Lista de Exercícios 01

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 01"

Transcrição

1 OBS: O exercícios marcados com "*" devem ser entregues na aula seguinte Conjunto: representa uma coleção de objetos. Elemento: é um dos componentes de um conjunto. Lista de Exercícios 01 Pertinência: é a característica associada a um elemento que faz parte de um conjunto. a. José da Silva pertence ao conjunto dos brasileiros. Símbolo de pertinência: Se um elemento pertence a um conjunto utilizamos o símbolo que se lê: "pertence". Exemplo: a. 1 N: 1 PERTENCE a N b. 0 N: 0 NÃO PERTENCE a N Algumas notações para conjuntos Apresentação: Os elementos do conjunto estão dentro de duas chaves { e }. a. A={a,e,i,o,u} Descrição: O conjunto é descrito por uma ou mais propriedades. a. A={x: x é uma vogal} Diagrama de Venn-Euler: (lê-se: "Ven-óiler") Os conjuntos são mostrados graficamente. Subconjuntos Dados os conjuntos A e B, diz-se que A está contido em B, denotado por A B, se todos os elementos de A também estão em B. Alguns conjuntos especiais Conjunto vazio: É um conjunto que não possui elementos. É representado por { } ou por Ø. O conjunto vazio está contido em todos os conjuntos (Ø A, para qualquer conjunto A). Reunião (União) de conjuntos A reunião dos conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A ou ao conjunto B. A B = { x: x A ou x B } Exemplo: Se A={a,e,i,o} e B={3,4} então A B={a,e,i,o,3,4}. 1

2 Interseção de conjuntos A interseção dos conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A e ao conjunto B. A B = { x: x A e x B } Exemplo: Se A={a,e,i,o,u} e B={1,2,3,4} então A B=Ø. A = {1,2,3,4,5} e B = {3,5,6,7} Diagrama: então A B = {3,5} OBS: Quando a interseção de dois conjuntos A e B é o conjunto vazio, dizemos que estes conjuntos são disjuntos. Propriedades dos conjuntos 1. Fechamento: Quaisquer que sejam os conjuntos A e B, a reunião de A e B, denotada por A B e a interseção de A e B, denotada por A B, ainda são conjuntos no universo. 2. Reflexiva: Qualquer que seja o conjunto A, tem-se que: A A = A e A A = A 3. Inclusão: Quaisquer que sejam os conjuntos A e B, tem-se que: A A B, B A B, A B A, A B B 4. Inclusão relacionada: Quaisquer que sejam os conjuntos A e B, tem-se que: A B equivale a A B = B A B equivale a A B = A 5. Associativa: Quaisquer que sejam os conjuntos A, B e C, tem-se que: A (B C) = (A B) C A (B C) = (A B) C 6. Comutativa: Quaisquer que sejam os conjuntos A e B, tem-se que: A B = B A A B = B A 7. Distributiva: Quaisquer que sejam os conjuntos A, B e C, tem-se que: I) A (B C ) = (A B) (A C) II) A (B C) = (A B) (A C) Os gráficos abaixo mostram a distributividade no item I. 2

3 Exercício: Construa os diagramas para mostrar o item II. Diferença de conjuntos A diferença entre os conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A e não pertencem ao conjunto B. A-B = {x: x A e x B} Do ponto de vista gráfico, a diferença pode ser vista como: Complemento de um conjunto O complemento do conjunto B contido no conjunto A, denotado por C A B, é a diferença entre os conjuntos A e B, ou seja, é o conjunto de todos os elementos que pertencem ao conjunto A e não pertencem ao conjunto B. C A B = A-B = {x: x A e x B} Graficamente, o complemento do conjunto B no conjunto A, é dado por: Exercícios: *01. Observe o diagrama e responda: Quais os elementos dos conjuntos abaixo: a) A = b) B = c) C = d) ( A B ) ( B C ) = e) A C B = f) A B = g) (A B) C = 02 - São dados os conjuntos A = {x IN / x é impar}, B = {x Z / 3 x < 4} e C = {x Ζ / x < 6}. Calcule 3

