A Curva de Lorenz e o Índice de Gini

Tamanho: px
Começar a partir da página:

Download "A Curva de Lorenz e o Índice de Gini"

Transcrição

1 A Curva de Lorenz e o Índice de Gini Curva de Lorenz Considere n valores para uma variável x i e admita-os ordenados de forma que x x 2... x n. A proporção acumulada da população até a i-ésima pessoa é p i = i n e a correspondente proporção acumulada da variável x i é Φ i = nµ i j= x j. Os pares de valores (p i, Φ i ) correspondem a pontos que, uma vez unidos, formam a "curva de Lorenz". No caso de perfeita eqüidade, x i = µ para todo i, e a curva de Lorenz corresponde à reta diagonal que une os pontos (0,0) e (,). No outro extremo, temos o caso de perfeita iniqüidade, no qual um único indivíduo j possui tudo (x j = Nµ e x i = 0 para i j). Nesta situação, a curva de Lorenz coincide com o eixo horizontal do gráco até o ponto no qual a proporção acumulada da população corresponda a n /n. Pode-se mostrar que a declividade da curva de Lorenz correspondente à i-ésima pessoa é sua participação relativa no total de x. Devido ao ordenamento crescente da variável, garante-se a inclinação sempre não decrescente da curva de Lorenz. Índice de Gini A área compreendida entre a linha de perfeita eqüidade e a curva de Lorenz é a área de desigualdade, indicada por α na Figura. No caso de perfeita iniqüidade, n pessoas possuem 0 e um único indivíduo possui tudo. A área de desigualdade corresponde à área do triângulo cuja base (no eixo das abscissas) é igual a /n e cuja altura é igual a. Assim, o valor máximo de α para uma distribuição discreta é α max = 2 ( ) n Note que, à medida que o tamanho ( ) da população aumenta, α max converge para lim n α max = lim n 2 n =. 2 ()

2 Proporção Acumulada de x Perfeita Eqüidade Perfeita Iniqüidade Intermediário Curva de Lorenz α Proporção Acumulada da População Figura : Casos possíveis para curvas de Lorenz de uma distribuição O índice de Gini (G) é denido como o quociente entre a área de desigualdade α e o valor deste limite: Como 0 α 2 2 0, 5 =. G = α = 2α (2) 0, 5 ( ) ( n, temos que 0 G n). E Gmax = lim n 2α max = O cálculo do Gini de uma distribuição pode ser realizado sem que para tanto seja necessário recorrer à plotagem da curva de Lorenz. Denimos a área entre a curva de Lorenz e o eixo das abscissas por β. Então, temos α + β = 0, 5. É possivel decompor a área β em n trapézios. Indicamos a área do i-ésimo trapézio por S i, cuja altura é igual a p i p i = /n e bases maior e menor correspondem a Φ i e Φ i, respectivamente. Assumindo Φ 0 = 0, temos S i = 2n (Φ i + Φ i ) (3) A área β pode ser encontrada através da soma de todos os trapézios, isto é, β = i= S i = 2n (Φ i + Φ i ) (4) A partir da equação (2) e do fato de que α = 0, 5 β, obtemos a seguinte expressão para o índice de Gini G = 2β = n 2 i= (Φ i + Φ i ) (5) i=

