A Curva de Lorenz e o Índice de Gini

Tamanho: px
Começar a partir da página:

Download "A Curva de Lorenz e o Índice de Gini"

Transcrição

1 A Curva de Lorenz e o Índice de Gini Curva de Lorenz Considere n valores para uma variável x i e admita-os ordenados de forma que x x 2... x n. A proporção acumulada da população até a i-ésima pessoa é p i = i n e a correspondente proporção acumulada da variável x i é Φ i = nµ i j= x j. Os pares de valores (p i, Φ i ) correspondem a pontos que, uma vez unidos, formam a "curva de Lorenz". No caso de perfeita eqüidade, x i = µ para todo i, e a curva de Lorenz corresponde à reta diagonal que une os pontos (0,0) e (,). No outro extremo, temos o caso de perfeita iniqüidade, no qual um único indivíduo j possui tudo (x j = Nµ e x i = 0 para i j). Nesta situação, a curva de Lorenz coincide com o eixo horizontal do gráco até o ponto no qual a proporção acumulada da população corresponda a n /n. Pode-se mostrar que a declividade da curva de Lorenz correspondente à i-ésima pessoa é sua participação relativa no total de x. Devido ao ordenamento crescente da variável, garante-se a inclinação sempre não decrescente da curva de Lorenz. Índice de Gini A área compreendida entre a linha de perfeita eqüidade e a curva de Lorenz é a área de desigualdade, indicada por α na Figura. No caso de perfeita iniqüidade, n pessoas possuem 0 e um único indivíduo possui tudo. A área de desigualdade corresponde à área do triângulo cuja base (no eixo das abscissas) é igual a /n e cuja altura é igual a. Assim, o valor máximo de α para uma distribuição discreta é α max = 2 ( ) n Note que, à medida que o tamanho ( ) da população aumenta, α max converge para lim n α max = lim n 2 n =. 2 ()

2 Proporção Acumulada de x Perfeita Eqüidade Perfeita Iniqüidade Intermediário Curva de Lorenz α Proporção Acumulada da População Figura : Casos possíveis para curvas de Lorenz de uma distribuição O índice de Gini (G) é denido como o quociente entre a área de desigualdade α e o valor deste limite: Como 0 α 2 2 0, 5 =. G = α = 2α (2) 0, 5 ( ) ( n, temos que 0 G n). E Gmax = lim n 2α max = O cálculo do Gini de uma distribuição pode ser realizado sem que para tanto seja necessário recorrer à plotagem da curva de Lorenz. Denimos a área entre a curva de Lorenz e o eixo das abscissas por β. Então, temos α + β = 0, 5. É possivel decompor a área β em n trapézios. Indicamos a área do i-ésimo trapézio por S i, cuja altura é igual a p i p i = /n e bases maior e menor correspondem a Φ i e Φ i, respectivamente. Assumindo Φ 0 = 0, temos S i = 2n (Φ i + Φ i ) (3) A área β pode ser encontrada através da soma de todos os trapézios, isto é, β = i= S i = 2n (Φ i + Φ i ) (4) A partir da equação (2) e do fato de que α = 0, 5 β, obtemos a seguinte expressão para o índice de Gini G = 2β = n 2 i= (Φ i + Φ i ) (5) i=

3 O Gini pode ser então calculado a partir de uma distribuição x qualquer, dispensando o uso de uma curva de Lorenz. É possível recorrer a uma fórmula alternativa para o Gini, bastando notar que i= (Φ i + Φ i ) = nµ [(2n ) x + (2n 3) x x n + x n ] = nµ i= (2n 2i + ) x i Assim, temos que G = n { nµ i= (2n 2i + ) x i = i= (2n 2i + ) x i = i= ix i n O que nos dá a seguinte expressão para o Gini } G = 2 i= ( ix i + ) n (6) ou ainda, G = 2µ (7) onde = n i j x 2 i x j = 4 n 2 i ix i 2µ ( ) + n corresponde à diferença média de x, isto é, a média dos valores absolutos das diferenças entre dois valores quaisquer da variável. Dual do Índice de Gini Seja x uma variável aleatória com média µ e distribuição tal que o valor de certa medida de desigualdade é M. Chama-se dual a distribuição com as seguintes características:. x = 0, com probabilidade U, e x = µ U com probabilidade U (o que implica em uma média ainda igual a µ). 2. O valor da medida de desigualdade considerada é igual a M. A proporção (U) de elementos com valor igual a zero na distribuição dual é chamada duas da medida de desigualdade considerada. O dual apresenta algumas vantagens sobre a medida de desigualdade que o origina: Por ser uma proporção, seu valor é adimensional e varia no intervalo [0, ]. A sensibilidade de uma medida de desigualdade pode ser estudada através de seu dual. 3