4 a) A = b) B = c) C = d) ( A B ) ( B C ) = e) A C B 03. Em uma escola, 100 alunos praticam vôlei, 150 futebol, 20 os dois esportes e 110 alunos nenhum. O número total de alunos é a) 230 b) 300 c) 340 d) 380 *04. (ESAL) Foi consultado um certo número de pessoas sobre as emissoras de TV que habitualmente assistem. Obteve-se o resultado seguinte: 300 pessoas assistem ao canal A, 270 pessoas assistem o canal B, das quais 150 assistem ambos os canais A e B e 80 assistem outros canais distintos de A e B. O número de pessoas consultadas foi: a) 800 b) 720 c) 570 d) 500 e) 600 *05. Uma pesquisa de mercado sobre a preferência de 200 consumidores por três produtos P1, P2 e P3 mostrou que, dos entrevistados, 20 consumiam os três produtos; 30 os produtos P1 e P2; 50 os produtos P2 e P3; 60 os produtos P1 e P3; 120 o produto P1; 75 o produto P2 Se todas as 200 pessoas entrevistadas deram preferência à pelo menos um dos produtos, pergunta-se: a) Quantas consumiam somente o produto P3? b) Quantas consumiam pelo menos dois dos produtos? c) Quantas consumiam os produtos P1 e P2, e não P3? 06. ( Faap) Numa prova constituída de dois problemas, 300 alunos acertaram somente um deles, 260 o segundo, 100 alunos acertaram os dois e 210 erraram o primeiro, quantos alunos fizeram a prova? 07) Seja A o conjunto de links apresentados pela busca da palavra X em um site. Analogamente temos os conjuntos B e C dos links encontrados com a busca das palavras Y e Z, respectivamente. Se A, B e C são três conjuntos onde n(a)=25, n(b)=18, n(c)=27, n(a B)=9, n(b C)=10, n(a C)=6 e n(a B C)=4, (sendo n(x) o número de elementos do conjunto X), determine o número de links encontrados pela busca (( X ou Y ) e Z ), ou seja, valor de n ((A B) C). 08) Sejam os conjuntos: A = {2n : n Z} e B = {2n - 1 : n Z} Sobre esses conjuntos, pode-se afirmar: I. A B =. II. A é o conjunto dos números pares. III. B A = Z. Está correto o que se afirma em: a) I e II, apenas. b) II, apenas. c) II e III, apenas. d) III, apenas. e) I, II e III. Intervalo Real Intervalo aberto em a e aberto em b, ]a,b[, {x R/a < x < b} Aberto à esquerda e aberto à direita 4

5 Intervalo aberto em a e fechado em b, ]a,b], {x R/a < x b} Aberto à esquerda e fechado à direita Intervalo fechado em a e aberto em b, [a,b[, {x R/a x < b} Fechado à esquerda e aberto à direita Intervalo fechado em a e fechado em b, [a,b], {x R/a x b} Fechado à esquerda e fechado à direita Intervalos infinitos {x R/x > a} ou ]a, [ {x R/x<a} ou ] -, a[ {x R/x a} ou [a, [ {x R/ a} ou ] -, a] Exercícios: *10. Representar graficamente os seguintes conjuntos: a. [2,5] [3,7] = b. [2,5] [3,7] = c. [ 0,3[ ]1,5 [ = d. [1,5] - ]3,6[ = e. [5,8[ ]3,10]= f. ]-,2] [2,3[ = g. ]1,5[ ]-,10] = 11. Represente os conjuntos abaixo sob a forma de intervalo a. { x R/ 1< x 2}= b. { x R/ -2 x < 4}= c. { x R/ x > - 3}= d. { x R/ x 5}= e. { x R/ x < - 1 ou x > 1}= 5

