirao\Ambiente de trabalho\nova pasta\oprim...

mhtml:file://c:\documents and Settings\cbeirao\Ambiente de trabalho\nova pasta\oprim... Page 1 of 21 9:! " #$"%&'&"$( &)$) '$)& '&)&*&"("" ' $(($)+"&)) "$)$* $*,( )*-)' "&'./.-&)) $ ")#$0$' 1 2$$$".,&)$)'"3 #)) &"$' )$*, )+"/&)!*&45-'"3&.' " $*/'&$ 5&("&" './ ")&)&)'$' )+" ;

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1 DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS 1. DIVIDIR O SEGMENTO AB = 5 CM EM MÉDIA E EXTREMA RAZÃO E INDICAR O SEGMENTO ÁUREO DE AB E TAMBÉM O SEGMENTO O QUAL AB É ÁUREO. Seja o segmento AB =

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Chamada Caderno 1: 7 Páginas Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos. Tolerância: 30 minutos.

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

! " # $ % % & ' ( ) ' * * +

!  # $ % % & ' ( ) ' * * + ! " # $ % % & ' ( ) ' * * + , - $ '. ! " $ & & - 0 $ $ 0 $ 3 4 5 4 3 ) 7 8 7 # % ' " ( ) * +,./ " ( $,,, ) 1 2 1 ' % 2 " % % ' %( 6 ' ( ( $ $ " !!. / '! % - :,! 3!3 ; % - ( *# 3)! ) < ; = 9 # 3!!3 33

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Aula 06 Análise no domínio do tempo Parte I Sistemas de 1ª ordem

Aula 06 Análise no domínio do tempo Parte I Sistemas de 1ª ordem Aula 06 Análise n dmíni d temp Parte I Sistemas de 1ª rdem input S utput Sistemas de primeira rdem Sistema de primeira rdem d tip a G(s) bs + c input a bs + c utput Sistemas de primeira rdem u seja: Y(s)

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

63789:!" #$$!%&'" %%($!)* '+($!%,'$'!)' '';! +! <' = + -.%" '$/0!)" #$!/0!)%&! + 2 4> + ; (! ; ( 8 ; ( ; *(" #+ + ; ('+ +? '

63789:! #$$!%&' %%($!)* '+($!%,'$'!)' '';! +! <' = + -.% '$/0!) #$!/0!)%&! + 2 4> + ; (! ; ( 8 ; ( ; *( #+ + ; ('+ +? ' Página 1 de 31!"#$%&'"!!"( )* +,-./(,0 " #1$,*2 34#5'+ 63789:!" #$$!%&'" %%($!)* '+($!%,'$'!)' '';! +! .12 # '1 + #%

Leia mais

EXERCÍCIOS RESOLVIDOS TANGÊNCIA

EXERCÍCIOS RESOLVIDOS TANGÊNCIA 1 Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre TANGÊNCIA em Desenho Geométrico. Geométrica vol.1 n.6c. 2005. Desenhos construídos por: Enéias de A. Prado. EXERCÍCIOS RESOLVIDOS

Leia mais

Autômatos a pilha. UFRN/DIMAp/DIM0330 Linguagens formais. David Déharbe. http://www.consiste.dimap.ufrn.br/ david/enseignement/2003.

Autômatos a pilha. UFRN/DIMAp/DIM0330 Linguagens formais. David Déharbe. http://www.consiste.dimap.ufrn.br/ david/enseignement/2003. UFRN/DIMAp/DIM0330 Linguagens formais http://www.consiste.dimap.ufrn.br/ david/enseignement/2003.1/dim0330 1/36 Autômatos a pilha David Déharbe UFRN/DIMAp Campus Universitário, Lagoa Nova, 59072-970 Natal,

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Luiz Humberto Cavalcante Veiga Consultor Legislativo da Área VII Sistema Financeiro, Direito Comercial, Direito Econômico, Defesa do Consumidor

Luiz Humberto Cavalcante Veiga Consultor Legislativo da Área VII Sistema Financeiro, Direito Comercial, Direito Econômico, Defesa do Consumidor Luiz Humberto Cavalcante Veiga Consultor Legislativo a Área VII Sistema Financeiro, Direito Comercial, Direito Econômico, Defesa o Consumior Câmara os Deputaos Praça Poeres Consultoria Legislativa Anexo

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 3 ano/e.m. Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 4.

Leia mais