4 Curva de Lorenz Proporção Acumulada de x α < U > Proporção Acumulada da População Figura 2: Curva de Lorenz da distribuição em que x = 0, com probabilidade U, e x = µ U com probabilidade U. As medidas de desigualdade podem ser comparadas por meio de seus duais. Note que a área de desigualdade na Figura 2 é igual a U /2. Uma vez que o Gini corresponde à duas vezes a área de desigualdade, temos que U = G, isto é, o dual do índice de Gini é o próprio índice. O conceito de dual pode ser empregado para determinar a modicação que sofre uma certa medida de desigualdade quando a uma população de n elementos é adicionado um novo conjunto de m elementos para os quais a variável é igual a zero. Sejam φ = m a participação do conjunto adicionado no novo total e m+n U o valor do dual na situação inicial. Então, para a proporção U da distribuição dual, a variável é igual a zero. Após a adição do novo conjunto de elementos, a proporção de elementos com valor igual a zero passa a ser m + U n m + n = m m + n + U n m + n = φ + U ( φ) Por denição, esta proporção é o dual da nova distribuição, com m+n elementos. U 2 = φ + U ( φ) Como o índice de Gini é igual ao próprio dual, temos G 2 = φ + G ( φ) onde G e G 2 são os valores do Gini das distribuições inicial e nal, respectivamente. 4

5 Transferências Regressivas de Renda, o Princípio de Pigou-Dalton e o Índice de Gini Uma transferência regressiva de renda consiste em substrair um montante de renda de uma pessoa e acrescentá-lo à de uma outra pessoa que, anteriormente, tinha renda igual ou maior que a primeira. A condição de Pigou-Dalton estabelece que as medidas de desigualdade devem ter seus valores aumentados quando há transferências regressivas de renda. Podemos vericar que o Gini obedece à condição de Pigou-Dalton. De acordo com a equação (6) G = 2 i= ix i ( ) + n = 2 (x + 2x ix i jx j nx n ) n onde j > i e as rendas estão em ordem crescente. Uma transferência regressiva consiste em retirar um montante θ > 0 de x i e acrescentá-lo a x j. Consideremos o caso em que não e necessária a reordenação dos valores. Se G 0 e G são, respectivamente, os valores do Gini para as distribuições inicial e nal, temos que G = G (j i)θ Como j > i, temos G > G 0. Decomposição do Índice de Gini Admita uma pouplação de N pessoas, dividida em k grupos. Denotamos por x hi a renda da i-ésima pessoa do h-ésimo grupo, e por n h o número de pessoas neste grupo. Denimos ainda π h = n h/n, a proporção de pessoas no grupo h, e µ h, a respectiva renda média. Temos N = h n h µ = h π hµ h A proporção da renda global recebida pelo grupo h é Y h = n hµ h Nµ = π hµ h µ Admita os grupos ordenados conforme o valor de suas rendas médias, isto é, µ µ 2... µ k O índice de Gini entre grupos é (8) G e = h (Φ h + Φ h )π h (9) onde Φ h = Nµ h j= µ jn j é a proporção da renda acumulada até o grupo h. Note que a equação acima é semelhante à equação (5), diferindo apenas quanto aos pesos atribuídos a cada parcela do somatório. 5