6 *12. Seja A o conjunto dado por A = [1,5] [ -1,4] [3,8]. Qual é o elemento máximo e o elemento mínimo de A? Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais - São aqueles que podem ser expressos na forma a/b, onde a e b são inteiros quaisquer, com b diferente de 0. Q ={x/x = a/b com a e b pertencentes a Z com b diferente de 0 } Assim como exemplo podemos citar o 1/2, 1, 2,5,... -Números decimais exatos são racionais Pois 0,1 = 1/10 2,3 = 23/ Números decimais periódicos são racionais. 0, = 1/9 0, = 32/99 -Toda dízima periódica 0, é uma outra representação do número 1. IV) Números Irracionais - São aqueles que não podem ser expressos na forma a/b, com a e b inteiros e b diferente de 0. -São compostos por dízimas infinitas não periódicas. Exemplos: V) Números Reais - É a reunião do conjunto dos números irracionais com o dos racionais. Intervalos : Sendo a e b dois números reais, com a < b, temos os seguintes subconjuntos de R chamados intervalos. Intervalo fechado nos extremos a e b: = Intervalo fechado em a e aberto em b: Intervalo aberto em a e fechado em b: 6

7 Intervalo aberto em a e b: Temos também: Exercícios: 13) Sendo A=]-1;3] e B=[3;5[, determine: a) b) 14) Sendo A=[1;4] e B=]-1;2], determine: a) b) *15) Os números x e y são tais que 5 x 10 e 20 y 30. O maior valor possível de x/y é: *16) Os números reais a e b estão representados na reta: O número a 2 b está: a) à direita de 1 b) entre b e 1 c) entre -1 e 0 d) à esquerda de 0 e) entre 0 e b 17) Sejam os conjuntos: A = {2n : n Z} e B = {2n - 1 : n Z} Sobre esses conjuntos, pode-se afirmar: I. A B =. II. A é o conjunto dos números pares. III. B A = Z. Está correto o que se afirma em: a) I e II, apenas. b) II, apenas. c) II e III, apenas. d) III, apenas. e) I, II e III. Justifique: 18) Se x e y são dois números inteiros, estritamente positivos e consecutivos, qual dos números abaixo é necessariamente um inteiro ímpar? a) 2x + 3y b) 3x + 2y c) xy + 1 d) 2xy + 2 e) x + y + 1 *19) A indústria de computação cada vez mais utiliza a denominação 1K como substituto para o número mil (por exemplo, "Y2K" como o ano dois mil). Há um erro de aproximação neste uso, já que o valor técnico 7

8 com que se trabalha, 1K=2 10, não é Assim, rigorosamente falando, uma notícia como "o índice Dow- Jones pode atingir 3K" significaria que o índice pode atingir: 20) Uma calculadora apresentava, em sua tela, o resultado da soma dos gastos do mês realizados por um pai "coruja" que permitiu a seu filho apertar algumas teclas, alterando esse resultado. O pai observou que o menino havia apertado as teclas, uma única vez, na ordem mostrada na figura 1. Para recuperar o resultado que estava na tela, o pai deverá apertar as teclas. Funções Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados nos meios de comunicação. Um texto com ilustrações, é muito mais interessante, chamativo, agradável e de fácil compreensão. Não é só nos jornais ou revistas que encontramos gráficos. Os gráficos estão presentes nos exames laboratoriais, nos rótulos de produtos alimentícios, nas informações de composição química de cosméticos, nas bulas de remédios, enfim em todos os lugares. Ao interpretarmos estes gráficos, verificamos a necessidade dos conceitos de plano cartesiano. O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é o eixo das ordenadas (eixo OY). Associando a cada um dos eixos o conjunto de todos os números reais, obtém-se o plano cartesiano ortogonal. Domínio e Contradomínio de uma Relação As relações mais importantes são aquelas definidas sobre conjuntos de números reais e nem sempre uma relação está definida sobre todo o conjunto dos números reais. Para evitar problemas como estes, costuma-se definir uma relação R:A B, onde A e B são subconjuntos de R, da seguinte forma: O conjunto A é o domínio da relação R, denotado por Dom(R) e B é o contradomínio da relação, denotado por CoDom(R). Exemplos f:r R definida por f(x)=x² Dom(f) = R, CoDom(f) = R e Im(f)=[0, ) Funções injetoras 8