3 O Gini pode ser então calculado a partir de uma distribuição x qualquer, dispensando o uso de uma curva de Lorenz. É possível recorrer a uma fórmula alternativa para o Gini, bastando notar que i= (Φ i + Φ i ) = nµ [(2n ) x + (2n 3) x x n + x n ] = nµ i= (2n 2i + ) x i Assim, temos que G = n { nµ i= (2n 2i + ) x i = i= (2n 2i + ) x i = i= ix i n O que nos dá a seguinte expressão para o Gini } G = 2 i= ( ix i + ) n (6) ou ainda, G = 2µ (7) onde = n i j x 2 i x j = 4 n 2 i ix i 2µ ( ) + n corresponde à diferença média de x, isto é, a média dos valores absolutos das diferenças entre dois valores quaisquer da variável. Dual do Índice de Gini Seja x uma variável aleatória com média µ e distribuição tal que o valor de certa medida de desigualdade é M. Chama-se dual a distribuição com as seguintes características:. x = 0, com probabilidade U, e x = µ U com probabilidade U (o que implica em uma média ainda igual a µ). 2. O valor da medida de desigualdade considerada é igual a M. A proporção (U) de elementos com valor igual a zero na distribuição dual é chamada duas da medida de desigualdade considerada. O dual apresenta algumas vantagens sobre a medida de desigualdade que o origina: Por ser uma proporção, seu valor é adimensional e varia no intervalo [0, ]. A sensibilidade de uma medida de desigualdade pode ser estudada através de seu dual. 3

4 Curva de Lorenz Proporção Acumulada de x α < U > Proporção Acumulada da População Figura 2: Curva de Lorenz da distribuição em que x = 0, com probabilidade U, e x = µ U com probabilidade U. As medidas de desigualdade podem ser comparadas por meio de seus duais. Note que a área de desigualdade na Figura 2 é igual a U /2. Uma vez que o Gini corresponde à duas vezes a área de desigualdade, temos que U = G, isto é, o dual do índice de Gini é o próprio índice. O conceito de dual pode ser empregado para determinar a modicação que sofre uma certa medida de desigualdade quando a uma população de n elementos é adicionado um novo conjunto de m elementos para os quais a variável é igual a zero. Sejam φ = m a participação do conjunto adicionado no novo total e m+n U o valor do dual na situação inicial. Então, para a proporção U da distribuição dual, a variável é igual a zero. Após a adição do novo conjunto de elementos, a proporção de elementos com valor igual a zero passa a ser m + U n m + n = m m + n + U n m + n = φ + U ( φ) Por denição, esta proporção é o dual da nova distribuição, com m+n elementos. U 2 = φ + U ( φ) Como o índice de Gini é igual ao próprio dual, temos G 2 = φ + G ( φ) onde G e G 2 são os valores do Gini das distribuições inicial e nal, respectivamente. 4

5 Transferências Regressivas de Renda, o Princípio de Pigou-Dalton e o Índice de Gini Uma transferência regressiva de renda consiste em substrair um montante de renda de uma pessoa e acrescentá-lo à de uma outra pessoa que, anteriormente, tinha renda igual ou maior que a primeira. A condição de Pigou-Dalton estabelece que as medidas de desigualdade devem ter seus valores aumentados quando há transferências regressivas de renda. Podemos vericar que o Gini obedece à condição de Pigou-Dalton. De acordo com a equação (6) G = 2 i= ix i ( ) + n = 2 (x + 2x ix i jx j nx n ) n onde j > i e as rendas estão em ordem crescente. Uma transferência regressiva consiste em retirar um montante θ > 0 de x i e acrescentá-lo a x j. Consideremos o caso em que não e necessária a reordenação dos valores. Se G 0 e G são, respectivamente, os valores do Gini para as distribuições inicial e nal, temos que G = G (j i)θ Como j > i, temos G > G 0. Decomposição do Índice de Gini Admita uma pouplação de N pessoas, dividida em k grupos. Denotamos por x hi a renda da i-ésima pessoa do h-ésimo grupo, e por n h o número de pessoas neste grupo. Denimos ainda π h = n h/n, a proporção de pessoas no grupo h, e µ h, a respectiva renda média. Temos N = h n h µ = h π hµ h A proporção da renda global recebida pelo grupo h é Y h = n hµ h Nµ = π hµ h µ Admita os grupos ordenados conforme o valor de suas rendas médias, isto é, µ µ 2... µ k O índice de Gini entre grupos é (8) G e = h (Φ h + Φ h )π h (9) onde Φ h = Nµ h j= µ jn j é a proporção da renda acumulada até o grupo h. Note que a equação acima é semelhante à equação (5), diferindo apenas quanto aos pesos atribuídos a cada parcela do somatório. 5