6 O índice de Gini dentro do i-ésimo grupo é G h = (Φ hi + Φ h,i ) (0) n h onde Φ hi = n h µ h i j= x hj. Quando não há superposição dos intervalos de renda, é possível mostrar que i G = G e + h π h Y h G h () Contudo, nos casos mais gerais em que há superposição dos intervalos de renda, temos G = G e + h π h Y h G h + G s (2) onde G s é o componente associado à superposição entre os grupos. Dessa forma, diz-se que o Gini é uma medida de desigualdade não decomponível. Exercícios. Considere uma pooulação com 4 pessoas e distribuição de renda x = [0; 2; 4; 6]. (a) Desenhe a curva de Lorenz. (b) Calcule o Índice de Gini associado à distribuição. (c) Desenhe a curva de Lorenz para a distribuição dual. (d) Encontre o dual do Gini para a distribuição acima. 2. Suponha que possamos dividir a população em 2 grupos. Então, x = [x ; x 2 ], onde x = [0; 2] e x 2 = [4; 6]. Calcule o Gini entre grupos (G e ) e o Gini intra-grupos (G h, h =, 2), e verique que G = G e + h π hy h G h. 3. Considere uma transferência de renda regressiva sobre a distribuição do exercício anterior, tal que a nova distribuição seja y = [0; ; 4; 7]. Calcule o Gini desta nova distribuição. Referências Homann, Rodolfo (998) Distribuição de Renda, Medidas de Desigualdade e Pobreza, São Paulo. Editora da Universidade de São Paulo. 998, Capítulo 3 6

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Workshop: Como usar o software estatístico DAD?

Workshop: Como usar o software estatístico DAD? Workshop: Como usar o software estatístico DAD? Medidas de Pobreza e Desigualdade: algumas aplicações teóricas Prof. Caio Piza CCSA - Depto de Economia/NPQV Medidas de Pobreza e Desigualdade O que é DAD

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Decis: dividem os dados em décimas partes (cada parte tem 10% dos dados). São indicados por D 1, D 2,..., D 9.

Decis: dividem os dados em décimas partes (cada parte tem 10% dos dados). São indicados por D 1, D 2,..., D 9. Quartis, Decis e Percentis Probabilidade e Estatística I Antonio Roque Aula 7 A mediana é o valor que separa a quantidade de dados em duas partes igus: 50% dos dados abxo dela e 50% acima. Assim como a

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

capítulo Medindo a Progressividade das Transferências

capítulo Medindo a Progressividade das Transferências capítulo 20 Medindo a Progressividade das Transferências Rodolfo Hoffmann* 1 INTRODUÇÃO A discussão sobre a melhor forma de cobrar imposto foi um tema básico dos economistas clássicos. John Stuart Mill,

Leia mais

Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador

Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador Chen Yung Jen 1 e Elisabeti Kira (Orientadora 1 Universidade de São Paulo (IME-USP, Brazil chen.jen@usp.br Universidade de São Paulo

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Lista 1: Vetores -Turma L

Lista 1: Vetores -Turma L Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Anexo 1. Definição das variáveis de análise

Anexo 1. Definição das variáveis de análise Métodos Anexo 1 Definição das variáveis de análise 1. Saúde: a. Taxa de mortalidade infantil (TMI): número de óbitos de menores de um ano de idade, por mil nascidos vivos, na população residente em determinado

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis;

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis; UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Eistem situações nas quais há interesse em estudar o comportamento conjunto

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno

Leia mais

INTRODUÇÃO AO ESTUDO DO FLUXO DE CAIXA

INTRODUÇÃO AO ESTUDO DO FLUXO DE CAIXA INTRODUÇÃO AO ESTUDO DO FLUXO DE CAIXA O estudo da matemática financeira é desenvolvido, basicamente, através do seguinte raciocínio: ao longo do tempo existem entradas de dinheiro (receitas) e saídas

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países. Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Rio Grande do Sul. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio Grande do Sul (1991, 2000 e 2010)

Rio Grande do Sul. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio Grande do Sul (1991, 2000 e 2010) Rio Grande do Sul Em 21, no estado do Rio Grande do Sul (RS), moravam 1,7 milhões de pessoas, onde parcela importante (9,3%, 989,9 mil) tinha 65 ou mais anos de idade. O estado era composto de 496 municípios,