9 Uma função f:a B é injetora se quaisquer dois elementos distintos de A, sempre possuem imagens distintas em B. Exemplos: A função f:r R definida por f(x)=3x+2 é injetora, pois sempre que tomamos dois valores diferentes para x, obtemos dois valores diferentes para f(x). Funções sobrejetoras Uma função f:a B é sobrejetora se todo elemento de B é a imagem de pelo menos um elemento de A. Isto equivale a afirmar que a imagem da função deve ser exatamente igual a B que é o contradomínio da função, ou seja, para todo y em B existe x em A tal que y=f(x). Exemplos: A função f:r R definida por f(x)=3x+2 é sobrejetora, pois todo elemento de R é imagem de um elemento de R pela função. Funções bijetoras Uma função f:a B é bijetora se ela é ao mesmo tempo injetora e sobrejetora. Exemplo: A função f:r R dada por f(x)=2x é bijetora, pois é injetora e bijetora. Funções crescentes e decrescentes Funções Compostas Dadas as funções f:a B e g:b C, a composta de f com g, denotada por g f, é a função definida por (g f)(x)=g(f(x)). gof pode ser lida como "g bola f". Para que a composição ocorra o CoDom(f)=Dom(g). Exemplo: Sejam as funções reais definidas por f(u)=4u+2 e g(x)=7x-4. As composições fog e gof são possíveis e neste caso serão definidas por: Exercícios 21) Um garoto brinca de arrumar palitos fazendo uma sequência de quadrados como na figura. 9

10 a) Quanto palitos ele deve usar para construir 7 quadrados. b) Quanto palitos ele deve usar para construir k quadrados (ou seja, construir uma função que relaciona o número de palitos com o número que quadrados). c) Determina o domínio e a imagem da função apresentada no intem anterior. 22) Seja f: R R uma função definida por f(x) = ax + b. Se o gráfico da função f passa pelos pontos A (1, 2) e B (2, 3), a função f -1 (inversa de f ) é: *23) Um provedor de acesso à Internet oferece dois planos para seus assinantes: Plano A - Assinatura mensal de R$8,00 mais R$0,30 por cada Gigabite de download. Plano B - Assinatura mensal de R$10,00 mais R$0,20 por cada Gigabite de download. a) Dê a expressão de y(x), onde y é a conta de Internet e x é a quantidade de Gigabite de download. b) Acima de quantos Gigabite de download por mês é mais econômico optar pelo plano B? c) Faça, num mesmo sistema de coordenadas cartesianas, os gráficos das contas de Internet dos dois planos. 24) Sejam as funções f(x) = (x + 1)/(x - 1) definida para todo x real e x 1 e g(x) = 2x+3 definida para todo x real. Determine a soma dos números associados à(s) proposição(ões) VERDADEIRA(S). a) ( ) O valor de g(f(2)) é igual a 4/3. b) ( ) A função inversa da g é definida por g -1 (x)=(x-3)/2. c) ( ) A reta que representa a função g intercepta o eixo das abscissas em (-3/2, 0). 25) Os 87 alunos do 3ª ano do ensino médio de certa escola prestaram vestibular para três universidades: A, B e C. Todos os alunos dessa escola foram aprovados em pelo menos uma das universidades, mas somente um terço do total obteve aprovação em todas elas. As provas da universidade A foram mais difíceis e todos os alunos aprovados nesta foram também aprovados em pelo menos uma das outras duas. Os totais de alunos aprovados nas universidades A e B foram, respectivamente, 51 e 65. Sabe-se que, dos alunos aprovados em B, 50 foram também aprovados em C. Sabe-se também que o número de aprovados em A e em B é igual ao de aprovados em A e em C. Quantos alunos foram aprovados em apenas um dos três vestibulares prestados? Justifique. 26) O gráfico abaixo expressa a temperatura em graus Fahrenheit em função da temperatura em graus Celsius. Considere que a função é do tipo y = mx + n a) Encontre a equação que expressa os graus Fahrenheit em função dos graus Celsius; 10