6 O índice de Gini dentro do i-ésimo grupo é G h = (Φ hi + Φ h,i ) (0) n h onde Φ hi = n h µ h i j= x hj. Quando não há superposição dos intervalos de renda, é possível mostrar que i G = G e + h π h Y h G h () Contudo, nos casos mais gerais em que há superposição dos intervalos de renda, temos G = G e + h π h Y h G h + G s (2) onde G s é o componente associado à superposição entre os grupos. Dessa forma, diz-se que o Gini é uma medida de desigualdade não decomponível. Exercícios. Considere uma pooulação com 4 pessoas e distribuição de renda x = [0; 2; 4; 6]. (a) Desenhe a curva de Lorenz. (b) Calcule o Índice de Gini associado à distribuição. (c) Desenhe a curva de Lorenz para a distribuição dual. (d) Encontre o dual do Gini para a distribuição acima. 2. Suponha que possamos dividir a população em 2 grupos. Então, x = [x ; x 2 ], onde x = [0; 2] e x 2 = [4; 6]. Calcule o Gini entre grupos (G e ) e o Gini intra-grupos (G h, h =, 2), e verique que G = G e + h π hy h G h. 3. Considere uma transferência de renda regressiva sobre a distribuição do exercício anterior, tal que a nova distribuição seja y = [0; ; 4; 7]. Calcule o Gini desta nova distribuição. Referências Homann, Rodolfo (998) Distribuição de Renda, Medidas de Desigualdade e Pobreza, São Paulo. Editora da Universidade de São Paulo. 998, Capítulo 3 6

Workshop: Como usar o software estatístico DAD?

Workshop: Como usar o software estatístico DAD? Workshop: Como usar o software estatístico DAD? Medidas de Pobreza e Desigualdade: algumas aplicações teóricas Prof. Caio Piza CCSA - Depto de Economia/NPQV Medidas de Pobreza e Desigualdade O que é DAD

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Decis: dividem os dados em décimas partes (cada parte tem 10% dos dados). São indicados por D 1, D 2,..., D 9.

Decis: dividem os dados em décimas partes (cada parte tem 10% dos dados). São indicados por D 1, D 2,..., D 9. Quartis, Decis e Percentis Probabilidade e Estatística I Antonio Roque Aula 7 A mediana é o valor que separa a quantidade de dados em duas partes igus: 50% dos dados abxo dela e 50% acima. Assim como a

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis;

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis; UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Eistem situações nas quais há interesse em estudar o comportamento conjunto

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Anexo 1. Definição das variáveis de análise

Anexo 1. Definição das variáveis de análise Métodos Anexo 1 Definição das variáveis de análise 1. Saúde: a. Taxa de mortalidade infantil (TMI): número de óbitos de menores de um ano de idade, por mil nascidos vivos, na população residente em determinado

Leia mais

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno

Leia mais

Noções de Pesquisa e Amostragem. André C. R. Martins

Noções de Pesquisa e Amostragem. André C. R. Martins Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países. Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade

Leia mais

capítulo Medindo a Progressividade das Transferências

capítulo Medindo a Progressividade das Transferências capítulo 20 Medindo a Progressividade das Transferências Rodolfo Hoffmann* 1 INTRODUÇÃO A discussão sobre a melhor forma de cobrar imposto foi um tema básico dos economistas clássicos. John Stuart Mill,

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Distribuição de Freqüência

Distribuição de Freqüência Distribuição de Freqüência Representação do conjunto de dados Distribuições de freqüência Freqüência relativa Freqüência acumulada Representação Gráfica Histogramas Organização dos dados Os métodos utilizados

