ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS BIDIRECIONAIS DE CONCRETO ARMADO COM FUROS ADJACENTES AO PILAR

Tamanho: px
Começar a partir da página:

Download "ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS BIDIRECIONAIS DE CONCRETO ARMADO COM FUROS ADJACENTES AO PILAR"

Transcrição

1 SERVIÇO PÚBLICO FEDERAL DO PARÁ UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS BIDIRECIONAIS DE CONCRETO ARMADO COM FUROS ADJACENTES AO PILAR ENGº CIVIL AMAURY JOSÉ OLIVEIRA DE AGUIAR 2009

2 SERVIÇO PÚBLICO FEDERAL DO PARÁ UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS BIDIRECIONAIS DE CONCRETO ARMADO COM FUROS ADJACENTES AO PILAR ENGº CIVIL AMAURY JOSÉ OLIVEIRA DE AGUIAR Dissertação submetida à Universidade Federal do Pará como requisito parcial exigido pelo Programa de Pós-Graduação em Engenharia Civil - PPGEC, para a obtenção do Título de MESTRE em Engenharia Civil. Belém, março de 2009.

3 ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS BIDIRECIONAIS DE CONCRETO ARMADO COM FUROS ADJACENTES AO PILAR ENGº CIVIL AMAURY JOSÉ OLIVEIRA DE AGUIAR Dissertação julgada adequada para a obtenção do Título de MESTRE em Engenharia Civil e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Civil - PPGEC, da Universidade Federal do Pará - UFPA. Alcebíades Negrão Macêdo, D.Sc. - Coordenador do PPGEC Dênio Ramam Carvalho de Oliveira, D.Sc. Orientador COMISSÃO EXAMINADORA: Guilherme Sales Soares de A. Melo, Ph.D. UNB Alcebíades Negrão Macêdo, D.Sc. UFPA iv

4 A DEUS v

5 AGRADECIMENTOS Aos meus pais e meus irmãos, por toda a dedicação, amor e compreensão que recebi durante não só dos anos de minha pesquisa mas ao longo da minha vida. Ao professor Dênio Ramam, pela atenção e cuidadosa orientação que recebi durante os anos de pesquisa. Aos meus amigos do laboratório Guilherme Melo, Kelly Nahum, Mikhail Luczynski, Natasha Costa, Rodrigo Peixoto, Arnolfo Valente, Ritermayer Monteiro, Leonardo Lago, Nívea Albuquerque, Hugo Henrriques, Regis Rivo, pela ajuda e apoio recebidos. Aos meus grandes amigos, Vitor Hugo, Alexandre Vilhena, Agleílson Borges e Welington, gostaria de dizer: sem vocês eu não conseguiria. Aos irmãos que a vida me deu, João Garcia e Jesimar Miranda, que sempre me incentivaram, tornando meus dias melhores. A Alessandra Medeiros, que com amor, paciência, companheirismo e compreensão me fez sentir vencedor nos momentos difíceis. A todos que diretamente ou indiretamente contribuíram para o meu sucesso, obrigado! vi

6 Existem irmãos que o sangue não nos dá, mas que o mundo nos proporciona conhecer. Jesimar Miranda. vii

7 SUMÁRIO SUMÁRIO LISTA DE FIGURAS LISTA DE TABELAS LISTA DE SÍMBOLOS RESUMO ABSTRACT viii xi xvii xviii xix xx 1 INTRODUÇÃO Considerações Gerais Justificativa Objetivos Estrutura do Trabalho 3 2 REVISÃO BIBLIOGRÁFICA Introdução Trabalhos Realizados SOUZA (2004) BORGES (2002) TENG et al. (2000) WAYNE (1997) MOE (1961) Prescrições Normativas Considerações iniciais Dimensionamento segundo o ACI Cisalhamento Punção Dimensionamento segundo a CEB-FIP MC Cisalhamento Punção Dimensionamento segundo a NBR Cisalhamento Punção Resistência à flexão 34 viii

8 3 PROGRAMA EXPERIMENTAL Considerações iniciais Características gerais das lajes Geometria das lajes Armaduras Instrumentação Instrumentação das barras de aço Instrumentação do concreto Deslocamentos verticais Sistema de ensaio Concretagem, adensamento cura das lajes Concretagem Adensamento e cura das lajes Controle tecnológico dos materiais Concreto Aço 67 4 RESULTADOS DOS ENSAIOS Propriedade dos materiais Concreto Resistência à compressão Resistência à tração Módulo de elasticidade Aço Deslocamentos verticais das lajes Deformações no concreto Deformações no aço Mapas de fissuração Cargas últimas e modos de ruptura Superfícies de ruptura 98 5 ANÁLISE DAS ESTIMATIVAS NORMATIVAS Resistência ao cisalhamento nas nervuras ACI 318 (ACI, 2008) CEB-FIP MC90 (CEB-FIP, 1990) 107 ix

9 5.1.3 NBR 6118 (ABNT, 2003) Resistência ao puncionamento ACI 318 (ACI, 2002) CEB-FIP MC90 (CEB-FIP, 1990) NBR 6118 (ABNT, 2003) Resistência à flexão Resultados estimados pelas normas e os experimentais ACI 318 (ACI, 2002) CEB-FIP MC90 (CEB-FIP, 1990) NBR 6118 (ABNT, 2003) ANÁLISE NUMÉRICA CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS Conclusões Programa experimental Lajes Deslocamentos verticais Deformações na superfície do concreto Deformações das armaduras de flexão Padrão de fissuração Cargas últimas e modos de ruptura observados Análise das Normas Análise Numérica Sugestões para trabalhos futuros 130 REFERÊNCIAS BIBLIOGRÁFICAS 131 APÊNDICE A 148 A.1 Deslocamentos verticais 148 A.2 Deformações no concreto 157 A.3 Deformações da armadura de flexão 166 x

10 LISTA DE FIGURAS Figura 1 Sistemas de lajes maciças e nervuradas, respectivamente 2 Figura 2 Sistemas de lajes lisas e lisas nervuradas, respectivamente 2 Figura 3 Foto do sistema de ensaio (SOUZA, 2004) 6 Figura 4 Esquema do sistema de ensaio (SOUZA, 2004) 6 Figura 5 Características das lajes ensaiadas (SOUZA, 2004) 7 Figura 6 - Características das superfícies de ruptura, L1,L2, L3, L4 (SOUZA, 2004) 8 Figura 7 Características das superfícies de ruptura, L5, L6, L7, L8 (SOUZA, 2004) 9 Figura 8 Características das lajes (BORGES, 2002) 11 Figura 9 Sistema de ensaio (BORGES, 2002) 12 Figura 10 Comparativo entre as cargas experimentais e as normas (BORGES, 2002) 13 Figura 11 Características das lajes (TENG et al., 2000) 14 Figura 12 Características das lajes (TENG et al., 2000) 15 Figura 13 Processo de formação de fissuras no puncionamento (OLIVEIRA et al., 2007) 15 Figura 14 Posicionamento dos furos nas lajes 4F (WAYNE, 1997) 17 Figura 15 Posicionamento dos furos nas lajes 4C (WAYNE, 1997) 17 Figura 16 Características geométricas das lajes (MOE, 1961) 18 Figura 17 Características geométricas das lajes (MOE, 1961) 19 Figura 18 Arranjo das barras nas lajes H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12 e H15 (MOE, 1961) 20 Figura 19 Arranjo das barras na laje H13 (MOE, 1961) 20 Figura 20 Arranjo das barras na laje H14 (MOE, 1961) 20 Figura 21 Perímetro de controle segundo a ACI Figura 22 Perímetros críticos para lajes com aberturas próximas ao pilar (SOUZA, Raphael M, 2004) 24 Figura 23 Perímetros críticos para lajes com aberturas próximas ao pilar segundo a ACI Figura 24 Perímetros críticos nas lajes com pilares internos 27 Figura 25 Seção transversal de uma laje nervurada 28 Figura 26 Perímetros críticos nas lajes com pilares internos (NBR 6118) 32 Figura 27 Perímetros críticos nas lajes com furos 32 Figura 28 Configuração das linhas de ruptura adotada 34 Figura 29 modelo para o cálculo da máxima resistência da seção para o modelo de viga 35 Figura 30 Seção transversal genérica das lajes 37 xi

11 Figura 31 Seção genérica das nervuras 37 Figura 32 Detalhe D Figura 33 Sistema de corte do EPS 38 Figura 34 Processo de colagem nas formas 39 Figura 36 Geometria da LR 40 Figura 37 Geometria da L1 41 Figura 38 Geometria da L2 41 Figura 39 Geometria da L3 42 Figura 40 Geometria da L4 42 Figura 41 Geometria da L5 43 Figura 42 Detalhe genérico da armadura adicional nos furos (em planta) 44 Figura 43 Corte AA 44 Figura 44 Armaduras da LR 45 Figura 45 Armaduras da L1 46 Figura 46 Armaduras da L2 47 Figura 47 Armaduras da L3 48 Figura 48 Armaduras da L4 49 Figura 49 Armaduras da L5 50 Figura 50 Posicionamento dos EERs nas barras 51 Figura 51 Posicionamento dos EERs das armaduras para a laje LR e L1, respectivamente 51 Figura 52 Posicionamento dos EERs das armaduras para a laje L2 e L3, respectivamente 52 Figura 53 Posicionamento dos EERs das armaduras para a laje L4 e L5, respectivamente 52 Figura 54 Posicionamento dos EERs no concreto para a laje L3 53 Figura 55 Posicionamento dos EERs no concreto para a laje LR e L1, respectivamente 53 Figura 56 Posicionamento dos EERs no concreto para a laje L2 e L3, respectivamente 53 Figura 57 Posicionamento dos EERs no concreto para a laje L4 e L5, respectivamente 54 Figura 58 Modelo de deflectômetro utilizado 54 Figura 59 Posicionamento dos deflectômetros na laje LR 55 Figura 60 Posicionamento dos deflectômetros na laje L1 56 Figura 61 Posicionamento dos deflectômetros na laje L2 57 Figura 62 Posicionamento dos deflectômetros na laje L3 58 Figura 63 Posicionamento dos deflectômetros na laje L4 59 Figura 64 Posicionamento dos deflectômetros na laje L5 60 Figura 65 Sistema de ensaio 62 xii

12 Figura 66 Posicionamento da chapa metálica 62 Figura 67 Disposição das lajes no laboratório prontas para receberem o concreto 63 Figura 68 Transporte do concreto 64 Figura 69 Processo de concretagem das lajes 65 Figura 70 Processo de adensamento das lajes 66 Figura 71 Processo de acabamento das superfícies das lajes 66 Figura 72 Processo de cura das lajes e dos CPs 67 Figura 73 Ensaio de um corpo de prova à compressão axial 68 Figura 74 Esquema para obtenção da resistência à tração 69 Figura 75 Ensaio de um corpo de prova à compressão diametral 69 Figura 76 - Ensaio de módulo de elasticidade do concreto 70 Figura 77 - Ensaio de módulo de elasticidade do aço 71 Figura 78 - Curva tensão x deformação para o CP 1 71 Figura 79 - Curva tensão x deformação para o CP 2 72 Figura 80 - Curva tensão x deformação para o CP 3 72 Figura 81 Média da curva tensão x deformação dos CPs 72 Figura 82 Deslocamentos verticais na laje LR 73 Figura 83 Deslocamentos verticais na laje L1 74 Figura 84 Deslocamentos verticais na laje L2 74 Figura 85 Deslocamentos verticais na laje L3 74 Figura 86 Deslocamentos verticais na laje L4 75 Figura 87 Deslocamentos verticais na laje L5 75 Figura 88 Deslocamentos verticais no centro das lajes (R3) 75 Figura 89 - Deslocamentos verticais em relação à posição dos deflectômetros na laje LR 77 Figura 90 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L1 77 Figura 91 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L2 78 Figura 92 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L3 78 Figura 93 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L4 79 Figura 94 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L5 79 Figura 95 - Deformações medidas no concreto da laje LR 80 Figura 96 - Deformações medidas no concreto da laje L1 80 Figura 97 - Deformações medidas no concreto da laje L2 81 Figura 98 - Deformações medidas no concreto da laje L3 81 Figura 99 - Deformações medidas no concreto da laje L4 81 xiii

13 Figura Deformações medidas no concreto da laje L5 82 Figura Deformações máximas medidas nas superfícies das lajes 82 Figura Deformações medidas nas armaduras da laje LR 84 Figura Deformações medidas nas armaduras da laje L1 85 Figura Deformações medidas nas armaduras da laje L2 85 Figura Deformações medidas nas armaduras da laje L3 85 Figura Deformações medidas nas armaduras da laje L4 86 Figura Deformações medidas nas armaduras da laje L5 86 Figura 108- Deformações máximas medidas nas armaduras das lajes 86 Figura Relações das cargas entre as primeiras fissuras das lajes e suas respectivas cargas de ruína. 88 Figura Padrão de fissuração da laje LR 89 Figura Padrão de fissuração da laje L1 90 Figura Padrão de fissuração da laje L2 91 Figura Padrão de fissuração da laje L3 92 Figura Padrão de fissuração da laje L4 93 Figura Padrão de fissuração da laje L5 94 Figura Cargas de ruína e de ruptura por flexão das lajes 96 Figura Aspecto do puncionamento na laje LR 96 Figura Aspecto do puncionamento na laje L1 96 Figura Aspecto do puncionamento na laje L2 97 Figura Aspecto do puncionamento na laje L3 97 Figura Aspecto do puncionamento na laje L4 97 Figura Aspecto do puncionamento na laje L5 98 Figura Aspecto da superfície de ruptura na laje LR 99 Figura Aspecto da superfície de ruptura na laje L1 99 Figura Aspecto da superfície de ruptura na laje L2 100 Figura Aspecto da superfície de ruptura na laje L3 100 Figura Aspecto da superfície de ruptura na laje L4 101 Figura Aspecto da superfície de ruptura na laje L5 101 Figura Esquema do detalhamento típico das superfícies de ruptura a ser adotado nas lajes 102 Figura Detalhe do cone de ruptura na laje LR 103 Figura Detalhe do cone de ruptura na laje L1 103 xiv

14 Figura Detalhe do cone de ruptura na laje L2 103 Figura Detalhe do cone de ruptura na laje L3 104 Figura Detalhe do cone de ruptura na laje L4 104 Figura Detalhe do cone de ruptura na laje L5 104 Figura Comparação entre as cargas observadas e as estimadas pelo ACI 318 para ruptura por cisalhamento nas nervuras 107 Figura Comparação entre as cargas observadas e as estimadas pelo CEB-FIP MC90 para ruptura por cisalhamento nas nervuras 108 Figura Comparação entre as cargas observadas e as estimadas pela NBR 6118 para ruptura por cisalhamento nas nervuras 109 Figura Comparação entre as cargas observadas e as estimadas pelo ACI 318 para ruptura por puncionamento 111 Figura Comparação entre as cargas observadas e as estimadas pelo CEB-FIP MC90 para ruptura por puncionamento. 112 Figura Comparação entre as cargas observadas e as estimadas pela NBR 6118 para ruptura por puncionamento 113 Figura Comparação entre os resultados observados e os estimados através do ACI 318 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão) 115 Figura Comparação entre os resultados observados e os estimados através do CEB-FIP MC90 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão) 116 Figura Comparação entre os resultados observados e os estimados através da NBR 6118 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão) 117 Figura 145 Posicionamento dos apoios e carregamentos típicos utilizados 118 Figura 146 Discretização da laje LR e L1, respectivamente 119 Figura 147 Discretização da laje L2 e L3, respectivamente 119 Figura 148 Discretização da laje L4 e L5, respectivamente 119 Figura 149 Momentos fletores máximos nas lajes LR e L1, respectivamente 120 Figura 150 Momentos fletores máximos nas lajes L2 e L3, respectivamente 120 Figura 151 Momentos fletores máximos nas lajes L4 e L5, respectivamente 121 Figura 152 Esforços cortantes máximos nas lajes LR e L1, respectivamente 121 Figura 153 Esforços cortantes máximos nas lajes L2 e L3, respectivamente 121 Figura 154 Esforços cortantes máximos nas lajes L4 e L5, respectivamente 122 Figura 155 Forças cortantes máximas nas lajes LR, L1, respectivamente 123 Figura 156 Forças cortantes máximas nas lajes L2, L3, respectivamente 123 xv

15 Figura 157 Forças cortantes máximas nas lajes L4, L5, respectivamente 123 Figura 158 Flechas máximas obtidas experimentalmente, as observadas através da análise elástica utilizando o MEF e as flechas elásticas através da recomendação da NBR 6118 para a laje LR 124 Figura 159 Flechas máximas obtidas experimentalmente, as observadas através da análise elástica utilizando o MEF e as flechas elásticas através da recomendação da NBR 6118 para a laje L1 125 Figura 160 Flechas máximas obtidas experimentalmente, as observadas através da análise elástica utilizando o MEF e as flechas elásticas através da recomendação da NBR 6118 para a laje L2 125 Figura 161 Flechas máximas obtidas experimentalmente, as observadas através da análise elástica utilizando o MEF e as flechas elásticas através da recomendação da NBR 6118 para a laje L3 125 Figura 162 Flechas máximas obtidas experimentalmente, as observadas através da análise elástica utilizando o MEF e as flechas elásticas através da recomendação da NBR 6118 para a laje L4 126 Figura 163 Flechas máximas obtidas experimentalmente, as observadas através da análise elástica utilizando o MEF e as flechas elásticas através da recomendação da NBR 6118 para a laje L5 126 xvi

16 LISTA DE TABELAS Tabela 1 Comparação entre as cargas últimas (SOUZA, 2004) 10 Tabela 2 Comparação entre as cargas últimas (BORGES, 2002) 11 Tabela 3 Influência do furo na carga de ruptura experimental (BORGES, 2002) 13 Tabela 4 Resultados obtidos (TENG et al., 2000) 16 Tabela 5 Resultados obtidos (WAYNE, 1997) 17 Tabela 6 Resultados obtidos (MOE, 1961) 21 Tabela 7 Características das lajes 37 Tabela 8 Resistência à compressão axial 68 Tabela 9 Resistência à compressão diametral 69 Tabela 10 - Resultados dos ensaios de módulo de elasticidade 70 Tabela 11 - Resultados dos ensaios do aço 73 Tabela 12 - Deformações máximas nos extensômetros do concreto 83 Tabela 13 - Valores das relações para as cargas de primeira fissura e ruína das lajes 88 Tabela 14 - Cargas últimas e modos de ruptura observados 95 Tabela 15 - Resultados das análises das superfícies de ruptura para os comprimentos 105 Tabela 16 - Resultados das análises dos ângulos nas superfícies de ruptura 105 Tabela 17 - Resultados estimados para resistência ao cisalhamento de acordo com o ACI Tabela 18 - Resultados estimados para resistência ao cisalhamento de acordo com o CEB-FIP MC Tabela 19 - Resultados estimados para resistência ao cisalhamento de acordo com a NBR Tabela 20 - Resultados estimados para o puncionamento de acordo com o ACI Tabela 21 - Resultados estimados para o puncionamento de acordo com o CEB-FIP MC Tabela 22 - Resultados estimados para o puncionamento de acordo com a NBR Tabela 23 - Resultados estimados para ruptura por flexão das lajes 114 Tabela 24 - Análise das cargas de ruptura previstas para o ACI 318 e as observadas nos ensaios 114 Tabela 25 - Análise das cargas de ruptura previstas para o CEB-FIP MC90 e as observadas nos ensaios 115 Tabela 26 - Análise das cargas de ruptura previstas para a NBR 6118 e as observadas nos ensaios 116 xvii

17 Tabela 27 - Modos de ruptura previstos de acordo com cada recomendação normativa e os observados 117 xviii

18 LISTA DE SÍMBOLOS a b w c d Distância livre entre os pontos de momento nulo Largura da nervura Lado de um pilar quadrado Altura útil da laje d Cobrimento da armadura h Altura total da laje l Comprimento do vão da laje s A S E C EPS Espaçamento das barras da armadura Área da seção transversal das armaduras de flexão Módulo de elasticidade do concreto Poliestireno Expandido f Tensão de escoamento do aço da armadura de flexão ys f c Resistência à compressão do concreto medida em corpos de prova cilíndricos f t m u P Resistência à tração do concreto medida em corpos de prova cilíndricos Momento de flexão ao longo das linhas de ruptura Carga aplicada na laje P flex Carga de ruptura por flexão estimada P u Carga última V Força cortante resistente de cálculo Rd V Força cortante solicitante de cálculo Sd V Força cortante resistente de cálculo, relativa a elementos sem armadura de cisalhamento Rd1 V Força cortante resistente de cálculo, relativa à ruína das diagonais comprimidas de Rd 2 concreto V Força cortante resistente de cálculo, relativa à ruína por tração diagonal Rd 3 θ ρ φ Ângulo de inclinação das bielas de compressão consideradas no dimensionamento à força cortante Taxa de armadura Diâmetro das barras da armadura xix