11 b) Determine o valor aproximado da temperatura na escala Celsius correspondente a zero graus Fahrenheit. 27) Dadas as funções f(x) = 4x + 5 e g(x) = 2x - 5k, ocorrerá gof(x) = fog(x) se e somente se k for igual a: a) -1/3 b) 1/3 c) 0 d) 1 e) -1 *28) Sendo f(x) = -2x+6 e g(x) = 6x-2, determine f(g(x)) e g(f(x)). *29) Um marreteiro compra diariamente objetos por R$ 3,00 e os vende por R$ 5,00, gastando R$ 100,00 com transporte. Se x é a quantidade vendida e y o lucro diário do marreteiro, determine a lei de formação da função: 11

12 Respostas: 01. a) A = {0,1,2,3,4} b) B = {2,4,5,8,9} c) C = {2,3,5,6,7} d) ( A B ) ( B C ) = {2,3,5} e) A C B = {2,3,4} f) A B = {0,1,4} g) (A B) C = {0,1,3,6,7} 02. a) A = {1,3,5,...} b) B = {-3,-2,-1,0,1,2,3} c) C = {..., 3,4,5} d) ( A B ) ( B C ) = B e) A C B = {-3,-2,-1,0,1,2,3,5} d) 500 5) x=200 => x = 35 a) 35 b) =100 c) =75 Número total de aluno = 340 6) 610 7) 8) e (A B) C = 12 9) a) b) {1} {1,2,3,5,6,7,8} 12

13 10) a. [2,5] [3,7] = [2,7] b. [2,5] [3,7] = [3,5] c. [ 0,3[ ]1,5 [ = [0,5[ d. [1,5] - ]3,6[ = [1,3] e. [5,8[ ]3,10]= ]3,10] f. ]-,2] [2,3[ = {2} g. ]1,5[ ]-,10] = ]-,10] 12) A = [1,5] [ -1,4] [3,8] = [3,4]. Assim, o máximo é 4 e o mínimo é 3. 13) a) 3 b) ]-1;5[ 14) a) ]-1;4] b) [1;2] 15) 1/2 16) e 17) e 18) c 19) ) a 21) a) P=32 b) P=3k+1 c)d=naturais Im={x:x=3k+1,k N} 22) f -1 (x)=x-1 23) y A =8+0,3G y B =10+0,2G b)20 26)a) 1,8C+32 b) 21, ) a 28) f(g(x)) = -12x + 10 g(f(x)) = -12x ) y = 2x

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.

a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0. Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,

Leia mais

Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano.

Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano. Relações e Funções Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados nos meios de comunicação. Um texto com ilustrações,

Leia mais

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

Interruptores e Conjuntos

Interruptores e Conjuntos aula 03 (Lógica) Sistemas Dicotômicos, Interruptores e Conjuntos Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Sistemas Dicotômicos Aula de

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos

Leia mais

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.

TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013. TEORIA DOS CONJUNTOS Professor: Marcelo Silva marcelo.silva@ifrn.edu.br Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Plano Cartesiano. Relação Binária

Plano Cartesiano. Relação Binária Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é

Leia mais

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

Aula 9 Aula 10. Ana Carolina Boero. Página:

Aula 9 Aula 10. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções Sejam A e B conjuntos. Uma função f : A B (leia f de A em B ) é uma regra

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1)

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

TEORIA DOS CONJUNTOS

TEORIA DOS CONJUNTOS Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.

Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0. Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2

UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE 2 de 2 UNIDADE III INTRODUÇÃO AO ESTUDO DE FUNÇÃO PARTE de 3.0. IMAGEM DE UM ELEMENTO ATRAVÉS DO DIAGRAMA DE FLECHAS 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DE Y = F(X) 3.. IMAGEM DE UM ELEMENTO ATRAVÉS DO GRÁFICO

Leia mais

CONJUNTOS CONJUNTOS NUMÉRICOS

CONJUNTOS CONJUNTOS NUMÉRICOS ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por

Leia mais

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a: COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R

Leia mais

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

FUNÇÕES PROFESSOR: JARBAS

FUNÇÕES PROFESSOR: JARBAS FUNÇÕES PROFESSOR: JARBAS Aplicação do conceito O conceito de função é um dos mais importantes da Matemática e ocupa lugar em destaque em vários de seus ramos, bem como em outras áreas do conhecimento.