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

1 Tipos de dados em Análise de Clusters

1 Tipos de dados em Análise de Clusters Curso de Data Mining Sandra de Amo Aula 13 - Análise de Clusters - Introdução Análise de Clusters é o processo de agrupar um conjunto de objetos físicos ou abstratos em classes de objetos similares Um

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Rio Grande do Sul. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio Grande do Sul (1991, 2000 e 2010)

Rio Grande do Sul. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio Grande do Sul (1991, 2000 e 2010) Rio Grande do Sul Em 21, no estado do Rio Grande do Sul (RS), moravam 1,7 milhões de pessoas, onde parcela importante (9,3%, 989,9 mil) tinha 65 ou mais anos de idade. O estado era composto de 496 municípios,

Leia mais

Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador

Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador Passeios aleatórios: utuações no lançamento de moedas e ruína do jogador Chen Yung Jen 1 e Elisabeti Kira (Orientadora 1 Universidade de São Paulo (IME-USP, Brazil chen.jen@usp.br Universidade de São Paulo

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Paraná. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Paraná (1991, 2000 e 2010)

Paraná. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Paraná (1991, 2000 e 2010) Paraná Em, no estado do Paraná (PR), moravam 1,4 milhões de pessoas, onde uma parcela considerável (7,5%, 786,6 mil) tinha 65 ou mais anos de idade. O estado era composto de 399 municípios, dos quais 23

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Rio de Janeiro. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio de Janeiro (1991, 2000 e 2010)

Rio de Janeiro. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado do Rio de Janeiro (1991, 2000 e 2010) Rio de Janeiro Em, no estado do Rio de Janeiro (RJ), moravam 16 milhões de pessoas, onde 8,9% (1,4 milhões) tinham 65 ou mais anos de idade. O estado era composto de 92 municípios, dos quais sete (7,6%)

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

Lista 1: Vetores -Turma L

Lista 1: Vetores -Turma L Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

Santa Catarina. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Santa Catarina (1991, 2000 e 2010)

Santa Catarina. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Santa Catarina (1991, 2000 e 2010) Santa Catarina Em 21, no estado de Santa Catarina (SC), moravam 6,3 milhões de pessoas, onde parcela relevante (6,9%, 43,7 mil) tinha 65 ou mais anos de idade. O estado era composto de 293 municípios,

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Índice de Gini e IDH. Prof. Antonio Carlos Assumpção

Índice de Gini e IDH. Prof. Antonio Carlos Assumpção Índice de Gini e IDH Prof. Antonio Carlos Assumpção Redução da pobreza e Desigualdade de Renda Redução da pobreza e Desigualdade de Renda A partir da estabilização da economia, em 1994, houve no Brasil

Leia mais

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais ordinais Utilizar corretamente os numerais ordinais até centésimo. Contar até um milhão Estender as regras

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Distribuição de Freqüências

Distribuição de Freqüências Distribuição de Freqüências Por constituir-se o tipo de tabela importante para a Estatística Descritiva, faremos um estudo completo da distribuição de freqüências. Uma distribuição de freqüências condensa

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

AT = X MÁX - X MÍN. Σ F i =n

AT = X MÁX - X MÍN. Σ F i =n UNIVERSIDADE FEDERAL DA PARAÍBA DISTRIBUIÇÃO DE FREQUÊNCIA Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

3. Características amostrais. Medidas de localização e dispersão

3. Características amostrais. Medidas de localização e dispersão Estatística Descritiva com Excel Complementos. 77 3. Características amostrais. Medidas de localização e dispersão 3.1- Introdução No módulo de Estatística foram apresentadas as medidas ou estatísticas

Leia mais

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS A RTIGO PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS Fábio Marson Ferreira e Walter Spinelli Professores do Colégio Móbile, São Paulo Recentemente nos desafiamos

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Agrupamento de Escolas Eugénio de Castro 1º Ciclo Critérios de Avaliação Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