19 RESUMO AGUIAR, Amaury J. O. de, Análise Experimental de Lajes Lisas Nervuradas Bidirecionais de Concreto Armado com Furos Adjacentes ao Pilar. Belém, p. Dissertação (Mestrado) Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Pará. Análise experimental de lajes lisas nervuradas bidirecionais de concreto armado com furos adjacentes ao pilar Com o objetivo contribuir para o estudo sobre lajes lisas nervuradas bi-direcionais de concreto armado com furos adjacentes ao pilar submetidas a puncionamento, foram analisados tanto os comportamentos experimental e numérico quanto as recomendações de três normas para projeto (uma brasileira, uma americana e outra européia) seis lajes lisas de concreto armado, sendo que cinco apresentaram furos e uma não. As lajes eram quadradas com lados iguais a mm e espessura de 150 mm. Uma chapa metálica também quadrada com 120 mm de lado 50 mm de espessura simulava a seção transversal do pilar. As variáveis do trabalho foram o posicionamento, as dimensões, a forma e o número de furos, objetivando analisar as diferenças entre os comportamentos das lajes com a perda da rigidez em função da presença dos furos. São também apresentados os deslocamentos verticais, deformações na superfície do concreto, deformações nas armaduras de flexão, mapas de fissuração, cargas últimas e modos de ruptura observados, além de uma discussão envolvendo as normas em questão. A presença de furos nas lajes mostrou uma perda significativa de ductilidade em alguns casos, apesar da plastificação localizada nas armaduras das lajes, os níveis dos deslocamentos verticais também sofreram alteração, tornando-as menos flexíveis, no entanto as normas apresentaram estimativas satisfatórias para ruptura por puncionamento, o que não aconteceu nas estimativas para cisalhamento nas nervuras. Palavras-Chave: laje lisa, laje nervurada, puncionamento, furo. xx

20 ABSTRACT AGUIAR, Amaury J. O. de, Experimental Analysis of Reinforced Concrete Two-Way Waffle Flat Slabs With Holes Adjacent to the Column. Belém, p. Dissertação (Mestrado) Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Pará. Experimental Analysis of reinforced concrete bidirectional waffle flat slabs with holes adjacent to the column Aiming to contribute to the study of two-way waffle flat slabs reinforced concrete with holes adjacent to the column subject punching, were analyzed both the experimental and numerical behavior regarding the recommendations of three projects codes (one Brazilian, one American and one European) six flat slabs of reinforced concrete, being five of them with holes and other one without holes. The square slabs had dimensions for the sides and thickness of mm and 150 mm, respectively. Also a metal square plate with 120 mm of side and 50 mm of the thickness simulated cross section of the column. The variables of the study were the positioning, size, shape and number of holes, to analyze the differences between the behaviors of slabs with the loss of stiffness in the presence of holes. It also shows the vertical displacements, deformations on the surface of the concrete, the bending reinforcement deformation, cracking maps, ultimate loads and collapse modes observed, in addition to a discussion involving the projects codes in question. The presence of holes in the slab showed a significant loss of stiffness in some cases, despite the yield located in the slab reinforcement, the levels of vertical displacements also modified, making them less flexible, however the standards for satisfactory estimates made by breaking punching, as happened in the estimates for the shear ribs. Keywords: flat slab, waffle slab, punching, holes. xxi

21 1 INTRODUÇÃO 1.1 Considerações Gerais Dentro das exigências crescentes dos projetos arquitetônicos que visam aproveitar ao máximo os espaços internos nas edificações, tem-se que a alternativa da utilização de lajes lisas nervuradas de concreto armado é cada vez mais freqüente nos escritórios de cálculo estrutural, visto que a técnica permite obter um bom desempenho estrutural sem perder a versatilidade do projeto arquitetônico. Os projetistas arquitetônicos concordam que esta tecnologia é uma aliada, pois ficam mais à vontade para a realizar e aperfeiçoar seus projetos. O sistema estrutural com lajes lisas nervuradas apresenta diversas vantagens em relação ao sistema convencional de lajes maciças apoiadas sobre vigas, podendo-se citar: redução da quantidade de fôrmas, facilidade da execução das alvenaria, redução do pé direito e conseqüente redução da altura total da edificação. Com essas medidas, o peso próprio da estrutura reduz, havendo um alívio das cargas nas fundações. Este sistema estrutural permite a flexibilidade para adaptar-se os espaços internos da obra (devido a ausência de vigas), sendo indicado principalmente para edificações residenciais, hospitalares, garagens e shopping centers, citando como ênfase os três últimos, pela facilidade da passagem de dutos e tubulações, além de permitir que grandes vãos sejam dimensionados, devido ao menor peso próprio, liberando espaços que seriam ocupados por pilares. A Figura 1. mostra lajes maciças e nervuradas, respectivamente, onde o sistema utiliza vigas, enquanto que a Figura 2 mostra lajes lisas e lisas nervuradas, respectivamente, sem o uso de vigas. Apesar dos pontos positivos, as lajes apoiadas diretamente sobre os pilares concentram forças cortantes nos contornos destes pilares, isto pode provocar o puncionamento da laje (tendência do pilar perfurar a laje), SOUZA e CUNHA (1998) comentam que a ruína por punção acontece de forma frágil (sem aviso prévio), impossibilitando, na maioria das vezes, providências em tempo hábil. Esta ruína acontece na maioria das vezes antes que a armadura de flexão atinja o escoamento, Isto significa que se não for detectado a deficiência, a probabilidade de ocorrer o colapso progressivo da estrutura será alta. Porém, quando estas lajes são bem dimensionadas e executadas, seu desempenho é satisfatório. 1

22 Figura 1 Sistemas de lajes maciças e nervuradas, respectivamente Figura 2 Sistemas de lajes lisas e lisas nervuradas, respectivamente 1.2 Justificativa Dentro de um contexto competitivo, os sistemas de lajes lisas nervuradas vêm ganhando espaço em sua utilização, o que justifica pesquisas relacionadas ao comportamento deste sistema estrutural. O comportamento das lajes lisas nervuradas de concreto armado ao puncionamento ainda não é bem conhecido e poucos são os trabalhos na literatura abordando a influência de furos próximos aos pilares. Dentro deste contexto, este trabalho apresenta um estudo experimental realizado em seis (06) lajes lisas nervuradas bidirecionais de concreto armado com 2

23 furos adjacentes a pilares quadrados, avaliando o desempenho de cada laje e verificando-se os perímetros de controle sugeridos pelas normas ACI 318 / 08, CEB-FIP MC90 e NBR 6118/ Objetivos Dentre os objetivos, pode-se citar: Contribuir para o estudo de lajes lisas nervuradas bidirecionais de concreto armado sem armadura de cisalhamento e/ou puncionamento verificando-se e quantificando se as resistências destas placas em situações onde a região maciça é interrompida por um furo ou shaft. Isto é feito avaliando-se o comportamento de seis lajes de concreto armado medindo mm x mm x 150 mm para a largura, comprimento e espessura, respectivamente. Cinco destas lajes possuem furos adjacentes ao pilar que foram posicionados no centro geométrico da laje, obtendo-se um comportamento simétrico. Sera avaliada a eficácia de três normas nas situações onde existem perdas rigidez nas lajes devido à presença de furos. Os resultados experimentais serão comparados com os de outros autores e as cargas de ruína com as resistências estimadas pelas normas abaixo: ACI 318 (American Concrete Institute, 2008); CEB-FIP Model Code 1990 (Comitê Euro-Internacional du Beton, 1993); NBR6118 (Associação Brasileira de Normas Técnicas, 2003). 1.4 Estrutura do Trabalho O trabalho é constituído por sete capítulos mais as referências bibliográficas e os apêndices. Os capítulos são abordados de acordo com a seqüência abaixo: 1 Revisão Bibliográfica Traz as informações necessárias para a o dimensionamento e verificações de lajes lisas nervuradas de concreto armado bem como resultados experimentais de outros autores disponíveis na literatura; 2 Programa Experimental Apresenta as considerações de projeto para as lajes analisadas neste trabalho. Também é mostrado o sistema de ensaio, os dispositivos de 3

24 aplicação de carga e as instrumentações feitas nos materiais (barras de aço e concreto) para medir as deformações entre outras informações; 3 Resultados Experimentais são apresentados os resultados obtidos experimentalmente referentes às deformações no aço e no concreto, flechas, mapas de fissuração, cargas últimas, modo e superfície de ruptura das lajes; 4 Análises dos Resultados A eficiência das prescrições normativas, assim como a comparação com as cargas últimas observadas nos ensaios, são alvos de estudo neste capítulo. 5 Análise Numérica São apresentadas algumas análises feitas pelo Método de Elementos Finitos auxiliadas pelo software SAP 2000, bem como uma comparação de algumas recomendações feitas pela NBR Conclusões e Sugestões para trabalhos Futuros são apresentadas as conclusões desta pesquisa e também sugestões para a realização de trabalhos futuros. No Apêndice A são apresentadas as leituras realizadas durante os ensaios das lajes, além dos resultados das deformações nos extensômetros tanto na superfície do concreto quanto nas armaduras de flexão. 4

25 2 REVISÃO BIBLIOGRÁFICA 2.1 Introdução Neste capítulo são apresentados estudos realizados por alguns autores sobre lajes lisas maciças com furos adjacentes ao pilar. Apesar do estudo em questão tratar as lajes lisas nervuradas, foi possível comparar os comportamentos destes outros tipos de lajes pelo fato do pilar ficar posicionado na região maciça, onde o puncionamento ocorre. Alguns dos trabalhos abordados no decorrer do capítulo apresentam armadura de cisalhamento e/ou puncionamento, no entanto, a resistência da placa não é verificada nestas situações, apenas para lajes sem estas armaduras, levando em consideração apenas a resistência do concreto e da armadura de flexão para resistir aos esforços solicitantes. Juntamente com estes trabalhos são apresentadas as recomendações normativas para estes casos. Em todos os trabalhos verificou-se a redução da resistência da laje ao puncionamento com a presença de furos próximos ao pilar. 2.2 Trabalhos Realizados SOUZA (2004) SOUZA ensaiou 8 (oito) lajes lisas de dimensões mm x mm x 130 mm, para comprimento, largura e espessura, respectivamente. As lajes foram carregadas de baixo para cima por uma chapa metálica quadrada de lado 150 mm por 25 mm de espessura. Esta chapa foi locada no centro da laje onde foi impulsionada por um macaco hidráulico com capacidade para kn alimentado por uma bomba hidráulica manual. Para mensurar os passos de carga, utilizou-se uma célula de carga com capacidade de kn. A reação foi obtida posicionando quatro vigas metálicas sobre oito pontos eqüidistantes formando uma circunferência de 825 mm, de acordo com as Figuras 3 e 4. As principais variáveis das lajes foram relativas às dimensões dos furos bem como seus posicionamentos, adjacentes ou não ao pilar. Todas as lajes apresentavam dois furos opostos pelo pilar, exceto a de referência que não possuía furo. A taxa de armadura de flexão também sofreu variação com média de 1,46. A Figura 5 mostra as características das lajes ensaiadas por SOUZA. 5

26 Figura 3 Foto do sistema de ensaio (SOUZA, 2004) Figura 4 Esquema do sistema de ensaio (SOUZA, 2004) 6

27 Figura 5 Características das lajes ensaiadas (SOUZA, 2004) De acordo com SOUZA, em todas as lajes ficaram evidenciadas as ruínas por punção com a formação do cone de puncionamento no contorno do pilar, conforme as Figuras 6 e 7. Nas lajes L1, L3, L4, L7 e L8, as superfícies de ruptura se deram iniciando a partir da face do pilar seguindo nas duas direções, isto era esperado, pois, estes furos ficaram fora do perímetro de controle proposto pelo CEB-FIP MC90 e pela NBR 6118, ou seja, a uma distância maior ou igual a 2d da face do pilar. As lajes L2, L5 e L6, que possuem furos adjacentes ao pilar praticamente não apresentaram sinais do cone de punção no eixo x, isto ratifica que o perímetro de controle encontra-se dentro deste intervalo. No caso da L4, a superfície de ruptura não alcançou as arestas dos furos, comprova a eficiência deste perímetro de controle. 7

28 Figura 6 - Características das superfícies de ruptura, L1,L2, L3, L4 (SOUZA, 2004) 8

29 Figura 7 Características das superfícies de ruptura, L5, L6, L7, L8 (SOUZA, 2004) Em geral, as lajes com furos apresentaram cargas inferiores em média 36% em relação à laje de referência, exceto as lajes L3 e L4 que tiveram suas cargas superiores. A Tabela 1 apresenta as cargas experimentais e faz uma comparação entre as cargas das lajes com furos e a carga da laje de referência. 9

30 Laje ρ (%) Tabela 1 Comparação entre as cargas últimas (SOUZA, 2004) Furos V u S (mm) (kn) d (mm) ƒ c (MPa) V u (Ln) / V u (L1) L1 1, , ,00 L2 1, ,7 150x ,75 L3 1, ,0 150x ,00 L4 1, ,2 150x ,09 L5 1, ,9 150x ,51 L6 0, ,0 150x ,37 L7 1, ,1 150x ,82 L8 1, ,2 150x ,77 S É a distância entre a face do pilar e os furos (Figura ) BORGES (2002) Com 13 (treze) lajes lisas com furos adjacentes ao pilar, sendo seis com armadura de cisalhamento, seis sem armadura de cisalhamento e uma sem furo sem armadura de cisalhamento, sendo a última de referência. BORGES (2002) apresentou resultados comparativos entre a laje de referência e as demais onde se verificou o comportamento destas lajes nas situações com furos adjacentes ao pilar. Seis das doze lajes que não possuíam armadura de cisalhamento serão objeto de estudo neste trabalho. As lajes eram quadradas de lado mm com 200 mm de espessura, os furos nas lajes eram dispostos longitudinalmente e separados pelo pilar. Estes furos foram dispostos de forma retangular tendo a menor dimensão adjacente ao pilar, com dimensões destes furos eram constantes e iguais a 200 mm x 300 mm, enquanto a do pilar media 200 mm x 600 mm. A altura efetiva da laje teve sua maior variação entre 144 mm e 164 mm, o que acarretou em uma variação na taxa da armadura de flexão entre 1% e 1,4%. A Figura 8 mostra a geometria das lajes estudadas por BORGES (2002) e a Tabela 2 apresenta as características das lajes comparadas neste trabalho. 10

31 Figura 8 Características das lajes (BORGES, 2002) Tabela 2 Comparação entre as cargas últimas (BORGES, 2002) Laje ρ (%) d (mm) ƒ c (MPa) N de Furos Ganchos de Ancoragem L45 1, ,0 - - L45FS_CG 1, ,5 1 SIM L45FD_CG 1, ,0 1 SIM L45FD 1, ,4 1 NÃO L45FFS_CG 1, ,6 2 SIM L45FFD_CG 1, ,6 2 SIM L45FFD 1, ,0 2 NÃO onde, F um furo; FF dois furos; S sem acréscimo de barra; D com acréscimo de barra; CG com gancho de ancoragem. Para realizar os ensaios, BORGES utilizou vigas metálicas atracadas a uma laje de reação por intermédio de parafusos com 70 mm de diâmetro. Nestas vigas metálicas 16 tirantes de 25 mm de diâmetro sendo 4 em cada borda da laje, vinculavam esta laje ao sistema de reação, Figura 9. Para simular o carregamento, uma bomba hidráulica manual alimentava um macaco hidráulico que por sua vez impulsionava uma chapa metálica de 600 mm x 200 mm x 25 mm para comprimento, largura e espessura, respectivamente, que simulou o pilar. Entre o macaco e o pilar, posicionou-se uma célula de carga para se quantificar o carregamento bem como a precisão nos passos de carga. 11

32 Figura 9 Sistema de ensaio (BORGES, 2002) Nos ensaios das lajes sem armadura de cisalhamento, BORGES analisou as cargas de ruptura das lajes e a influência dos furos nestas cargas, os modos e as superfícies de ruptura. Além das análises dos comportamentos, também foi avaliado um comparativo entre os resultados experimentais e os teóricos de acordo com algumas normas. No que diz respeito a influência dos furos nas cargas de ruptura, observa-se que para a laje com um furo a resistência ficou reduzida em no mínimo 7% da carga na laje de referência, enquanto para as lajes com dois furos esta redução ficou em pelo menos 12%, ou seja, um decréscimo mínimo de 5% na resistência das lajes com dois furos em relação às lajes com um furo. A Tabela 3 apresenta a influência do furo na carga de ruptura. BORGES completa esta análise citando que o acréscimo da carga última na L45FFD_CG pode ter sido causado pelo aumento da altura útil d que deveria ser de 154 mm e foi de 164 mm, com aumento de 6,5%. 12

33 Segundo BORGES, todas as lajes ensaiadas romperam por punção, mostrando que a presença dos furos não interferiu nestes modos. Estas ruínas aconteceram de forma frágil, repentinamente. Já analisando as superfícies de ruína, o cone de punção formou-se a um ângulo médio entre 25 e 30 graus, estas medidas foram obtidas após o seccionamento das lajes. Laje Tabela 3 Influência do furo na carga de ruptura experimental (BORGES, 2002) ρ (%) d (mm) ƒ c (MPa) N de Furos Gancho de Ancoragem Vu (kn) Vu L45 / Vu i L45 1, , ,00 L45FS_CG 1, ,5 1 SIM 742 0,93 L45FD_CG 1, ,0 1 SIM 700 0,88 L45FD 1, ,4 1 NÃO 726 0,91 L45FFS_CG 1, ,6 2 SIM 700 0,88 L45FFD_CG 1, ,6 2 SIM 800 1,00 L45FFD 1, ,0 2 NÃO 635 0,79 Analisando os códigos, BORGES mostrou que o EUROCODE apresentou resultados conservadores, para todas as lajes, sendo 35% para as lajes com um furo e 52% para lajes com dois furos. Já os resultados obtidos a partir das recomendações da CEB-FIP MC90 e para a NBR 6118, as estimativas foram próximas, variando entre 1% e 13% para as lajes que subestimaram as resistências, e 6% para as que superestimaram as resistências. A Figura 10 mostra o comparativo feito entre as cargas experimentais e as recomendações das normas. Figura 10 Comparativo entre as cargas experimentais e as normas (BORGES, 2002) TENG et al. (2000) TENG analisou 20 lajes lisas onde 15 destas lajes tinham furos e 05 eram de referência, sendo que as principais variáveis dos experimentos destes autores foram os efeitos das diferentes 13

34 locações dos furos, a retangularidade dos pilares e as diferentes relações de carregamentos nos eixos x e y das lajes. Não é objetivo do trabalho avaliar às relações de carregamento nos eixos ortogonais, com isso não é abordado este tópico, considerando apenas 13 laje. As dimensões dos pilares foram de 200 mm x 200 mm ou pilar 1x1 que significa a relação entre as dimensões dos lados do pilar, 200 x 600 mm (ou pilar 1x3) e 200 x 1000 mm (ou pilar 1x5). As dimensões das lajes para comprimento, largura e espessura eram de mm x mm x 20 mm. Estas lajes foram utilizadas com os pilares 1x1 e 1x3, já para os pilares 1x5 as lajes tinham dimensões de mm x mm x 20 mm para comprimento, largura e espessura, respectivamente. As Figuras 11 e 12 mostram as características das lajes ensaiadas relevantes a este trabalho. Os furos de todas as lajes eram retangulares e mediam 200 mm x 400 mm. Figura 11 Características das lajes (TENG et al., 2000) 14