Leia mais

Rio de Janeiro. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio de Janeiro (1991, 2000 e 2010)

Rio de Janeiro. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio de Janeiro (1991, 2000 e 2010) Rio de Janeiro Em, no estado do Rio de Janeiro (RJ), moravam 16 milhões de pessoas, onde 8,9% (1,4 milhões) tinham 65 ou mais anos de idade. O estado era composto de 92 municípios, dos quais sete (7,6%)

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

O coeficiente angular

O coeficiente angular A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Santa Catarina. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Santa Catarina (1991, 2000 e 2010)

Santa Catarina. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Santa Catarina (1991, 2000 e 2010) Santa Catarina Em 21, no estado de Santa Catarina (SC), moravam 6,3 milhões de pessoas, onde parcela relevante (6,9%, 43,7 mil) tinha 65 ou mais anos de idade. O estado era composto de 293 municípios,

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

Paraná. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Paraná (1991, 2000 e 2010)

Paraná. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Paraná (1991, 2000 e 2010) Paraná Em, no estado do Paraná (PR), moravam 1,4 milhões de pessoas, onde uma parcela considerável (7,5%, 786,6 mil) tinha 65 ou mais anos de idade. O estado era composto de 399 municípios, dos quais 23

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais

Notas de Aula do Curso ET101: Estatística 1 - Área 2

Notas de Aula do Curso ET101: Estatística 1 - Área 2 Notas de Aula do Curso ET101: Estatística 1 - Área 2 Leandro Chaves Rêgo, Ph.D. 2008.2 Prefácio Estas notas de aula foram feitas para compilar o conteúdo de várias referências bibliográcas tendo em vista

Leia mais

UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Matrizes e Sistemas de Equações Apresentação Lineares UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade você deverá ser capaz de: Descrever e comentar possibilidades

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

MICROECONOMIA MATERIAL DE ACOMPANHAMENTO DAS AULAS, REFERENTE À 2 A. AVALIAÇÃO.

MICROECONOMIA MATERIAL DE ACOMPANHAMENTO DAS AULAS, REFERENTE À 2 A. AVALIAÇÃO. MICROECONOMIA 4 o. ANO DE ADMINISTRAÇÃO MATERIAL DE ACOMPANHAMENTO DAS AULAS, REFERENTE À 2 A. AVALIAÇÃO. PROFESSOR FIGUEIREDO SÃO PAULO 2007 2 TEORIA DA PRODUÇÃO Função de Produção: é a relação que indica

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 12 Páginas Duração

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento

Leia mais

Índice de Gini e IDH. Prof. Antonio Carlos Assumpção

Índice de Gini e IDH. Prof. Antonio Carlos Assumpção Índice de Gini e IDH Prof. Antonio Carlos Assumpção Redução da pobreza e Desigualdade de Renda Redução da pobreza e Desigualdade de Renda A partir da estabilização da economia, em 1994, houve no Brasil

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

A desigualdade de renda inter-regional paulista: 1990-2007

A desigualdade de renda inter-regional paulista: 1990-2007 A desigualdade de renda inter-regional paulista: 1990-2007 Rosycler Cristina Santos Simão 1 Sandro Eduardo Monsueto 2 Resumo Este artigo tem por objetivo fazer uma breve descrição da distribuição de renda

Leia mais

6) Estatística Gráfica:

6) Estatística Gráfica: Estatística Descritiva Básica prof. Ilydio Pereira de Sá 36 UNIDADE II: ESTATÍSTICA GRÁFICA E MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL Gráficos: barras, colunas, histogramas e polígonos de freqüências.