Exercícios Resolvidos sobre: I - Conceitos Elementares

Exercícios Resolvidos sobre: I - Conceitos Elementares Exercícios Resolvidos sobre: I - Conceitos Elementares Grupo II O Problema da Escassez e da Escolha Questão 1 Comecemos por explicitar o que se entende por bem económico: um bem económico é qualquer coisa

Leia mais

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22 Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA XI 1 TEOREMA DE TALES No Nivelamento, um dos assuntos abordados foi Razão e Proporção. A proporção aparece em várias situações no dia-a-dia: por exemplo, na leitura

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

São Paulo. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de São Paulo (1991, 2000 e 2010)

São Paulo. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de São Paulo (1991, 2000 e 2010) São Paulo Em 21, no estado de São Paulo (SP), moravam 41,3 milhões de pessoas, onde uma parcela considerável (7,8%, 3,2 milhões) tinha 65 ou mais anos de idade. O estado era composto de 645 municípios,

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais.

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7aula Janeiro de 2012 CONSTRUÇÃO DE GRÁFICOS I: Papel Milimetrado Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7.1

Leia mais

TOPOGRAFIA. Áreas e Volumes

TOPOGRAFIA. Áreas e Volumes TOPOGRAFIA Áreas e Volumes A estimativa da área de um terreno pode ser determinada através de medições realizadas diretamente no terreno ou através de medições gráficas sobre uma planta topográfica. As

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Para determinarmos um valor aproximado das raízes de uma equação não linear, convém notar inicialmente

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

INTRODUÇÃO AO ESTUDO DO FLUXO DE CAIXA

INTRODUÇÃO AO ESTUDO DO FLUXO DE CAIXA INTRODUÇÃO AO ESTUDO DO FLUXO DE CAIXA O estudo da matemática financeira é desenvolvido, basicamente, através do seguinte raciocínio: ao longo do tempo existem entradas de dinheiro (receitas) e saídas

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016 AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016 1º Trimestre Domínios Números e Operações Números naturais Contar até cinco Correspondências

Leia mais

A desigualdade de renda inter-regional paulista: 1990-2007

A desigualdade de renda inter-regional paulista: 1990-2007 A desigualdade de renda inter-regional paulista: 1990-2007 Rosycler Cristina Santos Simão 1 Sandro Eduardo Monsueto 2 Resumo Este artigo tem por objetivo fazer uma breve descrição da distribuição de renda

Leia mais

CADEX. Consultoria em Logística Interna. Layout de armazém. Objectivos. Popularidade. Semelhança. Tamanho. Características

CADEX. Consultoria em Logística Interna. Layout de armazém. Objectivos. Popularidade. Semelhança. Tamanho. Características CADEX Consultoria em Logística Interna Layout de armazém fonte: Wikipédia O layout de armazém é a forma como as áreas de armazenagem de um armazém estão organizadas, de forma a utilizar todo o espaço existente

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Capítulo 5 Representações gráficas para variáveis quantitativas

Capítulo 5 Representações gráficas para variáveis quantitativas Capítulo 5 Representações gráficas para variáveis quantitativas Introdução Até o capítulo passado, você aprendeu a sintetizar dados a partir de um conjunto desordenado de dados, identificando a quantidade

Leia mais

MICROECONOMIA MATERIAL DE ACOMPANHAMENTO DAS AULAS, REFERENTE À 2 A. AVALIAÇÃO.