35 Figura 12 Características das lajes (TENG et al., 2000) Tipicamente, cada laje foi carregada com um sistema de reação contendo oito pontos que reagiam sobre a laje com carregamentos de igual magnitude. Para estas lajes, a classe do concreto utilizado foi a C40 e a tensão de escoamento das armaduras ficou em torno de 460 MPa. Segundo o autor, as primeiras fissuras das lajes surgiram em carregamentos que variaram entre de 10% a 20% da carga de ruína. As fissuras radiais (que se formam do pilar ao bordo da placa) foram as primeiras, no entanto, as tangenciais (que se formam contornando as arestas do pilar) também foram observadas. A Figura 13 mostra este processo de formação de fissuras descrito por OLIVEIRA et al. (2007). Foi constatado diante do padrão de fissuração que levou as peças ao colapso, que as fissuras formavam ângulos que variavam de 30 a 40 graus com a superfície inferior da laje. Juntamente com as características das lajes ensaiadas, os resultados obtidos a partir dos experimentos de TENG et al. são apresentados na Tabela 4. Figura 13 Processo de formação de fissuras no puncionamento (OLIVEIRA et al., 2007) 15

36 ρ (%) Tabela 4 Resultados obtidos (TENG et al., 2000) Dimensão do Pilar ƒ y V u d (mm) ƒ c (MPa) Laje x y (MPa) (kn) V/V u V/V u V/V u OC11 1,81 105,25 36, , ,61 0,91 0,69 OC11H30 1,70 107,75 33, , ,56 0,82 0,62 OC11V23 1,69 108,50 34, , ,57 0,85 0,65 OC11V20 1,74 105,25 38, , ,81 1,21 0,95 OC13 1,71 107,25 35, , ,64 0,93 0,64 OC13H50 1,67 109,50 36, , ,75 1,08 0,74 OC13V43 1,61 113,50 36, , ,70 1,02 0,70 OC13V23 1,70 108,00 36, , ,63 0,92 0,61 OC13V40 1,69 108,50 43, , ,87 1,28 0,90 OC13H02 1,64 111,75 43, , ,57 0,76 0,60 OC15 1,76 102,75 40, , ,66 1,04 0,56 OC15H70 1,67 108,25 37, , ,77 1,20 0,64 OC15V43 1,66 109,00 35, , ,58 0,93 0,49 MÉDIA 0,67 1,00 0,68 DESV. PADRÃO 0,10 0,16 0,13 ACI 318 CEB EC2 Nota-se que, em média, o CEB-FIP MC90 foi o que mais se aproximou dos resultados experimentais, no entanto, superestimou em 28%, 21% e 20% as estimativas das lajes OC13V40, OC11V20 e OC15H70, respectivamente. Ao contrário desta norma, o ACI 318 e o EUROCODE subestimaram as resistências de todas as lajes tendo como menor, o da laje OC11H30 para o ACI 318 com a estimativa menor em 44% e 51% para a laje OC15V43 analisando pelo EUROCODE, em geral, este foi o mais conservativo que os demais WAYNE (1997) Neste trabalho, o autor apresenta os resultados de seis lajes lisas com furos próximos ao pilar, estas lajes foram submetidas a um carregamento pontual através de um pilar quadrado de 250 mm de lado, locado no centro geométrico simulando as forças de punção. Todas as lajes (1-SS, 2-4F, 3-4C, 4-SS, 5-4C e 6-4F) apresentavam as dimensões de mm x mm para os ladose a espessura variando entre 156 mm e 157 mm e altura útil entre 116 mm e 117 mm. As taxas das armaduras de flexão ficaram entre 0,98% e 1,47%. As lajes 1-SS e 4-SS eram sem furos (de referência) e as demais possuíam quatro furos em cada. O concreto utilizado para este experimento foi de alta resistência com uma resistência característica f ck não inferior a 70 MPa ao final dos 28 dias e a relação água-cimento A/C foi de 0,33. O aço para todas as lajes, exceto para a 6-4F, apresentou tensão de escoamento de 400 MPa e módulo de elasticidade de 183 GPa. Já para laje 6-4F a tensão de escoamento era de 407 MPa e 16

37 módulo de elasticidade com 189 GPa. As Figuras 14 e 15 mostram os posicionamentos dos furos nas lajes. A Tabela 5 apresenta os resultados obtidos por WAYNE. Figura 14 Posicionamento dos furos nas lajes 4F (WAYNE, 1997) Figura 15 Posicionamento dos furos nas lajes 4C (WAYNE, 1997) Laje Tabela 5 Resultados obtidos (WAYNE, 1997) ρ (%) h (mm) d (mm) ƒ c (MPa) V u (kn) 1-SS 0, F 0, C 0, SS 0, C 1, F 1, Diante dos experimentos, WAYNE observou que as placas com os furos nos vértices do pilar apresentaram uma resistência menor em até 26%, caso da laje 3-4C, enquanto para as lajes com furos adjacentes ao pilar, com a situação mais desfavorável para a 6-4F com sua resistência menor em 13%, apesar da resistência do concreto desta laje ser menor que a laje 2-4F (entre 2%), a taxa de armadura da 6-4F é 33% maior que a 2-4F. 17

38 2.2.5 MOE (1961) MOE ensaiou 43 lajes onde 15 possuíam furos adjacentes ao pilar (série H), ex: H1, H2, H3, etc. Todas as placas tinham dimensões de mm x mm x 152 mm para comprimento, largura e espessura. Estas lajes possuíam um pilar de concreto armado quadrado com 254 mm de lado, que fora moldado e concretado juntamente com a laje e ficava posicionado no centro da mesma. Este pilar era impulsionado por um macaco hidráulico acionado por uma bomba hidráulica, até a carga de ruína. A laje H1 era de referência (sem furo) enquanto as lajes H2, H3, H4, H5, H6, H9, H10, H11, H12, H14 e H15 possuíam furos quadrados com 127 mm de lado. Já as lajes H7 e H8 tinham furos circulares com Ø 127 mm de diâmetro e a H13 possuía quatro furos quadrados com 254 mm de lado. As principais variáveis desta série foram o número, o tamanho e a posição dos furos na laje. As Figura 16 e 17 mostram as características geométricas das lajes. Figura 16 Características geométricas das lajes (MOE, 1961) 18

39 Figura 17 Características geométricas das lajes (MOE, 1961) Todas as lajes foram armadas ortogonalmente com 12 barras de Ø 16,0 mm de diâmetro em cada direção, exceto a H14 que foi armada com 8 barras de Ø 16,0 mm de diâmetro. O cobrimento utilizado foi de 38 mm para todas as lajes e a taxa de armadura de flexão ρ foi de 0,77 para a H14 e 1,15 para as demais. A resistência do concreto f ck variou entre 23 MPa e 29 MPa. A Figura 18 mostra o arranjo das barras nas lajes H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12 e H15, já a Figura 19 mostra o arranjo das barras na laje H13 e a Figura 20 mostra o arranjo das barras na H14. 19

40 Figura 18 Arranjo das barras nas lajes H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12 e H15 (MOE, 1961) Figura 19 Arranjo das barras na laje H13 (MOE, 1961) Figura 20 Arranjo das barras na laje H14 (MOE, 1961) 20

41 Segundo MOE, criteriosas inspeções nos furos foram feitas para verificar o aparecimento e a propagação de fissuras, isto foi relevante para se ter informações acerca de fissuras inclinadas ao longo da altura da laje. Também, foi observado que na maioria das lajes as fissuras inclinadas apareciam com 60% da carga de ruína e se estendia rapidamente aproximando-se do eixo neutro da seção. A Tabela 6 apresenta os resultados observados por MOE. Laje ρ (%) d (mm) Tabela 6 Resultados obtidos (MOE, 1961) ƒ c (MPa) Dimensão do Furo (mm) N de Furos x y x y V u (kn) H1 27, ,00 H2 31, ,89 H3 36, ,88 H4 36, ,78 H5 44, ,67 H6 54, ,66 H7 1,15 30,3 Ø ,84 H ,1 Ø ,84 H9 30, ,84 H10 27, ,90 H11 27, ,91 H12 27, ,73 H13 35, ,54 H14 0,77 22, ,68 H15 1,15 31, ,89 V V H 1 Hn De acordo com os resultados observados por MOE, a presença de furos, independentemente do número e do posicionamento, reduz a resistência da laje em relação à de referência (sem furo), até mesmo para a H11 que teve seu furo posicionado fora do perímetro de controle recomendado pela NBR 6118, no entanto, a diferença da carga de ruína da H1 para a H11 foi apenas 9% maior, ou seja, uma diferença pequena para se afirmar um decréscimo de carregamento. 2.3 Prescrições Normativas Considerações iniciais Com a finalidade de estimar a resistência ao cisalhamento nas nervuras bem como a resistência ao puncionamento, são consultados 3 códigos de normas onde serão comparados os resultados destes com os resultados experimentais. De acordo com cada procedimento será discutido tanto o comportamento quanto o modo de ruptura que cada uma destas normas prevê. É imprescindível lembrar que o objetivo deste trabalho não prevê armadura de cisalhamento, portanto este ponto não será abordado. 21

42 ACI 318. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Michigan, 2005; COMITÉ EURO-INTERNATIONAL DU BÉTON. CEB-FIP Model Code London, Thomas Telford, 1993; ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118 Projeto e Execução de Obras de Concreto Armado. Rio de Janeiro, 2003; Dimensionamento segundo o ACI Cisalhamento O ACI 318 leva em consideração em sua formulação de cisalhamento (equação 1) tanto a resistência do concreto (V C ) quanto a parcela resistida pelo aço (V S ), como as outras normas, no entanto, é acrescentado um coeficiente de minoração φque multiplica esta resistência, onde, para estudos em laboratórios este é considerado unitário e para o caso de torção e cisalhamento, utiliza-se 0,85. onde, V φ (V +V ) u c s (Equação 1) V n = (V c +V s), é a força de cisalhamento ponderada considerada na seção. Nas lajes de concreto armado que não possuem armadura de cisalhamento, o esforço cortante que corresponde a fissuração diagonal da peça e é a mesma resistência ao cisalhamento V C, esta formulação é apresentada na equação 2. A norma, visando uma maior simplicidade na aquisição de resultados da resistência ao cisalhamento propõe uma maneira simplificada de estimar esta resistência, conforme equação 3. A parcela resistida pela armadura transversal (V S ) possui uma formulação específica nas não será citada neste trabalho. V c = f c Vu d bw d ρ M u 7 1 b 3 w d f c (Equação 2) V c 1 = b 6 w d f c (Equação 3) 22

43 onde, f c é a resistência do concreto à compressão em MPa; d é a altura útil em mm; bw é a largura mínima ao longo da altura útil d em mm; ρ é a taxa da armadura de flexão; M u é o momento fletor último em N mm. V C é a resistência do concreto Punção A verificação ao puncionamento em lajes de concreto armado sem armadura de cisalhamento feita pelo ACI 318 segue em um perímetro de controle b 0 distante não menos que d / 2 das arestas do pilar onde é calculado e analisado o menor valor de resistência, ou seja, verifica-se para a situação mais desfavorável. As equações 4, 5 e6 apresentam as formulações propostas pelo ACI 318. O perímetro de controle para o dimensionamento e verificação do puncionamento é de acordo com a Figura f c c b0 βc 6 V = 1+ d (Equação 4) as d f V c= 2 c + b0 d b0 12 (Equação 5) onde, V = f b c c 0 3 d (Equação 6) f c, é a resistência do concreto à compressão em MPa; β C, é a razão entre a maior e a menor dimensão do pilar; b0 = 2 ( a + b) + 4d, é o perímetro de controle em mm; a = 3,32 para pilar interno. S 23

44 Figura 21 Perímetro de controle segundo a ACI 318 O ACI 318 trata os furos nas lajes de forma similar a NBR 6118, no entanto aplica o perímetro crítico de acordo com suas recomendações. Para aberturas que estão alocadas a uma distância menor que 10 (dez) vezes a espessura da laje entre o centróide do pilar e o contorno do furo, o perímetro de controle deverá obedecer as recomendações conforme as Figuras 22 e 23. Para as lajes com armadura de cisalhamento, a resistência à punção é dada pela contribuição do concreto somada à contribuição da armadura de cisalhamento, no entanto não será mostrado neste trabalho. Figura 22 Perímetros críticos para lajes com aberturas próximas ao pilar (SOUZA, Raphael M, 2004) Figura 23 Perímetros críticos para lajes com aberturas próximas ao pilar segundo a ACI

45 2.3.3 Dimensionamento segundo a CEB-FIP MC Cisalhamento O CEB-FIP MC90 sugere que para garantir entre as forças cortantes, a desigualdade VSd VRd deve ser obedecida, sendo que resistência ao cisalhamento deverá ser calculada conforme a Equação 7 para verificações como lajes. Também neste código as lajes nervuradas podem ser tratadas como vigas, neste caso, o cálculo para a resistência ao cisalhamento deve obedecer a equação 8. Estas equações são aplicadas a situações em que não haja armadura de cisalhamento, caso deste trabalho, no entanto o CEB-FIP MC90 também propõe fórmulas para a verificação com armadura de combate ao cisalhamento, que não serão citadas. V Rd 3 ( 100 f ) 1/ b d = 0,12 ξ ρ (Equação 7) c w V Rd 1 / 3 3 d = 0,15 ( fc ) bw d a / d 100 ρ (Equação 8) onde, 200 ξ = 1+ ; d ρ é a taxa da armadura de flexão; d é a altura útil ao longo da seção em mm; a é distância do apoio até o ponto de aplicação da carga. b w é a largura da nervura em mm; f c é a resistência a compressão do concreto. Para a verificação da biela do concreto o CEB-FIP MC90 sugere o modelo da treliça de Mörsch com a inclinação das bielas variando entre 18,4 e 45. Esta verificação é feita através das tensões solicitantes e resistentes da seção, apresentadas nas equações 9 e 10 respectivamente, onde f cdi, é a tensão média considerada para zonas submetidas ao esforço cortante uniaxial de compressão para regiões não fissuradas e fissuradas, segundo as equações 11 e 12, respectivamente. 25

46 Vd cotgθ F scw = senθ cotgθ + cotgα (Equação 9) Frcw = f cdi bw z cosθ (Equação 10) f f = 0,85 1 f 250 c cd1 c (Equação 11) onde, f f = 0,60 1 f 250 c cd 2 c (Equação 12) z é a altura útil ao longo da seção em mm; b w é a largura da nervura em mm; θ é o ângulo das bielas; α é o ângulo dos tirantes Punção O CEB-FIP MC90 verifica as tensões de puncionamento em três perímetros críticos, o primeiro deles ( u 0 ) imediatamente após o pilar, o segundo ( u 1 ) afastado 2 d do primeiro perímetro de controle e o terceiro ( u 2 ) afastado 2 d após a ultima camada de armadura que combate o puncionamento. Assim, como na NBR 6118, não será discutida a aplicação do terceiro perímetro crítico. A resistência ao cisalhamento da região maciça em lajes nervuradas sem armadura de punção pode ser determinada de acordo com a Equação 13, enquanto lajes que possuem armaduras de combate ao puncionamento, seguem outras recomendações que não serão citadas neste trabalho. A Figura 24 mostra o perímetro de controle nas lajes com pilares internos. onde, 200 ξ = 1+ ; d ( 100 f ) 1/ 3 τ Rd = 0,12 ξ ρ c (Equação 13) f c é a resistência característica do concreto não maior que 50 MPa. 26

47 ρ é a taxa da armadura de flexão; d é a altura útil ao longo da seção em mm. 2d 2d 2d 2d Figura 24 Perímetros críticos nas lajes com pilares internos Para o caso particular de lajes com furos a CEB-FIP MC90 não faz nenhuma recomendação especial quanto a redução do perímetro de controle nem tampouco quão próximo do pilar ou quão distante do pilar este furo interfere na resistência ao puncionamento da laje, deixando assim uma lacuna neste parâmetro Dimensionamento segundo a NBR Cisalhamento Para o cisalhamento das lajes nervuradas, lisas ou não, deve-se levar em consideração algumas observações. A Figura 25 mostra a seção típica para esta análise. A distância entre eixos das nervuras ( l 0 + b w ) não deve ultrapassar mm; A espessura das nervuras ( b w ) não deve ser inferior a 50 mm; A espessura da mesa ( h f ) não deve ser menor que 30 mm ou 1/15 da distância entre nervuras ( l 0 ), quando não houver tubulações horizontais embutidas; Em casos de existirem tubulações embutidas de diâmetro máximo 12,5 mm, a espessura mínima da mesa deve ser 40 mm; Nas nervuras com espessura inferior a 80 mm, não é permitido colocar armadura de compressão; A verificação da resistência à flexão da mesa é dispensada sempre que a distância entre os eixos das nervuras for igual ou menor que 650 mm e as nervuras deverão ser verificadas ao cisalhamento; 27

48 Se a distância entre eixos das nervuras for maior que 650 mm, deverá ser feita a verificação da resistência à flexão da mesa e as nervuras devem ser verificadas ao cisalhamento como vigas, devendo neste caso, serem armadas com estribos. Porém, podem ser verificadas como lajes se a distância entre seus eixos for menor ou igual a 900 mm e espessura maior que 120 mm; Em lajes com distância entre eixo das nervuras maior que mm, a mesa deverá ser calculada como laje maciça. Figura 25 Seção transversal de uma laje nervurada Para que a laje não necessite de armadura de cisalhamento, a NBR 6118 adota o critério referente a integridade da diagonal tracionada, que por sua vez deve obedecer a desigualdade citada na Equação 14, e a resistência de projeto deve seguir a formulação descrita na Equação 15. Esta condição é proposta para lajes com inter-eixos não superiores a 650 mm, no entanto, quando a laje possuir inter-eixo de até 900 mm, esta recomendação também é válida, desde que a largura da nervura seja maior que 120 mm. VSd V Rd1 (Equação 14) V [ τ k 1, ρ ) + 0, 15 ] b d Rd1 = Rd ( 1 σ cp w (Equação 15) onde, τ = 0,25 Rd fctd ; f / ctd = fctk,inf γ c ; 28

49 As ρ 1 = b d w ; N Sd σ cp =. Ac k é um coeficiente que tem os seguintes valores: Para os elementos onde 50% da armadura inferior não chega até o apoio: k = 1; Para os demais casos: k = 1,6 d não menor que 1, com d em metros. f ctd é a resistência de cálculo à tração no concreto; d é a altura útil; bw é a largura mínima da seção ao longo da altura útil d; NSd é a força longitudinal na seção devido a protensão ou carregamento (compressão positiva). Quando o inter-eixo das nervuras estiver num intervalo entre 650 e 1100 mm, o cisalhamento da laje deverá ser verificado com as mesmas prescrições de vigas, respeitando as mesmas recomendações. Vale lembrar que quando a laje possuir até 900 mm de inter-eixo e a largura da alma, b w, da nervura for maior que 120 mm, esta verificação pode ser desconsiderada. A resistência da biela do concreto e da diagonal tracionada são demonstradas conforme as equações 16 e 17, respectivamente. V < V (Equação 16) Sd Rd 2 V < V = V + V (Equação 17) Sd Rd 3 c sw onde, V C é a parcela de resistência referente aos mecanismos complementares ao de treliça; V Rd 2 é força cortante resistente de cálculo, relativa à ruína da biela do concreto; Vsw é a parcela de resistência referente à armadura transversal. 29

50 Como neste trabalho não são consideradas lajes com armadura transversal, a parcela correspondente a este sistema ( V sw ) será nula e não será citada. A norma recomenda dois modelos de cálculos para a verificação do cisalhamento nas nervuras, o modelo de cálculo I, que se baseia no modelo de treliça clássica ou treliça de Mörsch com a biela inclinada de 45 e onde a parcela V C é constante, e o modelo de cálculo II, que considera a biela variando entre 30 e 45 e a parcela V C reduzindo com o aumento do V Sd. Nestes modelos, pode-se generalizar as nomenclaturas das variáveis nas equações, pois sem armaduras de cisalhamento as mesmas são válidas tanto para o modelo de cálculo I quanto para o modelo de cálculo II. A resistência da biela do concreto é chamada V Rd 2 e a da diagonal tracionada de V Rd Modelo de cálculo I ( θ = 45 ) Neste modelo a resistência das bielas de concreto pode ser estimada pela Equação 18 e a das diagonais tracionadas pela Equação 19. V = 0,27 α f b d (Equação 18) Rd 2 V 2 cd w onde, fck αv 2 = 1, f 250 ck em MPa. Rd 3 c Sw 0 V = V + V (Equação 19) V = 0, nos elementos estruturais tracionados, em que a linha neutra fica fora da seção; V c = V, na flexão simples e na flexo-tração com a linha neutra cortando a seção; c c0 V = V 1+ M 2 V 0 c c0 c0 M sd, máx, na flexo-compressão; M 0 é o valor do momento fletor que anula a tensão normal de compressão provocada pelas forças normais na borda da seção tracionada por M sd, máx ; 30