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,... ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:

Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira: Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

3º Bimestre. Álgebra. Autor: Leonardo Werneck

3º Bimestre. Álgebra. Autor: Leonardo Werneck 3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 RELAÇÕES E FUNÇÕES... 6 1. O Plano Cartesiano... 6 2. Produto Cartesiano... 7 2.1. Gráfico de um Produto Cartesiano... 8 2.2. O produto ℝ ℝ ou ℝ𝟐...

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas. MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

Geometria Analítica E Cônicas

Geometria Analítica E Cônicas Geometria Analítica E Cônicas Doherty Andrade Sumário 1 Conjuntos O conjunto é um conceito básico que não podemos definir de uma maneira formal. Porem nesta seção daremos as noções deste conceito. Um conjunto

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO Nome Nota RESOLUÇÃO 1) Para cada uma das relações a seguir, em R, desenhe uma figura para mostrar a região do plano que a descreve. a) x R 2 b) S = {(x,) Rx R 2x + 3-0} x 0 2 3 0 2) São dados A={,,7,8}

Leia mais

Introdução às Funções

Introdução às Funções Introdução às Funções Guilherme Prado Curso Pré-vestibular Unicentro Plano cartesiano O plano cartesiano é um sistema ortogonal de coordenadas utilizado para demonstrar a localização de pontos no espaço

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

MAT154: Cálculo 1. Beatriz Ribeiro, Flaviana Ribeiro e Reginaldo Braz. Departamento de Matemática - UFJF. Versão: fevereiro de 2018

MAT154: Cálculo 1. Beatriz Ribeiro, Flaviana Ribeiro e Reginaldo Braz. Departamento de Matemática - UFJF. Versão: fevereiro de 2018 MAT54: Cálculo Beatriz Ribeiro, Flaviana Ribeiro e Reginaldo Braz Departamento de Matemática - UFJF Versão: fevereiro de 208 0 Baseada na apostila da professora Maria Julieta Ventura Carvalho de Araújo.

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

A noção intuitiva de função

A noção intuitiva de função Funções A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por

Leia mais

A noção intuitiva de função

A noção intuitiva de função Funções A noção intuitiva de função Situação 1 João vai escolher um plano de saúde entre duas opções: A e B. Veja as condições dos planos: Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Exercícios de Matemática Funções Função Bijetora

Exercícios de Matemática Funções Função Bijetora Exercícios de Matemática Funções Função Bijetora 1. (Ufpe) Sejam A e B conjuntos com m e n elementos respectivamente. Analise as seguintes afirmativas: ( ) Se f:aëb é uma função injetora então m n. ( )

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

n. 26 PRODUTO CARTESIANO

n. 26 PRODUTO CARTESIANO n. 26 PRODUTO CARTESIANO Os nomes Plano Cartesiano e Produto Cartesiano são homenagens ao seu criador René Descartes (1596 1650), filósofo e matemático francês. O nome de Descartes em Latim era Renatus

Leia mais

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Apoio de Aula. Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN

Apoio de Aula. Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN Apoio de Aula Prof. Aleandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN 10 de fevereiro de 2009 2 Capítulo 1 Revisão: Conjuntos Vamos revisar agora conceitos básicos da teoria

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA

CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

BIMESTRAL - MATEMÁTICA - 1ºBIMESTRE

BIMESTRAL - MATEMÁTICA - 1ºBIMESTRE BIMESTRAL - MATEMÁTICA - 1ºBIMESTRE Série: 3ªEM Gabarito 1- : (PUC-RIO 2010) Sejam x e y números tais que os conjuntos {0, 7, 1} e {x, y, 1} são iguais. Então, podemos afirmar que: x = 0 e y = 5 x + y

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E. UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária. 1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados

Leia mais