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

Conceitos de Confiabilidade Características da Distribuição Weibull

Conceitos de Confiabilidade Características da Distribuição Weibull Página 1 de 7 WebSite Softwares Treinamentos Consultorias Recursos ReliaSoft Empresa ReliaSoft > Reliability Hotwire > Edição 3 > Conceitos Básicos de Confiabilidade Reliability HotWire Edição 3, Maio

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Unidade II MATEMÁTICA APLICADA À CONTABILIDADE

Unidade II MATEMÁTICA APLICADA À CONTABILIDADE MATEMÁTICA APLICADA À CONTABILIDADE Unidade II PREÇO E RECEITA TOTAL.1 Definição Receita é o valor em moeda que o produtor recebe pela venda de X unidades do produto produzido e vendido por ele. Consideremos

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

Distribuição de Freqüência

Distribuição de Freqüência Distribuição de Freqüência Representação do conjunto de dados Distribuições de freqüência Freqüência relativa Freqüência acumulada Representação Gráfica Histogramas Organização dos dados Os métodos utilizados

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero? Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

São Paulo. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de São Paulo (1991, 2000 e 2010)

São Paulo. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de São Paulo (1991, 2000 e 2010) São Paulo Em 21, no estado de São Paulo (SP), moravam 41,3 milhões de pessoas, onde uma parcela considerável (7,8%, 3,2 milhões) tinha 65 ou mais anos de idade. O estado era composto de 645 municípios,

Leia mais

CMg Q P RT P = RMg CT CF = 100. CMg

CMg Q P RT P = RMg CT CF = 100. CMg Pindyck & Rubinfeld, Capítulo 8, Oferta :: EXERCÍCIOS 1. A partir dos dados da Tabela 8.2, mostre o que ocorreria com a escolha do nível de produção da empresa caso o preço do produto apresentasse uma

Leia mais

Derivação Implícita e Taxas Relacionadas

Derivação Implícita e Taxas Relacionadas Capítulo 14 Derivação Implícita e Taxas Relacionadas 14.1 Introdução A maioria das funções com as quais trabalhamos até agora é da forma y = f(x), em que y é dado diretamente ou, explicitamente, por meio

Leia mais

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. 1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.

Leia mais

Introdução aos Sinais

Introdução aos Sinais Introdução aos Sinais Pedro M. Q. Aguiar, Luís M. B. Almeida Setembro, 2012 1 Conceito de sinal Um sinal representa a variação de uma grandeza como função de uma variável independente, que designaremos

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

1 Tipos de dados em Análise de Clusters

1 Tipos de dados em Análise de Clusters Curso de Data Mining Sandra de Amo Aula 13 - Análise de Clusters - Introdução Análise de Clusters é o processo de agrupar um conjunto de objetos físicos ou abstratos em classes de objetos similares Um

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais Exame Nacional do Ensino Secundário Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 12 Páginas Sem figuras

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

CONSTRUÇÃO DE GRÁFICOS

CONSTRUÇÃO DE GRÁFICOS GOVERNO DO ESTADO DO RIO DE JANEIRO FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA FAETEC ESCOLA TÉCNICA ESTADUAL SANTA CRUZ ETESC DISCIPLINA DE QUÍMICA EXPERIMENTAL Profs.: Ana Cristina, Denis Dutra e José Lucas

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

1ª Actividade Formativa

1ª Actividade Formativa 1ª Actividade Formativa 1. Foi feito um inquérito a um grupo de 40 compradores de carros novos, de determinada marca, para determinar quantas reparações ou substituições de peças foram feitas durante o

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder

Leia mais

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na

Leia mais

AT = X MÁX - X MÍN. Σ F i =n

AT = X MÁX - X MÍN. Σ F i =n UNIVERSIDADE FEDERAL DA PARAÍBA DISTRIBUIÇÃO DE FREQUÊNCIA Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II

APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II APOSTILA DE CÁLCULO DIFERENCIAL E INTEGRAL II z t t C C α y β y Colaboradores para elaboração da apostila: Elisandra Bär de Figueiredo, Enori Carelli, Ivanete Zuchi Siple, Marnei Luis Mandler, Rogério

Leia mais

Olá pessoal! Sem mais delongas, vamos às questões.

Olá pessoal! Sem mais delongas, vamos às questões. Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º/11.º Anos ou 11.º/12.º Anos de Escolaridade Prova 835/1.ª Fase

Leia mais