51 M sd, máx é o momento fletor de cálculo, que pode ser considerado como o de maior valor do semitramo considerado; Haja vista que a desigualdade da equação 19 dispensa a parcela da armadura, obtido com a Equação 20. V Sw, o V c0 é VRd 3 = Vc 0 = 0,6 fctd bw d (Equação 20) Modelo de cálculo II (30 θ 45 ) Neste modelo as resistências das diagonais comprimidas e tracionadas são estimadas com as equações 21 e 22. Neste caso, se a inclinação das bielas for próxima de 45º, a Equação 21 tende a fornecer os mesmos valores da Equação 18. ( cotgθ cotgα) 2 VRd 2 = 0, 54 αv f cd bw d sen θ + (Equação 21) onde, f ck αv = (com f ck em MPa), V = 0, nos elementos estruturais tracionados, em que a linha neutra fica fora da seção; c V = V, na flexão simples e na flexo-tração com a linha neutra cortando a seção; c c1 V = V 1+ M 2 V 0 c c1 c1 M Sd, máx, na flexo-compressão; V = V, quando Vsd VC 0. Esta condição deve ser interpolada linearmente. c1 c0 Quando Vsd Vc 0, tem-se a equação V C 0 = 0, 09 fck bw d (Equação 22) 31

52 Punção Como o CEB-FIP MC90, a NBR 6118 sugere a verificação em 3 (três) contornos ao pilar, sendo eles: C, C, mostrado na Figura 26. O perímetro de controle C é delimitado pelas dimensões do pilar e tem como objetivo verificar a tensão crítica de cisalhamento no concreto nas faces do pilar. O perímetro C encontra-se afastado 2 d da face do pilar e pode ser utilizado para verificar a capacidade da ligação à punção, associando a resistência da laje à tração diagonal. O perímetro crítico C somente é aplicado quando há armadura de combate à punção. A Figura 26 mostra os perímetros de controle recomendados pela norma para pilares internos. 2d 2d 2d 2d C C C C' C' trecho curvo Figura 26 Perímetros críticos nas lajes com pilares internos (NBR 6118) C' Quando a laje possui furos dentro dos perímetros críticos de punção, as geometrias destes perímetros sofrem redução proporcional às dimensões destes furos. Esta regra se aplica em situações onde os furos estão localizados a menos de 8 d do perímetro crítico C, de acordo com a Figura 27. Para furos alocados a uma distância maior que a mencionada anteriormente, o perímetro crítico deve ser tratado de acordo com as especificações anteriores para lajes sem furos. Figura 27 Perímetros críticos nas lajes com furos 32

53 Ainda de acordo com a NBR 6118, a consideração de cálculo para estimar a resistência ao puncionamento deve satisfazer a desigualdade τ Rd τ, considerando o pilar interno e o efeito do carregamento simétrico, a tensão solicitante fica de acordo com a Equação 23, que determina a tensão de cálculo como sendo a força solicitante pela área da seção transversal da laje contornada pelo perímetro de controle. Sd F sd τ sd = (Equação 23) u d onde, F Sd é a carga concentrada em N; u d é o perímetro de crítico em mm; é a altura útil ao longo do perímetro crítico A verificação ao cisalhamento( τ Rd τ ) deve considerar cada perímetro crítico. Para atender Sd estas recomendações, tem-se que as tensões resistentes da seção devem ser calculadas de acordo com as Equações 24 e 25, que fornecem as resistências das lajes sobre os perímetros crítico C e C, respectivamente. τ Sd τ Rd 2 = 0,27 αv fcd (Equação 24) 20 τ τ = 0, ρ d ( f ) 1/ 3 Sd Rd1 c (Equação 25) onde, α V fck = 1, f 250 ck em MPa; d é a altura útil ao longo do perímetro crítico em mm; ρ é a taxa da armadura de flexão. 33

54 2.4 Resistência à flexão A resistência à flexão foi estimada de acordo com a teoria das linhas de ruptura, ou charneiras plásticas, desenvolvida por JOHANSEN (1943). O procedimento consiste em determinar o momento fletor último na laje de concreto armado a partir de uma configuração conhecida do encaminhamento das charneiras plásticas, esta configuração foi a mesma utilizada por OLIVEIRA (2003) e é mostrada na Figura 28. As equações utilizadas para determinação do momento fletor e carregamento último são as Equações 26 e 27, respectivamente. Este método mostrou-se eficaz para as lajes LR, L1, L2, L3 e L5, pois, seus resultados apresentaram coerência na ordem de grandeza das cargas de ruptura das lajes, no entanto, para a laje L4, esta teoria não foi utilizada, pois, o comportamento de placa não foi preponderante no comportamento desta laje, dando lugar ao comportamento de viga bi-engastada com o comprimento do vão igual ao comprimento do furo, portanto, para estimar a resistência à flexão desta laje, se utilizou a equação 29 referente ao momento fletor para engastamento perfeito de viga e a equação 28 apresenta a formulação para o momento fletor resistente para uma seção submetida à flexo-compressão, recomendada pela NBR A Figura 29 mostra o modelo para o cálculo da máxima resistência da seção para o modelo de viga. Figura 28 Configuração das linhas de ruptura adotada 34

55 m u 2 = ρ f d 1 0, 5 ρ ys f f ys c (Equação 26) 2 m 2 m ux uy Pu = ly 2 e y [ lx 2 ex ] a + (Equação 27) a x y 8 M RkT P = (Equação 28) l M RkT = AS f ys d 0,85 2 x (Equação 29) Figura 29 modelo para o cálculo da máxima resistência da seção para o modelo de viga onde, P é a carga concentrada para o modelo de viga, em kn; M RkT é o momento fletor resistente da seção para o modelo de viga, em kn.m; x é a profundidade da linha neutra da seção para o modelo de viga, em m. 35

56 3 PROGRAMA EXPERIMENTAL 3.1 Considerações iniciais O evidente crescimento da utilização de lajes lisas nervuradas nos edifícios fez com que algumas dúvidas venham à tona trazendo incertezas sobre o comportamento estrutural destes elementos estruturais. Em favor de investigar o comportamento destes elementos em situações reais, é apresentada uma proposta para análise de 05 casos comuns onde há um ou dois furos adjacentes ao pilar, os resultados obtidos destes experimentos serão comparados com o de uma laje de referência, sem furo, onde posteriormente serão analisados e discutidos de acordo com cada parâmetro normativo. 3.2 Características gerais das lajes Foram ensaiadas 6 lajes lisas nervuradas com dimensões idênticas a mm x mm x 150 mm para comprimento, largura e espessura, respectivamente, variando-se apenas a forma e a posição do furo no contorno do pilar. Para formar os vazios característicos desse tipo de laje, foi utilizado como material inerte o isopor, EPS. As dimensões para largura, comprimento e altura foram 200 mm x 200 mm x 110 mm que posteriormente chanfradas formavam um ângulo de aproximadamente 13 para proporcionar a geometria desejada das nervuras. Para se obter a geometria desejada dos blocos de EPS, fabricou-se uma mesa com plataforma móvel e angulada de 87º com a vertical. Após a plataforma pronta, posicionou-se um fio metálico vertical ligado à uma fonte de 12V, formando uma resistência para seccionar o EPS. O processo de colagem foi feito manualmente com cola branca, espalhada com o auxilio de uma espátula. A Figura 30 mostra a seção transversal genérica das lajes nervuradas e a Tabela 7 apresenta as características das lajes. 36

57 Figura 30 Seção transversal genérica das lajes Laje d (mm) Tabela 7 Características das lajes f ck (MPa) f ys (MPa) ρ (%) Nº Furos Dimensão do furo x (mm) y (mm) LR 128 0, L , L , L , L , L , Geometria das lajes Todas as lajes tiveram vãos de 1600 mm em direções ortogonais. Cada direção foi composta por 08 nervuras, como mostra a Figura 30 onde o inter-eixo destas nervuras apresentavam 250 mm. A 500 mm das bordas da laje começava a região maciça e teve dimensões em planta de 800 x 800 mm. A capa da laje tem espessura de 40 mm e no centro da laje foi posicionado um pilar quadrado metálico com 120 mm de lado e 50 mm de espessura. A Figura 31 mostra a seção genérica na região maciça e a Figura 32 mostra o detalhe D.01. Figura 31 Seção genérica das nervuras 37

58 Figura 32 Detalhe D.01 Como escrito anteriormente, as lajes tiveram seus furos posicionados adjacentes ao pilar, baseando-se nos estudos e observações feitas por outros autores sobre o perímetro de controle sugeridos pelas normas CEB-FIP MC90 e NBR 6118, bem com observado pelos autores mencionados no capítulo 2, onde se observou maior eficácia no comprimento do perímetro crítico mediante ao comportamento de punção. As lajes que apresentaram um furo tiveram como objetivo analisar a distribuição das tensões nesta situação e serviram de referência para as lajes com dois furos. A Figura 33 mostra o sistema de corte do EPS e a Figura 34 mostra o processo de colagem do EPS nas formas. Figura 33 Sistema de corte do EPS 38

59 Figura 34 Processo de colagem nas formas Como mencionado anteriormente, a variável entre as lajes é o posicionamento dos furos em relação ao pilar, lembrando que todos os furos foram locados com uma dimensão adjacente ao 39

60 pilar. A L1 é a laje com um furo quadrado de 120 mm de lado, já a L2 apresentou dois furos quadrados também com 120 mm de lado simetricamente opostos. Por esta laje ter um furo idêntico a L1, serviu como referência às análises. A L3 é a laje que apresentava um furo retangular com dimensões de 120 mm x 240 mm, tendo seu maior lado centralizado e adjacente ao pilar. Analogamente à laje L2, a L4 faz à L3, tendo dois furos opostos entre si com seus maiores lados adjacentes ao pilar. A L5 também é uma laje com furo retangular de 240 mm x 120 mm, mas, no entanto, tem seu menor lado adjacente ao pilar. As Figuras 36 a 41 mostram as geometrias das lajes LR, L1, L2, L3, L4 e L5, respectivamente em planta e em corte. Figura 35 Geometria da LR 40

61 Figura 36 Geometria da L1 Figura 37 Geometria da L2 41

62 Figura 38 Geometria da L3 Figura 39 Geometria da L4 42

63 Figura 40 Geometria da L Armaduras Todas as lajes foram armadas nas direções x e y, onde duas barras com diâmetro Ø 8,0 mm foram posicionadas ao nível da mesa, dentro das nervuras, enquanto outra ficou neste mesmo nível, mas entre as nervuras. Já nas nervuras de borda, apenas uma barra foi posicionada, pois, estas nervuras receberam pouco carregamento por estarem além dos apoios. O cobrimento de concreto utilizado foi de 10 mm para todas as lajes em questão. Para as lajes que apresentavam furo(s), foram adicionadas barras de diâmetro Ø 5,0 mm nos contornos dos furos, tanto na região tracionada quanto na região comprimida da laje. A Figura 42 mostra o detalhe genérico da armadura adicional nos furos (em planta) e a Figura 43 mostra o corte AA. 43

64 Figura 41 Detalhe genérico da armadura adicional nos furos (em planta) Figura 42 Corte AA Todas as armaduras de flexão eram de aço CA50 com diâmetro Ø 8,0 mm onde nas bordas tiveram dobra (reta) de 90 com o propósito de serem ancoradas. Para as barras que chegaram aos furos, se fez dobras duplas onde nos vértices destas dobras foram inseridas as barras adicionais de Ø 5,0 mm de diâmetro. As Figuras 44 a 49 mostram os detalhamentos das armaduras da LR, L1, L2, L3, L4 e L5, respectivamente. 44

65 Figura 43 Armaduras da LR 45

66 Figura 44 Armaduras da L1 46

67 Figura 45 Armaduras da L2 47

68 Figura 46 Armaduras da L3 48

69 Figura 47 Armaduras da L4 49

70 Figura 48 Armaduras da L5 3.3 Instrumentação Instrumentação das barras de aço Para registrar as deformações nas armaduras, foram instrumentadas algumas barras com extensômetros elétricos de resistências (EER) da marca KYOWA, modelo KFG C1-11, 50

71 aqui denominados pela letra E, seguida do número correspondente ao extensômetro, passando informações dos níveis das deformações para um sistema de aquisição de dados. As barras continham na maioria das vezes apenas um EER, embora na L3 e na L4 dois EERs foram fixados em apenas uma das barras. Isto é justificado pelo comportamento das tensões, mostrado no capítulo 5. A Figura 50 mostra os detalhes dos posicionamentos dos EERs nas Barras e as Figuras 51 a 53 mostram os posicionamentos dos EERs nas armaduras das lajes LR e L1, L2 e L3, L4 e L5, respectivamente Figura 49 Posicionamento dos EERs nas barras Figura 50 Posicionamento dos EERs das armaduras para a laje LR e L1, respectivamente 51

72 Figura 51 Posicionamento dos EERs das armaduras para a laje L2 e L3, respectivamente Figura 52 Posicionamento dos EERs das armaduras para a laje L4 e L5, respectivamente Instrumentação do concreto Com a finalidade de medir as deformações no concreto, foram fixados EERs da marca EXCEL Sensores Ind. Com. Exp. Ltda e modelo PA BA-120L, denominados pela letra E, seguida do número correspondente ao extensômetro e passaram informações sobre as deformações na região comprimida. A Figura 54 mostra o posicionamento dos EERs na L3, para exemplificar as situações nas lajes enquanto as Figuras 55 a 57 mostram os posicionamentos dos EERs nas superfícies do concreto das lajes LR e L1, L2 e L3, L4 e L5, respectivamente. 52

73 Figura 53 Posicionamento dos EERs no concreto para a laje L3 Figura 54 Posicionamento dos EERs no concreto para a laje LR e L1, respectivamente Figura 55 Posicionamento dos EERs no concreto para a laje L2 e L3, respectivamente 53

74 Figura 56 Posicionamento dos EERs no concreto para a laje L4 e L5, respectivamente Deslocamentos verticais Durante os ensaios, os deslocamentos verticais foram medidos a cada incremento de carga com o auxílio de relógios comparadores analógicos (deflectômetros). Estes equipamentos têm precisão de 0,01 mm, posicionados de forma similar em todas as lajes para tornar possível a comparação, facilitando as análises dos comportamentos. A Figura 58 mostra as características dos deflectômetros utilizados, enquanto que nas Figuras 59 a 64 mostram os posicionamentos dos deflectômetros nas lajes LR, L1, L2, L3, L4 e L5, respectivamente. Figura 57 Modelo de deflectômetro utilizado (Fonte - 54

75 Figura 58 Posicionamento dos deflectômetros na laje LR 55

76 Figura 59 Posicionamento dos deflectômetros na laje L1 56

77 Figura 60 Posicionamento dos deflectômetros na laje L2 57

78 Figura 61 Posicionamento dos deflectômetros na laje L3 58

79 Figura 62 Posicionamento dos deflectômetros na laje L4 59

80 Figura 63 Posicionamento dos deflectômetros na laje L5 3.4 Sistema de ensaio As lajes foram apoiadas sobre 6 pilares metálicos circulares de 1000 mm de altura, presos a 6 tirantes de Ø 25,4 mm de diâmetro e f = 400MPa, os quais foram engastados a uma laje de ys 60

81 reação de 2000 mm de largura. Como o carregamento foi aplicado de baixo para cima, fixou-se 04 vigas metálicas em cada borda também presas aos tirantes que forneceram reação às lajes, atribuindo às mesmas o comportamento bidirecional. Um cilindro hidráulico da marca Yellow Power, modelo RRY1006 com capacidade para 1000 kn, acionado por uma bomba hidráulica manual da marca Yellow Power, modelo PY464, foi posicionado sob as lajes, onde aplicou-se um carregamento pontual no centro geométrico da laje através de uma chapa metálica maciça quadrada de 120 mm x 120 mm x 50 mm. Para quantificar os carregamentos, utilizou-se uma célula de carga também com capacidade para 1000 kn e precisão de 0,50 kn. Estas medições foram auxiliadas por uma leitora digital. A Figura 65 mostra Osistema de ensaio e a Figura 66 mostra o posicionamento da chapa metálica, célula de carga e cilindro hidráulico. Terminado o processo de montagem do sistema de ensaio, foram aplicados incrementos de carga com intensidade de 10% da carga estimada para a ruína da laje menos resistente. Em cada incremento de carga, as deformações no aço (extensômetros nas barras), concreto (extensômetros no concreto) e flechas (relógio comparador ou deflectômetro), foram medidas para subsidiar a pesquisa. 61

82 A viga metálica de reação tirante chapa de aço célula de carga chapa de aço Viga metálica de reação 800 Tirante Pilar a A PLANTA chapa cilindro hidráulico CORTE AA laje de reação do laboratório Figura 64 Sistema de ensaio Figura 65 Posicionamento da chapa metálica 62

83 3.5 Concretagem, adensamento cura das lajes Concretagem O concreto utilizado para a confecção das lajes foi usinado e fornecido pela Supermix Concreto S.A., uma empresa especializada em dosagem desse material. Na fabricação da pasta, utilizou-se o cimento CPII Z 32 (Cimento Portland Composto com adição de Pozolana). Para o processamento da argamassa, a areia média foi usada como o agregado miúdo e finalmente adicionou-se o seixo como agregado graúdo, formando o concreto. O fator água-cimento em massa foi de 0,55. A Figura 67 mostra a disposição das lajes no laboratório prontas para receberem o concreto, a Figura 68 mostra o transporte do concreto e a Figura 69 mostra o processo de concretagem das lajes. Figura 66 Disposição das lajes no laboratório prontas para receberem o concreto 63

84 Figura 67 Transporte do concreto 64

85 Figura 68 Processo de concretagem das lajes Adensamento e cura das lajes Para adensar o concreto das lajes, utilizou-se um vibrador de imersão de diâmetro Ø 32 mm, isto facilitou o adensamento do concreto dentro das formas, reduzindo os riscos de produzir falhas na integridade da laje (ninhos de concretagem) com a impossibilidade da passagem do concreto entre as armaduras. Após o preenchimento total da forma, se iniciou o processo de acabamento das superfícies das lajes com o concreto ainda no estado fresco. Isto foi possível com o auxílio de uma régua de madeira que serviu como sarrafo e posteriormente o desempeno da superfície 65

86 previamente acabada com uma desempenadeira de madeira. A Figura 70 mostra o processo de adensamento das lajes e a Figura 71 mostra o processo de acabamento das superfícies das lajes. Após 6 horas do término da concretagem, quando o concreto das lajes já apresentava nível de endurecimento suficiente, iniciou-se o processo de cura, sendo as lajes e os corpos-de-prova (CPs) cobertos com sacos de aniagem umedecidos. Durante o período de 7 dias os sacos foram molhados 2 vezes por dia. A Figura 72 mostra o procedimento de cura das lajes e dos CPs. Figura 69 Processo de adensamento das lajes Figura 70 Processo de acabamento das superfícies das lajes 66

87 Figura 71 Processo de cura das lajes e dos CPs 3.6 Controle tecnológico dos materiais Concreto As propriedades mecânicas do concreto foram determinadas a partir de ensaios de resistência à compressão, resistência à tração por compressão diametral e do módulo de elasticidade longitudinal. Para a obtenção destas propriedades foram ensaiados 9 corpos de prova, todos realizados no Laboratório de Engenharia Civil da UFPA (LEC) em uma prensa AMSLER com capacidade de kn. Já para a obtenção do nível de trabalhabilidade do concreto, foi feito o ensaio do tronco de cone slunp test Aço Para a obtenção das informações necessárias sobre o controle tecnológico do aço das lajes, foram extraídas três amostras das barras de aço utilizadas na confecção das armaduras das lajes, entretanto, isto será abordado no capítulo 4. 67

88 4 RESULTADOS DOS ENSAIOS Neste capítulo são apresentados os resultados obtidos experimentalmente para determinar as propriedades mecânicas dos materiais utilizados (aço e concreto), deslocamentos verticais observados em cada passo de carga, assim como as deformações no aço e no concreto. Também são apresentados os mapas de fissuração de cada laje que por sua vez auxiliam na visualização das distribuições dos esforços observados em cada caso. 4.1 Propriedade dos materiais Concreto Resistência à compressão Os ensaios para determinação da resistência à compressão foram realizados de acordo com a norma NBR 5739 (ABNT, 1994). Para todas as lajes foram ensaiados 3 CPs cilíndricos de 150 mm x 300 mm para diâmetro e altura. A resistência à compressão do concreto adotada foi a média aritmética obtida entre os CPs ensaiados para as lajes, conforme apresentado na Tabela 8. A Figura 73 mostra o ensaio de um CP à compressão axial. Tabela 8 Resistência à compressão axial Corpo de prova P u (kn) f c (MPa) f c Médio (MPa) CP 1 744,0 42,1 CP 2 735,0 41,6 43,0 CP 3 795,0 45,0 Figura 72 Ensaio de um corpo de prova à compressão axial 68

89 Resistência à tração A resistência à tração foi determinada através do ensaio de compressão diametral realizado de acordo com a NBR 7222 (ABNT, 1994). Assim como na determinação da resistência à compressão, foram confeccionados e ensaiados 3 CPs cilíndricos de 150 mm x 300 mm para diâmetro e altura, sendo considerada a resistência à tração, a média aritmética entre os valores. A Tabela 9 apresenta os resultados dos ensaios com a estimativa para resistência à tração do concreto. A Figura 74 mostra o esquema para se obter os valores da resistência à tração e a Figura 75 mostra o ensaio de CP à compressão diametral. Tabela 9 Resistência à compressão diametral Corpo de prova Área (mm²) P u (kn) f t (MPa) f t, médio (MPa) CP 1 130,0 1,8 CP ,4 160,0 2,3 2,4 CP 3 217,0 3,1 Figura 73 Esquema para obtenção da resistência à tração Figura 74 Ensaio de um corpo de prova à compressão diametral 69

90 Módulo de elasticidade A determinação do módulo de elasticidade também foi feita ensaiando 3 CPs cilíndricos de 150 mm x 300 mm para diâmetro e altura, de acordo com as recomendações da NBR 8522 (ABNT, 2003). A média aritmética neste ensaio, assim como nos ensaios para determinação da resistência à compressão quanto à tração, também foi utilizada. A Tabela 10 apresenta os resultados obtidos para os ensaios dos CPs para módulo de elasticidade. A Figura 76 mostra o ensaio de módulo de elasticidade do concreto. Tabela 10 - Resultados dos ensaios de módulo de elasticidade Corpo-de-prova P u (kn) E cs (GPa) E cs Médio (GPa) CP 1 744,0 26,7 CP 2 735,0 24,8 25,6 CP 3 795,0 25,3 Figura 75 - Ensaio de módulo de elasticidade do concreto Aço Para determinar a resistência à tração e o módulo de elasticidade das barras de aço utilizadas(ca-50) na confecção das lajes, foram retiradas 3 amostras de CPs de 500 mm de comprimento e Ø 8,0 mm de diâmetro, cujas foram ensaiadas de acordo com a NBR 6152 (ABNT, 1992). O aparelho de precisão utilizado para medir as deformações foi um extensômetro mecânico, mostrado na Figura

91 Figura 76 - Ensaio de módulo de elasticidade do aço Todas as amostras apresentaram um patamar de escoamento bem definido como mostrado nas Figuras 78, 79 e 80. Para ser feito um comparativo entre esses resultados, a Figura 81 mostra a médias das curvas das tensões e deformações encontradas nos ensaios, os resultados observados para as deformações foram em média de 1,95, a tensão de escoamento em 553 MPa e o módulo de elasticidade 284 GPa. A Tabela 11 apresenta os resultados destes ensaios. O último ponto não corresponde à tensão máxima, pois não se mediu a deformação para esta tensão. Figura 77 - Curva tensão x deformação para o CP 1 71

92 Figura 78 - Curva tensão x deformação para o CP 2 Figura 79 - Curva tensão x deformação para o CP 3 Figura 80 Média da curva tensão x deformação dos CPs 72

93 Corpo-de-prova Tabela 11 - Resultados dos ensaios do aço Área (mm²) ε ys f ys E s (GPa) ( ) (MPa) CP , CP , CP , MÉDIA 1, Deslocamentos verticais das lajes Como mencionado anteriormente, os deslocamentos verticais (flechas) foram monitorados a partir de deflectômetros analógicos posicionados na face superior das lajes. Estes relógios comparadores foram posicionados com a finalidade de comparar o comportamento das lajes quanto à sua ductilidade, devido à variação do furo na laje. As Figuras 82 a 87 mostram os deslocamentos verticais obtidos para cada laje e a Figura 88 mostra o gráfico das flechas máximas centrais (R3) de todas as lajes para cada passo de carga. Figura 81 Deslocamentos verticais na laje LR 73

94 Figura 82 Deslocamentos verticais na laje L1 Figura 83 Deslocamentos verticais na laje L2 Figura 84 Deslocamentos verticais na laje L3 74

95 Figura 85 Deslocamentos verticais na laje L4 Figura 86 Deslocamentos verticais na laje L5 Figura 87 Deslocamentos verticais no centro das lajes (R3) 75

96 Através dos gráficos, observa-se que até o surgimento da primeira fissura o comportamento da laje é semelhante em toda a sua superfície e somente após o início da fissuração que os relógios comparadores apresentaram variação considerável de deslocamentos, tornado a curva menos acentuada. Isto significa que as lajes ensaiadas apresentaram um comportamento de deformação contínua, ignorando a presença dos furos ao redor do pilar. As lajes apresentaram a maior flecha sempre no centro, independentemente da configuração do furo, variando seus deslocamentos verticais entre a maior flecha e as demais em média de 40%, 25%, 46%, 49%, 47% e 50% para as lajes LR, L1, L2, L3, L4, L5, respectivamente. Já os relógios centrais de cada laje, apresentam comportamento quase linear até uma carga de 50 kn. Observa-se também que a laje LR seguida pela laje L3, obtiveram a primeira fissura com os maiores valores de carga, sendo 60 kn e 45 kn, respectivamente, enquanto que para as demais essas cargas variaram entre 5 kn e 15 kn. Em uma análise dos deslocamentos verticais, referenciando o posicionamento dos relógios comparadores nas lajes, onde a curva inicial referencia o deslocamento vertical para a primeira fissura, os relógios comparadores centrais apresentaram as maiores leituras, seguidas pelas leituras dos relógios mais próximos dos furos. Para as lajes com furos, os relógios mais afastados do ponto de aplicação da carga apresentaram comportamentos variados, ou seja, para estas configurações de furos não houve um padrão de deslocamento da laje em relação posicionamento destes deflectômetros. Ao se adotar direções ortogonais imaginárias, onde o 0 destes eixos passa pelo deflectômetro R3, os dois mais afastados de cada direção não apresentaram comportamento que identifique um padrão para as lajes. Isto pode ser explicado pela falta de novas lajes e outras configurações de furos. Entretanto as quatro lajes com furos apresentaram pequenas variações entre os deslocamentos verticais nas duas direções. As Figuras 89 a 94 mostram os gráficos dos deslocamentos em relação à posição dos deflectômetros, nas lajes LR, L1, L2, L3, L4 e L5, respectivamente, inclusive mostra a relação de deformação vertical nos três primeiros deflectômetros de cada laje com furo em relação à laje sem furo, sendo que as linhas sólidas, referem-se ao deslocamento verticais da laje em questão, as linhas tracejadas, referem-se às flechas na laje LR. 76

97 Figura 88 - Deslocamentos verticais em relação à posição dos deflectômetros na laje LR Figura 89 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L1 77

98 Figura 90 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L2 Figura 91 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L3 78

99 Figura 92 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L4 Figura 93 - Deslocamentos verticais em relação à posição dos deflectômetros na laje L5 4.3 Deformações no concreto Para medir as deformações no concreto, foram colados extensômetros nas superfícies inferiores das lajes, estes quantificaram tanto deformações radiais quanto tangenciais, no entanto, a literatura sugere que as deformações tangenciais são mais elevadas que as radiais. Próximos do 79

100 pilar foram posicionados, no mínimo, dois extensômetros alinhados perpendicularmente entre si, onde os extensômetros mais próximos eram paralelos a pelo menos um dos lados e distantes 50 mm da face do pilar. As figuras 95 a 100 mostram as configurações dos extensômetros nas lajes e suas respectivas deformações. Verificou-se que nas lajes LR e L5 as maiores deformações observadas foram radiais com -0,74 e -1,74, respectivamente, já para as lajes L1, L2, L3 e L4, As maiores deformações no concreto ficaram em -1,26, -1,52, -2,54 e -1,35, respectivamente. A Figura 101 mostra as maiores deformações do concreto e a Tabela 12 apresenta os valores máximos observados para cada extensômetro e o classifica quanto ao posicionamento de acordo com as condições de contorno. Figura 94 - Deformações medidas no concreto da laje LR Figura 95 - Deformações medidas no concreto da laje L1 80

101 Figura 96 - Deformações medidas no concreto da laje L2 Figura 97 - Deformações medidas no concreto da laje L3 Figura 98 - Deformações medidas no concreto da laje L4 81

102 Figura 99 - Deformações medidas no concreto da laje L5 Figura Deformações máximas medidas nas superfícies das lajes 82

103 Tabela 12 - Deformações máximas nos extensômetros do concreto Laje Extensômetro Deformação ( ) Tipo L5 L4 L3 L2 L1 LR E1-0,65 Tangencial E2-0,74 Radial E1-0,81 Radial E2-0,75 Tangencial E3-1,26 Tangencial E4-0,33 Radial E5-0,98 Tangencial E6-0,91 Radial E1-0,03 Radial E2-0,34 Tangencial E3-0,94 Tangencial E4-0,13 Radial E5-0,09 Radial E6-1,52 Tangencial E1-1,22 Radial E2-2,54 Tangencial E3-0,90 Tangencial E4-0,44 Radial E5-0,83 Tangencial E6 0,20 Radial E1 0,44 Radial E2-1,35 Tangencial E3-0,99 Tangencial E4-0,06 Radial E5-0,44 Tangencial E6-0,03 Radial E1-1,74 Radial E2-1,67 Tangencial E3-1,51 Radial E4-1,58 Tangencial E5-0,11 Radial E6-1,70 Tangencial E7-1,22 Tangencial E8 0,59 Radial 4.4 Deformações no aço Extensômetros elétricos de resistência (EER) foram colados, aproximadamente, à mesma altura do centro de gravidade da seção transversal, na armadura longitudinal, para avaliar o comportamento das lajes através das deformações nestas barras, levando em consideração o posicionamento dos furos como mostram as Figuras 102 a

104 O posicionamento dos extensômetros nas barras foram baseados na concentração de tensões atuantes, como foram apresentadas no capítulo 3 e nas prescrições apresentadas para cada norma, tendo como ênfase o ACI 318, o CEB FIP MC90 e a NBR Todas as lajes, exceto a L4, tiveram suas armaduras monitoradas, escoadas, tendo como máxima deformação a LR, que apresentou pelo menos uma barra com 7,98 de deformação. Não significa dizer que não houve deformação maior que essa, isto é, houve casos em que alguns EERs apresentaram problemas, deixando de funcionar, isto se deve ao fato dos altos níveis de deformações atingidos a partir de um certo incremento de carga, ocorrendo então um possível descolamento do sensor na barra. Alguns extensômetros na LR foram posicionados eqüidistantes de eixo ortogonais, isto serviu para avaliar o rigor nos processos executivos e se as distribuições de tensões seguiam um padrão similar ao apresentado na análise numérica, o que posteriormente se confirmou. Os extensômetros E1 e o E3 da LR apresentaram o mesmo nível de deformação, ficando em 3,79 e 3,73, respectivamente. Esta diferença se deve ao fato das armaduras estarem sobrepostas, ficando o E1 mais próximo da superfície que o E2. Figura Deformações medidas nas armaduras da laje LR 84

105 Figura Deformações medidas nas armaduras da laje L1 Figura Deformações medidas nas armaduras da laje L2 Figura Deformações medidas nas armaduras da laje L3 85

106 Figura Deformações medidas nas armaduras da laje L4 Figura Deformações medidas nas armaduras da laje L5 Figura 107- Deformações máximas medidas nas armaduras das lajes 86

107 4.5 Mapas de fissuração Durante todos os ensaios, observou-se que os desenvolvimentos das fissuras iniciaram e se propagaram conforme cita a teoria das charneiras plásticas, iniciando o processo com fissuras radiais (fissuras que convergem para o pilar) a partir das extremidades do pilar, chegando até as bordas da laje. A partir de certo incremento de carga, verificou-se que fissuras tangenciais (fissuras que contornam as arestas do pilar) se formavam no contorno do pilar, sendo que neste estágio do ensaio, não surgiam mais fissuras radiais, apenas se aumentava a abertura das existentes. A média das cargas para o surgimento das primeiras fissuras observadas nas lajes foi de 11% da carga de ruína das respectivas lajes, sendo que para as lajes com um furo, as primeiras fissuras surgiram em média com 13% de suas cargas de ruína e para lajes com dois furos 5% da carga de ruína, ou seja, um decréscimo de 8% na carga de primeira fissura em relação às lajes com um furo para as lajes com dois furos. O gráfico da Figura 109 mostra as relações das cargas entre as primeiras fissuras das lajes e suas respectivas cargas de ruína. Quando são analisadas as cargas das primeiras fissuras das lajes com furos e a laje de referência, conclui-se que houve um decréscimo em média de 16% para a laje de referência, ou seja, para lajes com furos, as primeiras fissuras surgiram em média com 8,4% das suas respectivas cargas de ruína, enquanto que para a laje de referência, as primeiras fissuras surgiram com 25% de sua carga de ruína. Em geral, as lajes com furos ficaram com suas cargas de primeiras fissuras 30% menor que a carga de primeira fissura da laje LR. A Tabela 13 apresenta os valores das relações para as cargas de primeira fissura e ruína. 87

108 Figura Relações das cargas entre as primeiras fissuras das lajes e suas respectivas cargas de ruína. Onde: LAJE Tabela 13 - Valores das relações para as cargas de primeira fissura e ruína das lajes CARGA DE 1ª FISSURA (kn) CARGA DE RUÍNA (kn) A (%) MÉDIA 1 (%) B (%) MÉDIA 2 (%) LR % % L ,5 6% 25% L % 8% L ,5 20% 8,4 % 75% L ,5 8% 17% L % 25% A - Relação entre as cargas de primeira fissura e as de ruína das respectivas lajes; B - Relação entre as cargas de primeira fissura das lajes com furos e a laje LR; Média 1 - Média entre as cargas de primeiras fissuras das lajes com furos e suas respectivas cargas de ruína; Média 2 Média entre as cargas de primeiras fissuras das lajes com furos e a laje LR 30 % 88

109 Figura Padrão de fissuração da laje LR 89

110 Figura Padrão de fissuração da laje L1 90

111 Figura Padrão de fissuração da laje L2 91

112 Figura Padrão de fissuração da laje L3 92

113 Figura Padrão de fissuração da laje L4 93

114 Figura Padrão de fissuração da laje L5 4.6 Cargas últimas e modos de ruptura 94

115 Para avaliar as cargas últimas, foram feitas duas análises: a primeira refere-se à ruptura da laje, ou seja, se o nível de carregamento fez com que os materiais utilizados, neste caso o aço e o concreto, excedessem seus parâmetros de resistência. No caso do aço utilizado nas lajes, a deformação de escoamento, ε s, é 1,95 e no caso do concreto, a deformação de esmagamento, ε c, é 3,5. Todas as lajes ensaiadas romperam por puncionamento com escoamento da armadura de flexão, como apresenta a Tabela 14. Dentre as lajes ensaiadas, a laje LR foi a que apresentou a maior carga de ruína, chegando em 243,0 kn, isto era esperado, por ser a laje sem furos, a LR apresentava maior rigidez que as demais. A maior discrepância entre os níveis de carregamentos últimos observados foi na laje L4, que apresentou uma carga inferior 48% que a laje de referência, fato esperado, pois a laje L4 era a que apresentava a configuração dos furos mais desfavorável. Este resultado está ratificado no capítulo 6 que trata as análises numéricas. Já as lajes L2, L3 e L5, não apresentaram uma redução acentuada em relação a laje LR, apresentando suas cargas últimas inferiores em 5%, 8% e 4%, respectivamente que a laje LR, a uma média de 6%. Apesar da laje LR ter apresentado a maior carga de ruína, a laje L1 apresentou uma carga inferior em 0,2 % que a da laje LR, este parâmetro é visto como insignificante em relação ao nível de carregamento atingido pelas duas lajes, podendo ser desconsiderada esta perda de resistência por parte da L1. Vale salientar que problemas no momento da concretagem da laje de referência fizeram com que sua altura útil sofresse uma redução de 5% em relação à média das demais, ou seja, sua carga de ruína, provavelmente, seria aumentada, considerando um maior nível de plastificação desta laje. O gráfico da Figura 116 mostra um comparativo entre as cargas de ruína e as cargas de ruptura por flexão para cada laje, enquanto que as Figuras 117 a 122 mostram o puncionamento observado em cada laje. Tabela 14 - Cargas últimas e modos de ruptura observados Laje d (mm) ρ (%) f c (MPa) P u (kn) P flex (kn) Mod. de Ruptura LR 128 0,46 243,0 L ,43 242,5 L ,42 230,0 43 L ,43 223,5 L ,43 127,5 92 L ,42 233,0 292 Observado Punção com escoamento da armadura de flexão 95

116 Figura Cargas de ruína e de ruptura por flexão das lajes Figura Aspecto do puncionamento na laje LR Figura Aspecto do puncionamento na laje L1 96

117 Figura Aspecto do puncionamento na laje L2 Figura Aspecto do puncionamento na laje L3 Figura Aspecto do puncionamento na laje L4 97

118 Figura Aspecto do puncionamento na laje L5 4.7 Superfícies de ruptura Com a necessidade de se avaliar os perfis das superfícies onde se observaram os puncionamentos das lajes, após o término dos ensaios foram retiradas manualmente as partículas soltas do concreto na face superior das lajes, região tracionada. Após a retirada de parte do material solto, foram feitas medidas com uma trena metálica para se obter, de forma aproximada, a amplitude das superfícies de ruína para cada laje. As Figuras 123 a 128 mostram os aspectos das superfícies de ruptura em cada laje. Para facilitar o entendimento na localização das fissuras em relação às condições de contorno, será adotado duas direções ortogonais. A direção transversal, representada pelo corte A, passa pelo pilar e pelos furos e a direção longitudinal, representada pelo corte B passa apenas pelo pilar. 98

119 Figura Aspecto da superfície de ruptura na laje LR Figura Aspecto da superfície de ruptura na laje L1 99

120 Figura Aspecto da superfície de ruptura na laje L2 Figura Aspecto da superfície de ruptura na laje L3 100

121 Figura Aspecto da superfície de ruptura na laje L4 Figura Aspecto da superfície de ruptura na laje L5 De acordo com a avaliação feita nas superfícies de ruptura das lajes ensaiadas, ficou evidenciado que a maior inclinação dos ângulos nos cones de puncionamento, aconteceram sempre nas 101

122 direções longitudinais das lajes, este fato ratifica o comportamento em situações de perda na rigidez na placa, sendo melhor observado nas direções em que o pilar e os furos formam o mesmo eixo. Além disso, observou-se também que a presença de furos em regiões adjacentes a pilares é mais crítica quando os furos estão opostos ao pilar, pois, nesta direção há pouca continuidade da laje, a tornando mais frágil, tanto na ausência de comportamento dúctil quanto na perda considerável de resistência. Quando a laje possui furos, observa-se que a deficiência de rigidez em uma direção, faz com que os mecanismos de resistência da laje atuem mais na outra direção, fazendo com que haja uma melhor distribuição dos esforços na direção sem furos, aumentando assim as superfícies de puncionamento. A Figura 129 mostra o esquema do detalhamento típico das superfícies de ruptura a ser adotado nas lajes, as Figuras 130 a 135 mostram os detalhes das superfícies de ruptura, a Tabela 15 apresenta os resultados das análises das superfícies de ruptura para os comprimentos e a Tabela 16 apresenta os resultados das análises dos ângulos nas superfícies de ruptura. Figura Esquema do detalhamento típico das superfícies de ruptura a ser adotado nas lajes 102

123 Figura Detalhe do cone de ruptura na laje LR Figura Detalhe do cone de ruptura na laje L1 Figura Detalhe do cone de ruptura na laje L2 103

124 Figura Detalhe do cone de ruptura na laje L3 Figura Detalhe do cone de ruptura na laje L4 Figura Detalhe do cone de ruptura na laje L5 104

125 Laje Tabela 15 - Resultados das análises das superfícies de ruptura para os comprimentos d (mm) Longitudinal Comprimento Total Transversal C1L C2L Média C1T C2T Média (mm) (mm) C1L + C2L (mm) (mm) C1T + C2T LR ,0 158,0 153,0 153,0 154,0 153,5 L ,0 217,0 201,5 129,0 233,0 181,0 L ,0 172,0 186,0 93,0 126,0 109,5 L ,0 256,0 298,0 79,0 229,0 154,0 L ,0 106,0 116,5 95,0 74,0 84,5 L ,0 273,0 259,5 199,0 315,0 257,0 Tabela 16 - Resultados das análises dos ângulos nas superfícies de ruptura Laje d (mm) Ângulo de ruptura Longitudinal Transversal α1l α2l Média α1t α2t Média (Graus) (Graus) α1l + α2l (Graus) (Graus) α1t + α2t LR ,9 41,5 41,7 40,3 42,8 41,6 L ,2 32,4 34,3 46,7 30,3 38,5 L ,3 38,5 36,4 55,8 54,2 55,0 L ,0 27,9 25,0 60,3 30,8 45,6 L ,7 53,5 51,1 53,8 62,9 58,4 L ,6 26,1 27,4 34,8 23,2 29,0 105

126 5 ANÁLISE DAS ESTIMATIVAS NORMATIVAS Neste capítulo são feitas análises avaliando a eficiência das recomendações das normas citadas no capítulo 2. Este estudo é feito calculando os limites de resistência das lajes de acordo com cada prescrição, tanto para cisalhamento nas nervuras quanto para o puncionamento, comparando-os com os resultados obtidos experimentalmente. Ressaltar-se que para a obtenção das estimativas normativas, os limites de deformação dos materiais foram obedecidos, admitindo seus limiares de resistência. 5.1 Resistência ao cisalhamento nas nervuras ACI 318 (ACI, 2008) Apesar do modo de ruptura previsto ser o cisalhamento na nervura, evidencia-se que esta norma se mostrou conservadora no que diz respeito a esta estimativa, subestimando a capacidade resistente da laje em até 2,17 vezes, no caso das lajes LR, enquanto que para as lajes L1, L2, L3 e L5, o ACI 318 subestimou esta capacidade resistente em média de 1,94 vezes. A laje L4, apesar de também ter tido sua resistência subestimada, foi a que mais se aproximou da carga de ruína, com sua carga estimada em 1,06 vezes menor que a carga última observada. O fato das estimativas normativas terem subestimado a capacidade resistente ao cisalhamento nas nervuras pode ser explicado por nas equações da norma não ser levado em consideração a taxa de armadura de flexão, considerando apenas a resistência do concreto e as dimensões da laje. A Tabela 17 apresenta os resultados estimados para a resistência ao cisalhamento na nervura de acordo com o ACI 318 e a Figura 136 mostra a comparação entre as cargas observadas e as estimadas pelo ACI 318 para ruptura por cisalhamento nas nervuras. 106

127 Laje Tabela 17 - Resultados estimados para resistência ao cisalhamento de acordo com o ACI 318 d ρ f c f ys V P u (mm) (MPa) (MPa) (kn) (kn) LR 128 0, ,9 243,0 2,17 L , ,9 242,5 2,04 L , ,7 230,0 1,91 43,0 550,0 L , ,8 223,5 1,87 L , ,8 127,5 1,06 L , ,5 233,0 1,92 Pu V Média 1,83 D.P. 0,39 C.V. (%) 21,35 Modo de Ruptura Observado Punção com escoamento da armadura de flexão Figura Comparação entre as cargas observadas e as estimadas pelo ACI 318 para ruptura por cisalhamento nas nervuras CEB-FIP MC90 (CEB-FIP, 1990) O CEB-FIP MC 90 mostrou os resultados para o cisalhamento nas nervuras próximos dos resultados do ACI 318, significando que o CEB-FIP MC90 também subestimou suas estimativas para esta tensão, tendo como resultado mais conservador o observado para a laje LR que também teve seu resultado subestimado em 2,17 vezes que a carga última observada. Para as lajes com um furo, observa-se que as cargas estimadas para romper por cisalhamento nas nervuras subestimaram as respectivas cargas últimas em média com 2,03 vezes, já para as lajes com dois furos suas cargas ficaram subestimadas em 1,56 vezes em média, contudo, o resultado da laje L4 subestimou sua carga última em 1,11 vezes. A Tabela 18 apresenta os resultados estimados para a resistência ao cisalhamento na nervura de acordo com o CEB-FIP MC90 e a 107

128 Figura 137 mostra a comparação entre as cargas observadas e as estimadas pelo CEB-FIP MC90 para ruptura por cisalhamento nas nervuras. Tabela 18 - Resultados estimados para resistência ao cisalhamento de acordo com o CEB-FIP MC90 d ρ f c f ys V P u Laje (mm) (MPa) (MPa) (kn) (kn) LR 128 0, ,8 243,0 2,17 L , ,5 242,5 2,12 L , ,1 230,0 2,00 43,0 550,0 L , ,8 223,5 1,95 L , ,8 127,5 1,11 L , ,5 233,0 2,02 Pu V Média 1,89 D.P. 0,39 C.V. (%) 20,73 Modo de Ruptura Observado Punção com escoamento da armadura de flexão Figura Comparação entre as cargas observadas e as estimadas pelo CEB-FIP MC90 para ruptura por cisalhamento nas nervuras NBR 6118 (ABNT, 2003) No caso da NBR 6118, os resultados apresentados para as estimativas da resistência ao cisalhamento nas nervuras, foram mais próximos dos resultados observados experimentalmente que as normas ACI 318 e o CEB-FIP MC90, ficando a uma média geral de 1,54 vezes inferiores aos obtidos durante os ensaios. Podemos destacar o caso da L4 que distintamente a todas as outras estimativas para esta resistência, inclusive das outras normas, ficou superestimada em 10%. Este foi o caso mais próximo da carga última de uma laje, avaliando o cisalhamento nas nervuras. 108

129 Apesar da laje L4 ter superestimado sua resistência ao cisalhamento nas nervuras, esta margem de 10% se encontra dentro de um padrão aceitável de segurança, uma vez que para o dimensionamento das lajes ainda devemos considerar os coeficientes de majoração dos esforços e minoração das resistências. A Tabela 19 apresenta os resultados estimados para a resistência ao cisalhamento na nervura de acordo com a NBR 6118 e a Figura 138 mostra a comparação entre as cargas observadas e as estimadas pela NBR 6118 para ruptura por cisalhamento nas nervuras. Tabela 19 - Resultados estimados para resistência ao cisalhamento de acordo com a NBR 6118 d ρ f c f ys V P u Laje (mm) (MPa) (MPa) (kn) (kn) LR 128 0, ,3 243,0 1,81 L , ,8 242,5 1,72 L , ,4 230,0 1,62 43,0 550,0 L , ,6 223,5 1,58 L , ,6 127,5 0,90 L , ,2 233,0 1,63 Pu V Média 1,54 D.P. 0,33 C.V. (%) 21,11 Modo de Ruptura Observado Punção com escoamento da armadura de flexão Figura Comparação entre as cargas observadas e as estimadas pela NBR 6118 para ruptura por cisalhamento nas nervuras 5.2 Resistência ao puncionamento ACI 318 (ACI, 2002) 109

130 Das três normas analisadas, o ACI 318 foi o que apresentou as estimativas para a ruptura por puncionamento mais conservadoras, subestimando em média 17% a capacidade resistente das lajes. De acordo com essas recomendações, as lajes com dois furos foram as que obtiveram maior discrepância nos resultados, com 63% e 53% das cargas de ruína para as lajes L2 e L4, respectivamente. Já para as lajes com um furo, os resultados foram mais próximos dos observados nos ensaios com 87%, 80% e 96% das cargas de ruína para as lajes L1, L3 e L5, respectivamente. Durante o ensaio da LR, observou-se que sua carga de ruína foi inferior a carga de puncionamento, caracterizando assim um caso de superestimativa da capacidade resistente da laje ao puncionamento, sendo assim, a resistência da laje foi superestimada em 17%, o que não deve ser avaliado com preocupação pelos projetistas, pois para o dimensionamento se utiliza vários coeficientes de segurança, tanto para majorar esforços quanto para minorar resistências. A Tabela 20 apresenta os resultados estimados para a resistência ao cisalhamento na nervura de acordo com o ACI 318 e a Figura 139 mostra a comparação entre as cargas observadas e as estimadas pelo ACI 318 para ruptura por puncionamento. Tabela 20 - Resultados estimados para o puncionamento de acordo com o ACI 318 d ρ f c f ys P P u Laje (mm) (MPa) (MPa) (kn) (kn) LR 128 0, ,4 243,0 0,85 L , ,0 242,5 1,15 L , ,6 230,0 1,59 43,0 550,0 L , ,7 223,5 1,24 L , ,6 127,5 1,89 L , ,2 233,0 1,04 Pu P Média 1,29 D.P. 0,38 C.V. (%) 29,41 Modo de Ruptura Observado Punção com escoamento da armadura de flexão 110

131 Figura Comparação entre as cargas observadas e as estimadas pelo ACI 318 para ruptura por puncionamento CEB-FIP MC90 (CEB-FIP, 1990) Se as estimativas ao puncionamento das lajes forem avaliadas em cada caso, O CEB-FIP MC90 apresenta resultados mais próximas dos resultados observados nos ensaios que o ACI 318, com as maiores discrepâncias relatadas nas lajes com dois furos, sendo que as cargas de ruína se apresentaram inferiores em 45% e 32% para as lajes L2 e L4, respectivamente. No entanto, para as lajes com um furo, as estimativas se mostraram mais próximas das cargas últimas, subestimando em 8%, 13% e 1% para as lajes L1, L2 e L5, respectivamente. Em geral o CEB-FIP MC90 subestimou a capacidade resistente das lajes em média 17% da carga observada na ruína das mesmas. A Tabela 21 apresenta os resultados estimados para a resistência ao cisalhamento na nervura de acordo com o CEB-FIP MC90 e a Figura 140 mostra a comparação entre as cargas observadas e as estimadas pelo CEB-FIP MC90 para ruptura por puncionamento. Tabela 21 - Resultados estimados para o puncionamento de acordo com o CEB-FIP MC90 d ρ f c f ys P P u Laje (mm) (MPa) (MPa) (kn) (kn) LR 128 0, ,1 243,0 0,80 L , ,1 242,5 1,09 L , ,3 230,0 1,53 43,0 550,0 L , ,1 223,5 1,15 L , ,0 127,5 1,46 L , ,0 233,0 1,01 Média 1,17 Pu P Modo de Ruptura Observado Punção com escoamento da armadura de flexão 111

132 D.P. 0,28 C.V. (%) 23,65 Figura Comparação entre as cargas observadas e as estimadas pelo CEB-FIP MC90 para ruptura por puncionamento NBR 6118 (ABNT, 2003) A exemplo do CEB-FIP MC90, a NBR 6118 apresentou seus resultados próximos aos ressaltados nos ensaios, subestimando em média 12% dos reais. Isto era esperado pela das semelhanças nas recomendações destas normas para o puncionamento. De acordo com as resistências estimadas pela NBR 6118 os resultados das lajes com furos foram todos subestimados, tendo a maior diferença para as lajes com dois furos, onde, as lajes L2 e L4 subestimaram suas resistências em 31% e 28%, respectivamente. Já as lajes L1 e L3, com um furo, apresentaram suas cargas superestimadas em 3%, 10%. A laje L5 teve sua carga superestimada em 2%, ou seja, não há diferença física que possa caracterizar uma situação desfavorável à segurança. A Tabela 22 apresenta os resultados estimados para a resistência ao cisalhamento na nervura de acordo com o NBR 6118 e a Figura 141 mostra a comparação entre as cargas observadas e as estimadas pelo NBR 6118 para ruptura por puncionamento. 112

133 Tabela 22 - Resultados estimados para o puncionamento de acordo com a NBR 6118 d ρ f c f ys P P u Laje (mm) (MPa) (MPa) (kn) (kn) LR 128 0, ,5 243,0 0,79 L , ,2 242,5 1,03 L , ,3 230,0 1,45 43,0 550,0 L , ,7 223,5 1,10 L , ,7 127,5 1,39 L , ,2 233,0 0,98 Pu P Média 1,12 D.P. 0,25 C.V. (%) 22,59 Modo de Ruptura Observado Punção com escoamento da armadura de flexão Figura Comparação entre as cargas observadas e as estimadas pela NBR 6118 para ruptura por puncionamento 5.3 Resistência à flexão Como foi apresentado no capítulo 2, a resistência à flexão foi estimada através da Teoria das Linhas de Ruptura, considerando sua configuração e equações, também apresentadas naquele capítulo. A Tabela 23 apresenta os resultados para estimar a ruptura por flexão das lajes. A laje L4 foi a única que subestimou a resistência à flexão, com sua carga estimada 28% inferior à carga de ruína, isto pode ser explicado pela configuração dos furos na mesma, explicado no capítulo 2, entretanto, as outras lajes superestimaram suas respectivas resistências à flexão, estando em média 20% superiores às cargas observadas nos ensaios. Este fato ratifica que uma análise mais detalhada se faz necessário nos casos onde existem furos nos contornos do pilar. 113

134 Tabela 23 - Resultados estimados para ruptura por flexão das lajes d f ρ c P flex P u P u Modo de Ruptura P flex observado Laje (mm) MPa (kn) (kn) LR 128 0, ,0 243,0 0,83 L , ,0 242,5 0,83 L , ,0 230,0 0,79 43,0 L , ,0 223,5 0,77 L , ,0 127,5 1,39 L , ,0 233,0 0,80 Média 0,90 D.P. 0,24 C.V. (%) 26,61 Punção com escoamento da armadura de flexão 5.4 Resultados estimados pelas normas e os experimentais Como foi citado anteriormente, as estimativas para a ruptura por flexão das lajes, tem variação, dependendo da norma que se utiliza, tendo como base a teoria das linhas de rupturas, para isso, todas as normas apresentaram os mesmos resultados os esforços de flexão ACI 318 (ACI, 2002) O ACI 318 apresentou uma diferença entre as cargas observadas para o puncionamento e as cargas para o cisalhamento nas nervuras em média 30% inferiores, isto significa que as estimativas referentes ao cisalhamento nas nervuras estão demasiadamente conservadoras, haja visto que ambas as recomendações subestimam a resistência da laje nestas situações. A Tabela 24 apresenta as análises das cargas de ruptura previstas para o ACI 318 e as observadas nos ensaios e a Figura 142 mostra a comparação entre os resultados observados e os estimados através do ACI 318 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão). Tabela 24 - Análise das cargas de ruptura previstas para o ACI 318 e as observadas nos ensaios Laje V (kn) P (kn) P flex (kn) P u (kn) V Pu P Pu P LR 111,9 285,4 292,0 243,0 0,46 1,17 1,20 L1 118, ,0 242,5 0,49 0,87 1,20 L2 120,7 144,6 292,0 230,0 0,52 0,63 1,27 L3 119,8 179,7 292,0 223,5 0,54 0,80 1,31 L4 119,8 67,6 92,0 127,5 0,94 0,53 0,72 L5 121,5 224,2 292,0 233,0 0,52 0,96 1,25 Média 0,58 0,83 1,16 D.P. 0,18 0,23 0,22 C.V. (%) 30,91 27,99 18,82 flex P u 114

135 Figura Comparação entre os resultados observados e os estimados através do ACI 318 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão) CEB-FIP MC90 (CEB-FIP, 1990) O CEB-FIP MC90 apresentou a maior variação entre suas estimativas para ruptura por cisalhamento nas nervuras, estando em média 37% inferiores às de puncionamento, isto pode ser explicado por uma maior proximidade das cargas de puncionamento com as observadas nos ensaios, haja visto sua eficiência nesta estimativa. A relação média entre as estimativas para cisalhamento nas nervuras foi a mais conservadora com 44% inferior da carga de ruína das lajes, já para a o puncionamento este valor cai para 11% da carga última. A Tabela 25 apresenta as análises das cargas de ruptura previstas para o CEB-FIP MC90 e as observadas nos ensaios e a Figura 143 mostra a comparação entre os resultados observados e os estimados através do CEB- FIP MC90 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão). Tabela 25 - Análise das cargas de ruptura previstas para o CEB-FIP MC90 e as observadas nos ensaios Laje V (kn) P (kn) P flex (kn) P u (kn) V Pu P Pu P LR 111,8 304,1 292,0 243,0 0,46 1,25 1,20 L1 114,5 222,1 292,0 242,5 0,47 0,92 1,20 L2 115,1 150,3 292,0 230,0 0,50 0,65 1,27 L3 114,8 195,1 292,0 223,5 0,51 0,87 1,31 L4 114,8 87,0 92,0 127,5 0,90 0,68 0,72 L5 115,5 230,0 292,0 233,0 0,50 0,99 1,25 Média 0,56 0,89 1,16 D.P. 0,17 0,22 0,22 C.V. (%) 30,39 24,51 18,82 flex P u 115

136 Figura Comparação entre os resultados observados e os estimados através do CEB-FIP MC90 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão) NBR 6118 (ABNT, 2003) A norma NBR 6118 foi a que apresentou a menor diferença entre as estimativas para puncionamento e para cisalhamento nas nervuras, isto é, as cargas para cisalhamento nas nervuras ficaram em média 26% inferiores aos da carga de puncionamento. Observa-se também que tanto as para puncionamento quanto para cisalhamento nas nervuras as estimativas melhoram, aproximando-se das cargas últimas das lajes. A Tabela 26 apresenta as análises das cargas de ruptura previstas para o NBR 6118 e as observadas nos ensaios e a Figura 144 mostra a comparação entre os resultados observados e os estimados através do NBR (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão). Tabela 26 - Análise das cargas de ruptura previstas para a NBR 6118 e as observadas nos ensaios Laje V (kn) P (kn) P flex (kn) P u (kn) V Pu P Pu P LR 134,3 307,5 292,0 243,0 0,55 1,27 1,20 L1 140,8 236,2 292,0 242,5 0,58 0,97 1,20 L2 142,4 158,3 292,0 230,0 0,62 0,69 1,27 L3 141,6 203,7 292,0 223,5 0,63 0,91 1,31 L4 141,6 91,7 92,0 127,5 1,11 0,72 0,72 L5 143,2 238,2 292,0 233,0 0,61 1,02 1,25 Média 0,69 0,93 1,16 D.P. 0,21 0,21 0,22 C.V. (%) 30,72 22,87 18,82 flex P u 116

137 Figura Comparação entre os resultados observados e os estimados através da NBR 6118 (cisalhamento nas nervuras e punção) e teoria das linhas de ruptura (flexão) Contudo, os gráficos mostram que as estimativas para lajes lisas nervuradas nem sempre são precisas, ou seja, o comportamento das lajes para os modos de ruptura previstos pelas normas as vezes não convergem, divergindo dos observados. A exceção aconteceu na laje L4 para as estimativas do CEB-FIP MC90 e para a NBR 6118 que previram seus modos de ruptura em conformidade aos avaliados nos ensaios. A Tabela 27 apresenta os resultados para os modos de ruptura previstos de acordo com cada recomendação normativa e os observados. Tabela 27 - Modos de ruptura previstos de acordo com cada recomendação normativa e os observados Laje Modos de ruptura Modos de ruptura previstos observados ACI 318 CEB-FIP MC90 NBR 6118 LR V V V L1 V V V L2 V V V P / EF L3 V V V L4 P P / EF P / EF L5 V V V onde, V é a carga para ruptura por cisalhamento nas nervuras; P é a carga para ruptura por punção; EF é a carga para ruptura por escoamento na armadura de flexão. 117

IV Seminário de Iniciação Científica

IV Seminário de Iniciação Científica ANÁLISE TEÓRICA-COMPUTACIONAL DE LAJES LISAS DE CONCRETO ARMADO COM PILARES RETANGULARES Liana de Lucca Jardim Borges,1,2 1 Pesquisadora 2 Curso de Engenharia Civil, Unidade Universitária de Ciências Exatas

Leia mais

Estudo do Efeito de Punção em Lajes Lisas e Cogumelo Mediante a Utilização de Normas Técnicas e Resultados Experimentais

Estudo do Efeito de Punção em Lajes Lisas e Cogumelo Mediante a Utilização de Normas Técnicas e Resultados Experimentais Tema 2 - Reabilitação e Reforços de Estruturas Estudo do Efeito de Punção em Lajes Lisas e Cogumelo Mediante a Utilização de Normas Técnicas e Resultados Experimentais Leandro Carvalho D Ávila Dias 1,a

Leia mais

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30 Sumário Prefácio à quarta edição... 13 Prefácio à segunda edição... 15 Prefácio à primeira edição... 17 Capítulo 1 Introdução ao estudo das estruturas de concreto armado... 19 1.1 Conceitos fundamentais...

Leia mais

Lajes lisas nervuradas bidirecionais com furos

Lajes lisas nervuradas bidirecionais com furos Volume 7, Number 4 (August 2014) p. 572-591 ISSN 1983-4195 Two-way ribbed flat slabs with shafts Lajes lisas nervuradas bidirecionais com furos Abstract The position of pipes and hoses for several installations

Leia mais

PUNÇÃO EM LAJES COGUMELO ESTUDO DA RETANGULARIDADE DOS PILARES

PUNÇÃO EM LAJES COGUMELO ESTUDO DA RETANGULARIDADE DOS PILARES PUNÇÃO EM LAJES COGUMELO ESTUDO DA RETANGULARIDADE DOS PILARES Mouro, Valéria Conceição 1, Ronaldo Barros Gomes 2, Gilson Natal Guimarães 3 1 Mestre em Engenharia Civil pela Universidade Federal de Goiás;

Leia mais

ANÁLISE EXPERIMENTAL DE LAJES LISAS COM ARMADURA DE COMBATE À PUNÇÃO

ANÁLISE EXPERIMENTAL DE LAJES LISAS COM ARMADURA DE COMBATE À PUNÇÃO ANÁLISE EXPERIMENTAL DE LAJES LISAS COM ARMADURA DE COMBATE À PUNÇÃO RESUMO Orientando (Dijalma Motta Leopoldo), Orientador (Alexandre Vargas); UNESC Universidade do Extremo Sul Catarinense (1) djalmamotta@hotmail.com,

Leia mais

ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS DE CONCRETO ARMADO COM ARMADURA DE CISALHAMENTO

ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS DE CONCRETO ARMADO COM ARMADURA DE CISALHAMENTO SERVIÇO PÚBLICO FEDERAL DO PARÁ UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ANÁLISE EXPERIMENTAL DE LAJES LISAS NERVURADAS DE CONCRETO ARMADO COM ARMADURA DE CISALHAMENTO

Leia mais

Módulo 5 Lajes: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Dimensionamento de Lajes à Punção

Módulo 5 Lajes: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Dimensionamento de Lajes à Punção NBR 6118 : Estados Limites Últimos Estados Limites de Serviço Detalhamento P R O M O Ç Ã O Conteúdo ELU e ELS Força Cortante em Dimensionamento de à Punção - Detalhamento - - Conclusões Estado Limite Último

Leia mais

Comportamento ao Puncionamento de Lajes Cogumelo com Pilares Retangulares e Furos de Grandes Dimensões

Comportamento ao Puncionamento de Lajes Cogumelo com Pilares Retangulares e Furos de Grandes Dimensões Comportamento ao Puncionamento de Lajes Cogumelo com Pilares Retangulares e Furos de Grandes Dimensões L.L.J. Borges, UEG; G.S.S.A. Melo, UnB; R.B. Gomes, UFG; Reynaldo M. Bittencourt, FURNAS Resumo -

Leia mais

CURSO TÉCNICO DE EDIFICAÇÕES. Disciplina: Projeto de Estruturas. Aula 7

CURSO TÉCNICO DE EDIFICAÇÕES. Disciplina: Projeto de Estruturas. Aula 7 AULA 7 CURSO TÉCNICO DE EDIFICAÇÕES Disciplina: Projeto de Estruturas CLASSIFICAÇÃO DAS ARMADURAS 1 CLASSIFICAÇÃO DAS ARMADURAS ALOJAMENTO DAS ARMADURAS Armadura longitudinal (normal/flexão/torção) Armadura

Leia mais

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS CISALHAMENTO EM VIGAS CAPÍTULO 13 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos 25 ago 2010 CISALHAMENTO EM VIGAS Nas vigas, em geral, as solicitações predominantes são o momento fletor e

Leia mais

ANÁLISE EXPERIMENTAL DE LAJES LISAS UNIDIRECIONAIS DE CONCRETO ARMADO AO PUNCIONAMENTO SIMÉTRICO OU ASSIMÉTRICO

ANÁLISE EXPERIMENTAL DE LAJES LISAS UNIDIRECIONAIS DE CONCRETO ARMADO AO PUNCIONAMENTO SIMÉTRICO OU ASSIMÉTRICO UNIVERSIDADE FEDERAL DO PARÁ CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ANÁLISE EXPERIMENTAL DE LAJES LISAS UNIDIRECIONAIS DE CONCRETO ARMADO AO PUNCIONAMENTO

Leia mais

As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados.

As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados. LAJES DE CONCRETO ARMADO 1. Unidirecionais As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados. 1.1 Lajes em balanço Lajes em balanço são unidirecionais

Leia mais

Sociedade Goiana de Cultura Universidade Católica de Goiás Departamento de Engenharia Laboratório de Materiais de Construção

Sociedade Goiana de Cultura Universidade Católica de Goiás Departamento de Engenharia Laboratório de Materiais de Construção Sociedade Goiana de Cultura Universidade Católica de Goiás Departamento de Engenharia Laboratório de Materiais de Construção Ensaios de Stuttgart Reprodução em Laboratório Consorte, Anna Karlla G. Oliveira,

Leia mais

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas.

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas. 2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 212 Duração prevista: até 4 horas. Esta prova tem oito (8) questões e três (3) laudas. Consulta permitida somente ao formulário básico.

Leia mais

3.6.1. Carga concentrada indireta (Apoio indireto de viga secundária)

3.6.1. Carga concentrada indireta (Apoio indireto de viga secundária) cisalhamento - ELU 22 3.6. rmadura de suspensão para cargas indiretas 3.6.1. Carga concentrada indireta (poio indireto de viga secundária) ( b w2 x h 2 ) V 1 ( b w1 x h 1 ) V d1 - viga com apoio ndireto

Leia mais

Módulo 4 Vigas: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Segurança em Relação aos ELU e ELS

Módulo 4 Vigas: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Segurança em Relação aos ELU e ELS NBR 6118 : Estados Limites Últimos Estados Limites de Serviço Detalhamento P R O M O Ç Ã O Conteúdo Segurança em Relação aos ELU e ELS ELU Solicitações Normais ELU Elementos Lineares Sujeitos à Força Cortante

Leia mais

ANÁLISE DA INFLUÊNCIA DA DOBRA NA RESISTÊNCIA À FLEXÃO DE UM PERFIL DE AÇO FORMADO A FRIO APLICADO NO SETOR DE ESTRUTURAS METÁLICAS

ANÁLISE DA INFLUÊNCIA DA DOBRA NA RESISTÊNCIA À FLEXÃO DE UM PERFIL DE AÇO FORMADO A FRIO APLICADO NO SETOR DE ESTRUTURAS METÁLICAS ANÁLISE DA INFLUÊNCIA DA DOBRA NA RESISTÊNCIA À FLEXÃO DE UM PERFIL DE AÇO FORMADO A FRIO APLICADO NO SETOR DE ESTRUTURAS METÁLICAS Fábio Sumara Custódio (1), Marcio Vito (2) UNESC Universidade do Extremo

Leia mais

Estudo do Cisalhamento em Vigas de Concreto Armado

Estudo do Cisalhamento em Vigas de Concreto Armado Estudo do Cisalhamento em Vigas de Concreto Armado Luiz Alves ramos 1, Antonio Alves da Silva 2, luizalvesramos@gmail.com 1 deca_univap@yahoo.com.br 2, guido@univap.br 3, carlos@univap.br 4 Universidade

Leia mais

Practical formulas for calculation of deflections of reinforced concrete beams

Practical formulas for calculation of deflections of reinforced concrete beams Teoria e Prática na Engenharia Civil, n.18, p.6-70 Novembro, 011 Fórmulas práticas para cálculo de flechas de vigas de concreto armado Practical formulas for calculation of deflections of reinforced concrete

Leia mais

ENSAIOS DE STUTTGART REPRODUÇÃO EM LABORATÓRIO

ENSAIOS DE STUTTGART REPRODUÇÃO EM LABORATÓRIO ENSAIOS DE STUTTGART RERODUÇÃO EM LABORATÓRIO Andrea Corrêa Rocha (1); Maria das Graças Duarte Oliveira (1); aulo Sérgio Oliveira Resende (1); Alberto Vilela Chaer (2) (1) Acadêmicos de Engenharia Civil,

Leia mais

PUNÇÃO EM LAJES DE CONCRETO ARMADO

PUNÇÃO EM LAJES DE CONCRETO ARMADO PUNÇÃO EM LAJES DE CONCRETO ARMADO Prof. Eduardo Giugliani Colaboração Engº Fabrício Zuchetti ESTRUTURAS DE CONCRETO ARMADO III FENG / PUCRS V.02 Panorama da Fissuração. Perspectiva e Corte 1 De acordo

Leia mais

2 Projeto de Vigas de Concreto Armado Submetidas à Força Cortante e à Flexão

2 Projeto de Vigas de Concreto Armado Submetidas à Força Cortante e à Flexão 2 Projeto de Vigas de Concreto Armado Submetidas à Força Cortante e à Flexão 2.1. Projeto de Vigas de Concreto Armado Submetidas à Força Cortante Em vigas as tensões principais de tração e de compressão

Leia mais

ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS

ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS AULA 04 ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS Prof. Felipe Brasil Viegas Prof. Eduardo Giugliani http://www.feng.pucrs.br/professores/giugliani/?subdiretorio=giugliani 0 AULA 04 INSTABILIDADE GERAL DE EDIFÍCIOS

Leia mais

UNIVERSIDADE DE MARÍLIA

UNIVERSIDADE DE MARÍLIA UNIVERSIDADE DE MARÍLIA Faculdade de Engenharia, Arquitetura e Tecnologia SISTEMAS ESTRUTURAIS (NOTAS DE AULA) Professor Dr. Lívio Túlio Baraldi MARILIA, 2007 1. DEFINIÇÕES FUNDAMENTAIS Força: alguma causa

Leia mais

Figura 17.1 Laje nervurada bidirecional (FRANCA & FUSCO, 1997)

Figura 17.1 Laje nervurada bidirecional (FRANCA & FUSCO, 1997) ESTRUTURAS DE CONCRETO CAPÍTULO 17 Libânio M. Pinheiro, Julio A. Razente 01 dez 2003 LAJES NERVURADAS 1. INTRODUÇÃO Uma laje nervurada é constituída por um conjunto de vigas que se cruzam, solidarizadas

Leia mais

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES 2. VINCULAÇÕES DAS LAJES 3. CARREGAMENTOS DAS LAJES 3.1- Classificação das lajes retangulares 3.2- Cargas acidentais

Leia mais

ALTERNATIVAS PARA A CONFIGURAÇÃO DA REGIÃO MACIÇA EM SISTEMAS DE LAJES LISAS NERVURADAS DE CONCRETO ARMADO

ALTERNATIVAS PARA A CONFIGURAÇÃO DA REGIÃO MACIÇA EM SISTEMAS DE LAJES LISAS NERVURADAS DE CONCRETO ARMADO ALTERNATIVAS PARA A CONFIGURAÇÃO DA REGIÃO MACIÇA EM SISTEMAS DE LAJES LISAS NERVURADAS DE CONCRETO ARMADO Nívea Gabriela B. de Albuquerque (1); Dênio Ramam C. de Oliveira (2) (1) Departamento de Engenharia

Leia mais

Estruturas de Concreto Armado. Eng. Marcos Luís Alves da Silva luisalves1969@gmail.com unip-comunidade-eca@googlegroups.com

Estruturas de Concreto Armado. Eng. Marcos Luís Alves da Silva luisalves1969@gmail.com unip-comunidade-eca@googlegroups.com Estruturas de Concreto Armado Eng. Marcos Luís Alves da Silva luisalves1969@gmail.com unip-comunidade-eca@googlegroups.com 1 CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL EA 851J TEORIA EC6P30/EC7P30

Leia mais

detalhamento da armadura longitudinal da viga

detalhamento da armadura longitudinal da viga conteúdo 36 detalhamento da armadura longitudinal da viga 36.1 Decalagem do diagrama de momentos fletores (NBR6118/2003 Item 17.4.2.2) Quando a armadura longitudinal de tração for determinada através do

Leia mais

Detalhamento de Concreto Armado

Detalhamento de Concreto Armado Detalhamento de Concreto Armado (Exemplos Didáticos) José Luiz Pinheiro Melges Ilha Solteira, março de 2009 Exercícios - Detalhamento 1 1. DIMENSIONAR E DETALHAR A VIGA ABAIXO. 1.1 DADOS A princípio, por

Leia mais

ENSAIO DE LIGAÇÃO PILAR PRÉ-MOLDADO FUNDAÇÃO MEDIANTE CHAPA DE BASE

ENSAIO DE LIGAÇÃO PILAR PRÉ-MOLDADO FUNDAÇÃO MEDIANTE CHAPA DE BASE ENSAIO DE LIGAÇÃO PILAR PRÉ-MOLDADO FUNDAÇÃO MEDIANTE CHAPA DE BASE 53 ENSAIO DE LIGAÇÃO PILAR PRÉ-MOLDADO FUNDAÇÃO MEDIANTE CHAPA DE BASE Mounir K. El Debs Toshiaki Takeya Docentes do Depto. de Engenharia

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP Curso: Arquitetura e Urbanismo Assunto: Cálculo de Pilares Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP

Leia mais

ANÁLISE EXPERIMENTAL DE VIGAS PRÉ-FORMADAS DE CONCRETO ARMADO À FLEXÃO E AO CISALHAMENTO

ANÁLISE EXPERIMENTAL DE VIGAS PRÉ-FORMADAS DE CONCRETO ARMADO À FLEXÃO E AO CISALHAMENTO UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ANÁLISE EXPERIMENTAL DE VIGAS PRÉ-FORMADAS DE CONCRETO ARMADO À FLEXÃO E AO CISALHAMENTO ENGº CIVIL JOSÉ

Leia mais

DETALHAMENTO DAS ESTRUTURAS DE CONCRETO PELO MÉTODO DAS BIELAS E DOS TIRANTES

DETALHAMENTO DAS ESTRUTURAS DE CONCRETO PELO MÉTODO DAS BIELAS E DOS TIRANTES UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL CADERNO DE ENGENHARIA DETALHAMENTO DAS ESTRUTURAS DE CONCRETO PELO MÉTODO DAS BIELAS E DOS TIRANTES

Leia mais

ANALISE DA EFICIÊNCIA DE ESTRIBOS CONTÍNUOS COMPARADOS AOS ESTRIBOS TRADICIONAIS UTILIZADOS EM VIGAS DE CONCRETO ARMADO

ANALISE DA EFICIÊNCIA DE ESTRIBOS CONTÍNUOS COMPARADOS AOS ESTRIBOS TRADICIONAIS UTILIZADOS EM VIGAS DE CONCRETO ARMADO ANALISE DA EFICIÊNCIA DE ESTRIBOS CONTÍNUOS COMPARADOS AOS ESTRIBOS TRADICIONAIS UTILIZADOS EM VIGAS DE CONCRETO ARMADO Anderson Borges da Silva (1), Prof. Esp. Alexandre Vargas (2) RESUMO UNESC Universidade

Leia mais

Sistemas mistos aço-concreto viabilizando estruturas para Andares Múltiplos

Sistemas mistos aço-concreto viabilizando estruturas para Andares Múltiplos viabilizando estruturas para Andares Múltiplos Vantagens Com relação às estruturas de concreto : -possibilidade de dispensa de fôrmas e escoramentos -redução do peso próprio e do volume da estrutura -aumento

Leia mais

3. Programa Experimental

3. Programa Experimental 3. Programa Experimental 3.1. Considerações Iniciais Este estudo experimental foi desenvolvido no laboratório de estruturas e materiais (LEM) da PUC- Rio e teve o propósito de estudar o comportamento de

Leia mais

Perfis mistos em aço. Novas perspectivas

Perfis mistos em aço. Novas perspectivas Perfis mistos em aço Novas perspectivas Perfis mistos em aço Vantagens Com relação às estruturas de concreto : -possibilidade de dispensa de fôrmas e escoramentos -redução do peso próprio e do volume da

Leia mais

Projeto estrutural de edifícios de alvenaria: decisões, desafios e impactos da nova norma de projeto

Projeto estrutural de edifícios de alvenaria: decisões, desafios e impactos da nova norma de projeto Projeto estrutural de edifícios de alvenaria: decisões, desafios e impactos da nova norma de projeto Prof. Associado Márcio Roberto Silva Corrêa Escola de Engenharia de São Carlos Universidade de São Paulo

Leia mais

Gisele S. Novo Possato et al. Análise teórico-experimental de placas de base de colunas metálicas tubulares

Gisele S. Novo Possato et al. Análise teórico-experimental de placas de base de colunas metálicas tubulares Engenharia Civil Gisele S. Novo Possato et al. Análise teórico-experimental de placas de base de colunas metálicas tubulares Gisele S. Novo Possato Engenheira, M.Sc., Doutoranda, Programa de Pós-Graduação

Leia mais

DIMENSIONAMENTO À PUNÇÃO EM APOIOS INTERNOS DE LAJES PROTENDIDAS SEM ADERÊNCIA

DIMENSIONAMENTO À PUNÇÃO EM APOIOS INTERNOS DE LAJES PROTENDIDAS SEM ADERÊNCIA UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL DIMENSIONAMENTO À PUNÇÃO EM APOIOS INTERNOS DE LAJES PROTENDIDAS SEM ADERÊNCIA JOSÉ

Leia mais

Erro! Fonte de referência não encontrada. - Laje pré-fabricada Avaliação do desempenho de vigotas e pré-lajes sob carga de trabalho

Erro! Fonte de referência não encontrada. - Laje pré-fabricada Avaliação do desempenho de vigotas e pré-lajes sob carga de trabalho Erro! Fonte de referência não encontrada. - aje pré-fabricada Avaliação do desempenho de vigotas e pré-lajes sob carga de trabalho Prefácio A Associação Brasileira de Normas Técnicas (ABNT) é o Foro Nacional

Leia mais

Vigas UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D44 Estruturas de Concreto Armado I. Flavio A. Crispim (FACET/SNP-UNEMAT)

Vigas UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D44 Estruturas de Concreto Armado I. Flavio A. Crispim (FACET/SNP-UNEMAT) UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL SNP38D44 Vigas Prof.: Flavio A. Crispim (FACET/SNP-UNEMAT) SINOP - MT 2016 Hipóteses de dimensionamento Seções planas Aderência perfeita

Leia mais

Análise de procedimentos para medida de rotações e curvaturas em vigas de concreto armado

Análise de procedimentos para medida de rotações e curvaturas em vigas de concreto armado BE8 Encontro Nacional Betão Estrutural 8 Guimarães 5, 6, 7 de Novembro de 8 Análise de procedimentos para medida de rotações e curvaturas em vigas de concreto armado Bruna Catoia 1, Carlos A.T. Justo,

Leia mais

ANÁLISE DA INFLUÊNCIA DA DOBRA NA RESITÊNCIA À FLEXÃO ESTÁTICA DE UM PERFIL DE AÇO FORMADO A FRIO APLICADO NO SETOR DE ESTRUTURAS METÁLICAS

ANÁLISE DA INFLUÊNCIA DA DOBRA NA RESITÊNCIA À FLEXÃO ESTÁTICA DE UM PERFIL DE AÇO FORMADO A FRIO APLICADO NO SETOR DE ESTRUTURAS METÁLICAS ANÁLISE DA INFLUÊNCIA DA DOBRA NA RESITÊNCIA À FLEXÃO ESTÁTICA DE UM PERFIL DE AÇO FORMADO A FRIO APLICADO RESUMO NO SETOR DE ESTRUTURAS METÁLICAS Diego de Medeiros Machado (1), Marcio Vito (2); UNESC

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

DESENVOLVIMENTO DE PROGRAMA COMPUTACIONAL PARA CÁLCULO E DIMENSIONAMENTO DE POSTES DE CONCRETO ARMADO COM SEÇÃO TRANSVERSAL DUPLO T

DESENVOLVIMENTO DE PROGRAMA COMPUTACIONAL PARA CÁLCULO E DIMENSIONAMENTO DE POSTES DE CONCRETO ARMADO COM SEÇÃO TRANSVERSAL DUPLO T DESENVOLVIMENTO DE PROGRAMA COMPUTACIONAL PARA CÁLCULO E DIMENSIONAMENTO DE POSTES DE CONCRETO ARMADO COM SEÇÃO TRANSVERSAL DUPLO T Hevânio D. de Almeida a b, Rafael A. Guillou a,, Cleilson F. Bernardino

Leia mais

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3.

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3. CAPÍTULO 5 Volume 2 CÁLCULO DE VIGAS 1 1- Cargas nas vigas dos edifícios peso próprio : p p = 25A c, kn/m ( c A = área da seção transversal da viga em m 2 ) Exemplo: Seção retangular: 20x40cm: pp = 25x0,20x0,40

Leia mais

Vigas Gerber com Dentes Múltiplos: Dimensionamento e Detalhamento Eduardo Thomaz 1, Luiz Carneiro 2, Rebeca Saraiva 3

Vigas Gerber com Dentes Múltiplos: Dimensionamento e Detalhamento Eduardo Thomaz 1, Luiz Carneiro 2, Rebeca Saraiva 3 Vigas Gerber com Dentes Múltiplos: Dimensionamento e Detalhamento Eduardo Thomaz 1, Luiz Carneiro 2, Rebeca Saraiva 3 1 Prof. Emérito / Instituto Militar de Engenharia / Seção de Engenharia de Fortificação

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro ANÁLISE COMPARATIVA ENTRE SOFTWARES COMERCIAIS NO CÁLCULO E DETALHAMENTO DE UM EDIFÍCIO COM LAJE NERVURADA Bruno Vianna Pedrosa 2013 ANÁLISE COMPARATIVA ENTRE SOFTWARES

Leia mais

PRÉ-DIMENSIONAMENTO DA ESTRUTURA

PRÉ-DIMENSIONAMENTO DA ESTRUTURA ECC 1008 ESTRUTURAS DE CONCRETO PRÉ-DIMENSIONAMENTO DA ESTRUTURA (Aulas 9-12) Prof. Gerson Moacyr Sisniegas Alva Algumas perguntas para reflexão... É possível obter esforços (dimensionamento) sem conhecer

Leia mais

2 Materiais e Métodos

2 Materiais e Métodos 1 ANÁLISE DO COMPORTAMENTO DE VIGAS REFORÇADAS POR ACRÉSCIMO DE CONCRETO À FACE COMPRIMIDA EM FUNÇÃO DA TAXA DE ARMADURA LONGITUDINAL TRACIONADA PRÉ-EXISTENTE Elias Rodrigues LIAH; Andréa Prado Abreu REIS

Leia mais

AVALIAÇÃO TEÓRICA-EXPERIMENTAL DO DESEMPENHO ESTRUTURAL DE PERFIS DE AÇO FORMADOS A FRIO

AVALIAÇÃO TEÓRICA-EXPERIMENTAL DO DESEMPENHO ESTRUTURAL DE PERFIS DE AÇO FORMADOS A FRIO AVALIAÇÃO TEÓRICA-EXPERIMENTAL DO DESEMPENHO ESTRUTURAL DE PERFIS DE AÇO FORMADOS A FRIO Eduardo M. Batista (1) ; Elaine G. Vazquez (2) ; Elaine Souza dos Santos (3) (1) Programa de Engenharia Civil, COPPE,

Leia mais

Artigo submetido ao Curso de Engenharia Civil da UNESC - como requisito parcial para obtenção do Título de Engenheiro Civil

Artigo submetido ao Curso de Engenharia Civil da UNESC - como requisito parcial para obtenção do Título de Engenheiro Civil ANÁLISE DO DIMENSIONAMENTO DE PILARES DE CONCRETO ARMADO PELO MÉTODO DO PILAR PADRÃO COM RIGIDEZ κ APROXIMADA E PELO MÉTODO DO PILAR PADRÃO COM CURVATURA APROXIMADA PARA EFEITOS DE 2º ORDEM Augusto Figueredo

Leia mais

Lajes de Edifícios de Concreto Armado

Lajes de Edifícios de Concreto Armado Lajes de Edifícios de Concreto Armado 1 - Introdução As lajes são elementos planos horizontais que suportam as cargas verticais atuantes no pavimento. Elas podem ser maciças, nervuradas, mistas ou pré-moldadas.

Leia mais

6 Vigas: Solicitações de Flexão

6 Vigas: Solicitações de Flexão 6 Vigas: Solicitações de Fleão Introdução Dando seqüência ao cálculo de elementos estruturais de concreto armado, partiremos agora para o cálculo e dimensionamento das vigas à fleão. Ações As ações geram

Leia mais

Doutoranda, PPGEC/ UFRGS, p.manica.lazzari@gmail.com 2,3

Doutoranda, PPGEC/ UFRGS, p.manica.lazzari@gmail.com 2,3 Análise Estrutural Não Linear de Vigas em Concreto Armado Utilizando o ANSYS 14.5 Paula Manica Lazzari 1, Américo Campos Filho 2, Francisco de Paula Simões Lopes Gastal 3 Resumo 1 Doutoranda, PPGEC/ UFRGS,

Leia mais

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas EXERCÍCIOS DE ESTRUTURAS DE MADEIRA RAFAEL SIGRIST PONTES MARTINS,BRUNO FAZENDEIRO DONADON

Leia mais

DIMENSIONAMENTO DAS BARRAS DE AÇO DA ARMADURA DE BLOCOS SOBRE ESTACAS

DIMENSIONAMENTO DAS BARRAS DE AÇO DA ARMADURA DE BLOCOS SOBRE ESTACAS DIMENSIONAMENTO DAS BARRAS DE AÇO DA ARMADURA DE BLOCOS SOBRE ESTACAS B. C. S. Lopes 1, R. K. Q. Souza, T. R. Ferreira 3, R. G. Delalibera 4 Engenharia Civil Campus Catalão 1. bcs_90@hotmail.com;. rhuankarlo_@hotmail.com;

Leia mais

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO 1. Uma mola, com comprimento de repouso (inicial) igual a 30 mm, foi submetida a um ensaio de compressão. Sabe-se

Leia mais

Aula 04 Peças submetidas à flexão simples: solicitações normais.

Aula 04 Peças submetidas à flexão simples: solicitações normais. Aula 04 Peças submetidas à flexão simples: solicitações normais. 1. Introdução. Nas aulas anteriores foram fornecidas as bases teóricas para verificação analítica da segurança de estruturas de concreto.

Leia mais

2.1. Considerações Gerais de Lajes Empregadas em Estruturas de Aço

2.1. Considerações Gerais de Lajes Empregadas em Estruturas de Aço 23 2. Sistemas de Lajes 2.1. Considerações Gerais de Lajes Empregadas em Estruturas de Aço Neste capítulo são apresentados os tipos mais comuns de sistemas de lajes utilizadas na construção civil. 2.1.1.

Leia mais

ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS

ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS Leandro de Faria Contadini 1, Renato Bertolino Junior 2 1 Eng. Civil, UNESP-Campus de Ilha Solteira 2 Prof. Titular, Depto de Engenharia

Leia mais

TÍTULO: Avaliação de Flechas em Vigas de Concreto Armado Utilizando Teoremas de Mohr. AUTOR(ES): Thomaz, Eduardo C.S.; Carneiro, Luiz A.V.

TÍTULO: Avaliação de Flechas em Vigas de Concreto Armado Utilizando Teoremas de Mohr. AUTOR(ES): Thomaz, Eduardo C.S.; Carneiro, Luiz A.V. TÍTULO: valiação de Flechas em Vigas de Concreto rmado Utilizando Teoremas de Mohr UTOR(ES): Thomaz, Eduardo C.S.; Carneiro, Luiz.V. NO:011 PLVRS-CHVE: valiação, flechas, vigas e teoremas de Mohr. e-rtigo:

Leia mais

01 projeto / normalização

01 projeto / normalização 01 projeto / normalização revisão_das_práticas_recomendadas para_edificações_de_até_5_pavimentos apresentação O trabalho é uma revisão da primeira versão das PRs, que serve como texto base para a norma

Leia mais

DIMENSIONAMENTO DE ELEMENTOS FLETIDOS EM CONCRETO ARMADO COM ABERTURAS: MÉTODO EMPÍRICO VERSUS MÉTODO DAS BIELAS E TIRANTES

DIMENSIONAMENTO DE ELEMENTOS FLETIDOS EM CONCRETO ARMADO COM ABERTURAS: MÉTODO EMPÍRICO VERSUS MÉTODO DAS BIELAS E TIRANTES UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL Tobias Bezzi Cardoso DIMENSIONAMENTO DE ELEMENTOS FLETIDOS EM CONCRETO ARMADO COM ABERTURAS: MÉTODO EMPÍRICO

Leia mais

FUNÇÃO DO SISTEMA DE MASSA MOLA = ATENUAR VIBRAÇÕES

FUNÇÃO DO SISTEMA DE MASSA MOLA = ATENUAR VIBRAÇÕES Análise do comportamento estrutural das lajes de concreto armado dos Aparelhos de Mudança de Via (AMV), com sistema de amortecimento de vibrações, oriundas dos tráfegos dos trens, da Linha 2 - Verde, do

Leia mais

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO ESTRUTURAS DE CONCRETO CAPÍTULO 2 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos Março de 2004 CARACTERÍSTICAS DO CONCRETO Como foi visto no capítulo anterior, a mistura em proporção adequada

Leia mais

ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES

ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES 2014 1 a QUESTÃO Valor: 1,00 O núcleo central de inércia é o lugar geométrico da seção transversal

Leia mais

Notas de aulas - Concreto Armado. Lançamento da Estrutura. Icléa Reys de Ortiz

Notas de aulas - Concreto Armado. Lançamento da Estrutura. Icléa Reys de Ortiz Notas de aulas - Concreto Armado 2 a Parte Lançamento da Estrutura Icléa Reys de Ortiz 1 1. Lançamento da Estrutura Antigamente costumava-se lançar vigas sob todas as paredes e assim as lajes ficavam menores

Leia mais

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES 1 INDICE CAPÍTULO 5 DIMENSIONAMENTO BARRAS PRISMÁTICAS À FLEXÃO... 1 1 INTRODUÇÃO... 1 2 CONCEITOS GERAIS... 1 2.1 Comportamento da seção transversal

Leia mais

http://www.revistatechne.com.br/engenharia-civil/109/imprime31727.asp Figura 1 - Corte representativo dos sistemas de lajes treliçadas

http://www.revistatechne.com.br/engenharia-civil/109/imprime31727.asp Figura 1 - Corte representativo dos sistemas de lajes treliçadas 1 de 9 01/11/2010 23:26 Como construir Lajes com EPS Figura 1 - Corte representativo dos sistemas de lajes treliçadas As lajes tipo volterrana abriram a trajetória das lajes pré-moldadas. O sistema utiliza

Leia mais

RESISTÊNCIA À PUNÇÃO EM LAJES COGUMELO DE CONCRETO ARMADO

RESISTÊNCIA À PUNÇÃO EM LAJES COGUMELO DE CONCRETO ARMADO UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL ANA PAULA RODRIGUES VAZ RESISTÊNCIA À PUNÇÃO EM LAJES COGUMELO DE CONCRETO ARMADO UMA CONTRIBUIÇÃO PARA DEFINIÇÃO DE ARMADURA MÍNIMA DE CISALHAMENTO

Leia mais

Bloco sobre estacas Bielas Tirantes. Método Biela Tirante

Bloco sobre estacas Bielas Tirantes. Método Biela Tirante 1/20 Método Biela Tirante Pile Cap subjected to Vertical Forces and Moments. Autor: Michael Pötzl IABSE WORKSHOP New Delhi 1993 - The Design of Structural Concrete Editor: Jörg Schlaich Uniersity of Stuttgart

Leia mais

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 MEMORIAL DE CÁLCULO 071811 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210

Leia mais

REFORÇO DE VIGAS DE CONCRETO ARMADO, Á FLEXAO, COM FIBRA DE CARBONO

REFORÇO DE VIGAS DE CONCRETO ARMADO, Á FLEXAO, COM FIBRA DE CARBONO CURSO PRÁTICO DE DIAGNOSTICO, REPARO, PROTEÇÃO E REFORÇO DE ESTRUTURAS DE CONCRETO REFORÇO DE VIGAS DE CONCRETO ARMADO, Á FLEXAO, COM FIBRA DE CARBONO PROF. FERNANDO JOSÉ RELVAS frelvas@exataweb.com.br

Leia mais

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 27 DETERMINAÇÃO DAS CAUSAS DE FISSURAÇÃO EM VIGA DE CONCRETO PROTENDIDO USANDO SIMULAÇÃO NUMÉRICA Savaris, G.*, Garcia, S.

Leia mais

Estudo Comparativo de Cálculo de Lajes Analogia de grelha x Tabela de Czerny

Estudo Comparativo de Cálculo de Lajes Analogia de grelha x Tabela de Czerny Estudo Comparativo de Cálculo de Lajes Analogia de grelha x Tabela de Czerny Junior, Byl F.R.C. (1), Lima, Eder C. (1), Oliveira,Janes C.A.O. (2), 1 Acadêmicos de Engenharia Civil, Universidade Católica

Leia mais

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal aderência - 1 4. Aderência, ancoragem e emenda por traspasse 4.1. Aderência A solidariedade da barra de armadura com o concreto circundante, que impede o escorregamento relativo entre os dois materiais,

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

Estruturas Mistas de Aço e Concreto

Estruturas Mistas de Aço e Concreto Universidade Federal do Espírito Santo Estruturas Mistas de Aço e Concreto Prof. Fernanda Calenzani Programa Detalhado Estruturas Mistas Aço e Concreto 1. Informações Básicas 1.1 Materiais 1.2 Propriedades

Leia mais

MÓDULO 1 Projeto e dimensionamento de estruturas metálicas em perfis soldados e laminados

MÓDULO 1 Projeto e dimensionamento de estruturas metálicas em perfis soldados e laminados Projeto e Dimensionamento de de Estruturas metálicas e mistas de de aço e concreto MÓDULO 1 Projeto e dimensionamento de estruturas metálicas em perfis soldados e laminados 1 Sistemas estruturais: coberturas

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES (OUTRA APRESENTAÇÃO) Prof. Almir Schäffer PORTO ALEGRE

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Mecânica Aplicada e Estruturas

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Mecânica Aplicada e Estruturas UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Mecânica Aplicada e Estruturas ANÁLISE DE LAJES RETANGULARES À FLEXÃO CONSIDERANDO O ACRÉSCIMO DE ARMADURA

Leia mais

UNIVERSIDADE PAULISTA

UNIVERSIDADE PAULISTA UNIVERSIDADE PAULISTA TABELAS E FÓRMULAS PARA DIMENSIONAMENTO DIMENSIONAMENTO DE VIGAS RETANGULARES A FLEXÃO SIMPLES E CISALHAMENTO APLIAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO Professor: Cleverson Arenhart

Leia mais

Dimensionamento e detalhamento de blocos de fundação para pilares de seções compostas.

Dimensionamento e detalhamento de blocos de fundação para pilares de seções compostas. UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL Dimensionamento e detalhamento de blocos de fundação para pilares de seções compostas. Guilherme

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS

UNIVERSIDADE FEDERAL DE GOIÁS UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE ENGENHARIA CIVIL CURSO DE MESTRADO EM ENGENHARIA CIVIL DIORGENES CARVALHO DE OLIVEIRA UNÇÃO EM LAJES LISAS DE CONCRETO ARMADO COM FURO ADJACENTE AO ILAR E TRANFERÊNCIA

Leia mais

Efeito do comportamento reológico do concreto

Efeito do comportamento reológico do concreto Efeito do comportamento reológico do concreto FLECHAS E ELEENTOS DE CONCRETO ARADO 1 - INTRODUÇÃO Todo o cálculo das deformações de barras, devidas à fleão, tem por base a clássica equação diferencial

Leia mais

DISSERTAÇÃO DE MESTRADO

DISSERTAÇÃO DE MESTRADO DISSERTAÇÃO DE MESTRADO ANÁLISE DE LAJES NERVURADAS BIDIRECIONAIS ATRAVÉS DE MODELOS SIMPLIFICADOS JOSÉ CARLOS A. C. CUNHA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO

Leia mais

Rigidez à flexão em ligações viga-pilar

Rigidez à flexão em ligações viga-pilar BE2008 Encontro Nacional Betão Estrutural 2008 Guimarães 5, 6, 7 de Novembro de 2008 Rigidez à flexão em ligações viga-pilar Bruna Catoia 1 Roberto Chust Carvalho 2 Libânio Miranda Pinheiro 3 Marcelo de

Leia mais

2 Revisão Bibliográfica

2 Revisão Bibliográfica 2 Revisão Bibliográfica Neste capítulo são apresentados trabalhos relacionados ao comprimento de ancoragem e a resistência de aderência do CFC-substrato de concreto. São mostradas de forma resumida as

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

ANCORAGEM E EMENDA DE ARMADURAS

ANCORAGEM E EMENDA DE ARMADURAS UNIVERSIDADE ESTADUAL PAULISTA UNESP - Campus de Bauru/SP FACULDADE DE ENGENHARIA Departamento de Engenharia Civil Disciplina: 2323 - ESTRUTURAS DE CONCRETO II NOTAS DE AULA ANCORAGEM E EMENDA DE ARMADURAS

Leia mais

TORÇÃO EM VIGAS DE CONCRETO ARMADO

TORÇÃO EM VIGAS DE CONCRETO ARMADO UNIVERSIDADE ESTADUAL PAULISTA UNESP - Campus de Bauru/SP FACULDADE DE ENGENHARIA Departamento de Engenharia Civil Disciplina: 1309 - ESTRUTURAS DE CONCRETO II Notas de Aula TORÇÃO EM VIGAS DE CONCRETO

Leia mais

Modelos para Análise Não-Linear de Estruturas em Concreto Armado usando o Método dos Elementos Finitos

Modelos para Análise Não-Linear de Estruturas em Concreto Armado usando o Método dos Elementos Finitos Universidade Federal de São João Del-Rei MG 26 a 28 de maio de 2010 Associação Brasileira de Métodos Computacionais em Engenharia Modelos para Análise Não-Linear de Estruturas em Concreto Armado usando

Leia mais

- Generalidades sobre laje Treliça

- Generalidades sobre laje Treliça - Generalidades sobre laje Treliça São lajes em que a viga pré-fabricada é constituída de armadura em forma de treliça, e após concretada, promove uma perfeita solidarização, tendo ainda a possibilidade

Leia mais

LAJES MACIÇAS DE CONCRETO ARMADO

LAJES MACIÇAS DE CONCRETO ARMADO CAPÍTULOS 1 A 4 Volume LAJES MACIÇAS DE CONCRETO ARMADO 1 1- Tipos usuais de lajes dos edifícios Laje h Laje maciça apoiada em vigas Vigas h Lajes nervuradas nervuras aparentes material inerte Laje Laje

Leia mais

Estudo da Resistência ao Cisalhamento de Interface em Fita Metálica para Soluções em Terra Armada

Estudo da Resistência ao Cisalhamento de Interface em Fita Metálica para Soluções em Terra Armada COBRAMSEG : ENGENHARIA GEOTÉCNICA PARA O DESENVOLVIMENTO, INOVAÇÃO E SUSTENTABILIDADE. ABMS. Estudo da Resistência ao Cisalhamento de Interface em Fita Metálica para Soluções em Terra Armada Sérgio Barreto

Leia mais

Influência dos recalques do radier na edificação

Influência dos recalques do radier na edificação Influência dos recalques do radier na edificação The influence of vertical displacement in the foundation raft for the building Cícero Isac de Alencar de Lima¹; Ricardo José Carvalho Silva²; Francisco

Leia mais