MICROECONOMIA MATERIAL DE ACOMPANHAMENTO DAS AULAS, REFERENTE À 2 A. AVALIAÇÃO. MICROECONOMIA 4 o. ANO DE ADMINISTRAÇÃO MATERIAL DE ACOMPANHAMENTO DAS AULAS, REFERENTE À 2 A. AVALIAÇÃO. PROFESSOR FIGUEIREDO SÃO PAULO 2007 2 TEORIA DA PRODUÇÃO Função de Produção: é a relação que indica

Leia mais

MATEMÁTICA FINANCEIRA PROF. DANIEL DE SOUZA INTRODUÇÃO:

MATEMÁTICA FINANCEIRA PROF. DANIEL DE SOUZA INTRODUÇÃO: 1 MATEMÁTICA FINANCEIRA PROF. DANIEL DE SOUZA INTRODUÇÃO: O PRINCIPAL CONCEITO QUE ORIENTARÁ TODO O NOSSO RACIOCÍNIO AO LONGO DESTE CURSO É O CONCEITO DO VALOR DO DINHEIRO NO TEMPO. EMPRÉSTIMOS OU INVESTIMENTOS

Leia mais

Correlação e Regressão Linear

Correlação e Regressão Linear Correlação e Regressão Linear A medida de correlação é o tipo de medida que se usa quando se quer saber se duas variáveis possuem algum tipo de relação, de maneira que quando uma varia a outra varia também.

Leia mais

Conceitos de Confiabilidade Características da Distribuição Weibull

Conceitos de Confiabilidade Características da Distribuição Weibull Página 1 de 7 WebSite Softwares Treinamentos Consultorias Recursos ReliaSoft Empresa ReliaSoft > Reliability Hotwire > Edição 3 > Conceitos Básicos de Confiabilidade Reliability HotWire Edição 3, Maio

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS GEOMETRIA DE VIAS Elementos geométricos de uma estrada (Fonte: PONTES FILHO, 1998) 1. INTRODUÇÃO: Após traçados o perfil longitudinal e transversal, já

Leia mais

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012

ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012 ESTATÍSTICA Prof. Ari Antonio, Me Ciências Econômicas Unemat Sinop 2012 1. Introdução Concepções de Estatística: 1. Estatísticas qualquer coleção consistente de dados numéricos reunidos a fim de fornecer

Leia mais

Domínio Subdomínio Conteúdos Metas

Domínio Subdomínio Conteúdos Metas Escola Básica e Secundária da Graciosa Planificação Anual de Matemática de 1º ano Ano letivo 2014/2015 Períodos Domínio Subdomínio Conteúdos Metas Situar-se e situar objetos no espaço - Relações de posição

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações.

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações. Análise descritiva de Dados 4. Medidas resumos para variáveis quantitativas 4.1. Medidas de Posição: Considere uma amostra com n observações: x 1, x,..., x n. a) Média: (ou média aritmética) é representada

Leia mais

Fórmula versus Algoritmo

Fórmula versus Algoritmo 1 Introdução Fórmula versus Algoritmo na resolução de um problema 1 Roberto Ribeiro Paterlini 2 Departamento de Matemática da UFSCar No estudo das soluções do problema abaixo deparamos com uma situação

Leia mais

Unidade II MATEMÁTICA APLICADA. Profa. Maria Ester Domingues de Oliveira

Unidade II MATEMÁTICA APLICADA. Profa. Maria Ester Domingues de Oliveira Unidade II MATEMÁTICA APLICADA À CONTABILIDADE Profa. Maria Ester Domingues de Oliveira Receita Total A receita é o valor em moeda que o produtor recebe pela venda de x unidades do produto produzido e

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O que é Estatística? Coleção de métodos

Leia mais

4. Introdução à termodinâmica

4. Introdução à termodinâmica 4. Introdução à termodinâmica 4.1. Energia interna O estabelecimento do princípio da conservação da energia tornou-se possível quando se conseguiu demonstrar que junto com a energia mecânica, os corpos

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Antes de iniciar a sua prova, tenha em atenção os seguintes aspectos:

Antes de iniciar a sua prova, tenha em atenção os seguintes aspectos: Nome Completo: (tal como consta do processo do aluno) Nº de Processo: Turma: Curso: Antes de iniciar a sua prova, tenha em atenção os seguintes aspectos: A duração da prova é de duas horas e trinta minutos

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais