Aprendizagem de Máquina

Tamanho: px
Começar a partir da página:

Download "Aprendizagem de Máquina"

Transcrição

1 Introdução Aprendizagem de Máquina Alessandro L. Koerich Introdução Desde que os computadores foram inventados temos nos perguntado: Eles são capazes de aprender? Se pudéssemos programá-los para aprender para se aperfeiçoar automaticamente com a experiência o impacto seria surpreendente Mestrado/Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem de Máquina 2 Introdução Infelizmente ainda não sabemos como fazer computadores aprender de uma maneira similar a maneira como os humanos aprendem. Entretanto, foram desenvolvidos algoritmos que são eficientes em certos tipos de tarefas de aprendizagem e um entendimento teórico de aprendizagem está começando a surgir. Mestrado/Doutorado em Informática Aprendizagem de Máquina 3 Mestrado/Doutorado em Informática Aprendizagem de Máquina 4

2 O que é Aprendizagem de Máquina? O que é Aprendizagem de Máquina? Aprendizagem é uma propriedade essencialmente humana Aprender significa mudar para fazer melhor (de acordo com um dado critério) quando uma situação similar acontecer Aprendizagem, não é memorizar. Qualquer computador pode memorizar, a dificuldade é em generalizar um comportamento para uma nova situação. Mestrado/Doutorado em Informática Aprendizagem de Máquina 5 Mestrado/Doutorado em Informática Aprendizagem de Máquina 6 Generalizar? Generalizar? Mestrado/Doutorado em Informática Aprendizagem de Máquina 7 Mestrado/Doutorado em Informática Aprendizagem de Máquina 8

3 Duas Fases da Aprendizagem Tipos de Problemas Treinamento (supervisionado) Apresentamos exemplos ao sistema O sistema aprende a partir dos exemplos O sistema modifica gradualmente seus parâmetros ajustáveis para que a saída se aproxime da saída desejada. Utilização Novos exemplos jamais visto aparecem Desejamos que o sistema generalize! Classificação Diz se a "entrada" pertence a uma certa classe Dada a imagem de uma face: de quem é esta face (dentre um número finito) Regressão Fazer uma predição a partir de um exemplo Predizer o valor da bolsa amanhã, dados os valores de dias e meses anteriores. Estimação de Densidade Já vimos este exemplo? (ou um exemplo similar)? Quais são as K categorias principais dos dados? Mestrado/Doutorado em Informática Aprendizagem de Máquina 9 Mestrado/Doutorado em Informática Aprendizagem de Máquina 10 Formas de Aprendizagem Por que a Aprendizagem é Difícil? Supervisionada Fornecemos a boa resposta durante o treinamento É o mais eficiente porque fornece mais informações. Útil para classificação, regressão, estimação de probabilidade condicional (qual é a probabilidade que um cliente com tal perfil compre tal produto?) Por Reforço Não damos a boa resposta. O sistema faz uma hipótese lhe dizemos bom / ruim Útil para o controle de robôs Não Supervisionada Ex: Quais são as características principais dos clientes típicos? (segmentação do mercado) Dado uma quantidade finita de dados para o treinamento, temos que derivar uma relação para um domínio infinito Na realidade, existe um número infinito de tais relações Como devemos traçar a relação? Mestrado/Doutorado em Informática Aprendizagem de Máquina 11 Mestrado/Doutorado em Informática Aprendizagem de Máquina 12

4 Por que a Aprendizagem é Difícil? Por que a Aprendizagem é Difícil? Dado uma quantidade finita de dados para o treinamento, temos que derivar uma relação para um domínio infinito Na realidade, existe um número infinito de tais relações Dado uma quantidade finita de dados para o treinamento, temos que derivar uma relação para um domínio infinito Na realidade, existe um número infinito de tais relações Qual das relações seria a mais apropriada?... os pontos de teste ocultos... Mestrado/Doutorado em Informática Aprendizagem de Máquina 13 Mestrado/Doutorado em Informática Aprendizagem de Máquina 14 Generalizar é Difícil Exemplo: Selecionamos os Dados Não queremos aprender por memorização (decorar!) Boa resposta sobre os exemplos de treinamento somente Fácil para um computador (um arquivo de dados) Difícil para os humanos Aprender visando generalizar Mais interessante Fundamentalmente mais difícil: diversas maneiras de generalizar Devemos extrair a essência, a estrutura dos dados e não somente aprender a boa resposta para alguns casos. Saída = Valor à estimar Cada ponto = um exemplo a. Underlying Function Entrada = perfil do caso Pontilhado = a melhor resposta possível dados os pontos de entrada (desconhecido do aprendiz) Mestrado/Doutorado em Informática Aprendizagem de Máquina 15 Mestrado/Doutorado em Informática Aprendizagem de Máquina 16

5 Sobreajuste (Overfitting) Subajuste (Underfitting) b. Overfitting Aprendemos por memorização, mais isso não generaliza bem novos casos. Erro baixo sobre os exemplos de aprendizagem. Mais elevado para os de teste c. Underfitting Escolhemos um modelo muito simples (linear): erro elevado na aprendizagem e teste (pontilhado) Mestrado/Doutorado em Informática Aprendizagem de Máquina 17 Mestrado/Doutorado em Informática Aprendizagem de Máquina 18 Um Bom Modelo Maldição da Dimensionalidade 3 d. Good Fit O modelo é suficientemente flexível para capturar a forma curva mais não muito para obter um sobre ajuste. Aprendizagem pode se tornar cada vez mais difícil a medida em que o número de características de cada caso aumenta. Exemplo: perfil de clientes alvo Mestrado/Doutorado em Informática Aprendizagem de Máquina 19 Número de Chamadas Número de casos = # categoria duração X # categoria chamadas = 6 x Duração da Chamada 1 Cada posição contém o número de casos encontrados. Mestrado/Doutorado em Informática Aprendizagem de Máquina 20

6 Maldição da Dimensionalidade Combate a Maldição Se o número de características é 10 se cada característica puder assumir 10 valores diferentes, o número de casos casas (perfis diferentes) é x 10 x 10 x 10 = 10 Este número é astronômico. Mesmo uma grande base de dados representa uma ínfima fração deste número. Para generalizar deve-se então descobrir uma estrutura mais ampla, o que muitos casos tem em comum. Alguns algoritmos de aprendizagem modernos tentam enfrentar este desafio: Redes neurais artificiais Máquina de suporte vetorial (SVM) Adaboost Idéia Principal: utilizar um modelo flexível mas que permita resumir as informações intrínseca nos dados. Si existe regularidade nos dados, este tipo de modelo tem grande chance de capturar. Mestrado/Doutorado em Informática Aprendizagem de Máquina 21 Mestrado/Doutorado em Informática Aprendizagem de Máquina 22 Exemplo de Problema Problemas Bem Definidos Um programa de computador aprende a partir de uma experiência E com respeito a alguma classe de tarefas T e medida de performance P, SE sua performance nas tarefas em T, medida por P, MELHORA com a experiência E. Em geral, para termos problemas de aprendizagem bem definidos, devemos identificar três características: A classe das tarefas; A medida de performance a ser melhorada; A fonte de experiência (conhecimento). Mestrado/Doutorado em Informática Aprendizagem de Máquina 23 Mestrado/Doutorado em Informática Aprendizagem de Máquina 24

7 Problemas Bem Definidos Problemas Bem Definidos Exemplo: Aprender a jogar damas Exemplo: Aprender a jogar damas Tarefa T: Jogar damas Medida de performance P: Percentagem de jogos ganhos contra oponentes Experiência de treinamento E jogando contra si mesmo. Mestrado/Doutorado em Informática Aprendizagem de Máquina 25 Mestrado/Doutorado em Informática Aprendizagem de Máquina 26 Problemas Bem Definidos Problemas Bem Definidos Exemplo: Aprender a reconhecer manuscritos Exemplo: Aprender a reconhecer manuscritos Tarefa T: Reconhecer/classificar palavras manuscritas presentes em imagens Medida de performance P: Percentagem de palavras classificadas corretamente Experiência de treinamento E: Base de dados com palavras manuscritas e respectivas etiquetas (classes a que elas pertencem). Roubaix Cedex HALLUIN CEDEX Chiré em Montreuil Roubaix Cedex Mestrado/Doutorado em Informática Aprendizagem de Máquina 27 Mestrado/Doutorado em Informática Aprendizagem de Máquina 28

8 Problemas Bem Definidos Problemas Bem Definidos Exemplo: Aprender a reconhecer manuscritos Exemplo: Aprendizagem de um robô motorista Tarefa T: Dirigir em uma via pública de 3 pistas usando sensores de visão Medida de performance P: Distância média percorrida antes de cometer um erro (julgado por observador humano) Experiência de treinamento E: Seqüência de imagens e comandos de direção gravados a partir da observação de um motorista humano. Mestrado/Doutorado em Informática Aprendizagem de Máquina 29 Mestrado/Doutorado em Informática Aprendizagem de Máquina 30 Projetando um Sistema de Aprendizagem Projetando um Sistema de Aprendizagem Projetar um programa para aprender a jogar damas. Medida de performance: percentagem de jogos ganhos Etapas básicas de projeto: Escolha da experiência de treinamento Escolha da função objetiva Escolha de uma representação para a função objetiva Escolha de um algoritmo para a função de aproximação Mestrado/Doutorado em Informática Aprendizagem de Máquina 31 Mestrado/Doutorado em Informática Aprendizagem de Máquina 32

9 Experiência de Treinamento Experiência de Treinamento Escolher o tipo de experiência de treinamento a partir da qual o sistema aprenderá Experiência direta ou indireta? O grau de controle sobre a seqüência de exemplos de treinamento; com ou sem instrutor? A experiência de treinamento representa a distribuição de exemplos sobre os quais a performance final (P ) do sistema deve ser medida. Atenção: A teoria de aprendizagem de máquina recai sobre a hipótese de que a distribuição dos exemplos de treinamento é idêntica a distribuição dos exemplos de teste. Apesar da necessidade de considerarmos esta hipótese para obter resultados teóricos, é importante ter em mente que esta suposição é quase sempre violada na prática. Mestrado/Doutorado em Informática Aprendizagem de Máquina 33 Mestrado/Doutorado em Informática Aprendizagem de Máquina 34 Experiência de Treinamento Função Objetiva O problema de aprendizagem de damas: Tarefa T : jogando damas Medida de performance P : percentagem de jogos ganhos Experiência de treinamento E : partidas jogadas contra si mesmo Para completarmos o projeto do sistema de aprendizagem, devemos agora escolher: 1. O tipo exato de conhecimento a ser aprendido 2. Uma representação para este conhecimento alvo 3. Um mecanismo de aprendizagem Que tipo de conhecimento será aprendido e como ele será utilizado em um programa? O programa necessita aprender apenas como escolher o melhor movimento dentre os movimentos possíveis. Este problema é representativo de um grande número de tarefas para as quais a melhor estratégia de busca não é conhecida. Muitos problemas de otimização são desta categoria. Mestrado/Doutorado em Informática Aprendizagem de Máquina 35 Mestrado/Doutorado em Informática Aprendizagem de Máquina 36

10 Função Objetiva Função Objetiva Aprender: Escolher o melhor movimento para qualquer estado do tabuleiro. Porém, é difícil de aprender a função ChooseMove a partir da experiência de treinamento disponível. Função: ChooseMove ChooseMove : B M Função alternativa: uma função V que atribui um valor numérico para qualquer estado do tabuleiro. A função aceita como entrada qualquer estado do conjunto de estados possíveis do tabuleiro B e produz como saída algum movimento do conjunto de movimento possíveis M. Como é possível reduzir o problema de melhorar a performance P da tarefa T, para o problema de aprender uma função objetiva tal como ChooseMove. V : B R indica que V mapeia qualquer estado legal do tabuleiro do conjunto B para algum valor real. Usamos esta função V para atribuir valores maiores para os melhores estados do tabuleiro. Mestrado/Doutorado em Informática Aprendizagem de Máquina 37 Mestrado/Doutorado em Informática Aprendizagem de Máquina 38 Função Objetiva Função Objetiva Uma das possíveis definições para a função V (b), onde b é um estado arbitrário do tabuleiro em B: Se b é um estado final que é vitorioso, então V (b) = 100 Se b é um estado final que é perdedor, então V (b) = 100 Se b é um estado final que é empate, então V (b) = 0 Se b não é um estado final no jogo, então, V (b) = V (b ) onde b é o melhor estado final que pode ser atingido começando em b e jogando otimamente até o final do jogo. Esta definição especifica um valor de V (b ) para cada estado do tabuleiro (b ), entretanto, esta definição não é operacional Precisamos de uma descrição operacional de V que possa ser usada pelo programa para avaliar estados e selecionar movimentos dentro de um tempo realístico. Tarefa de Aprendizagem: descobrir uma descrição operacional da função objetiva ideal V Algoritmos de aprendizagem Aproximação da função objetiva (V ) Aproximação da função Mestrado/Doutorado em Informática Aprendizagem de Máquina 39 Mestrado/Doutorado em Informática Aprendizagem de Máquina 40

11 Representação para Função Objetiva Representação para Função Objetiva Depois de especificar V, devemos escolher a representação que o programa de aprendizagem usará para descrever a função V que ele aprenderá. Temos muitas opções... Coleção de regras? Redes neurais? Funções polinomiais? etc... Em geral temos um compromisso crucial: representação mais expressiva mais dados para treinamento Escolha: a função V será calculada como uma combinação linear das seguintes características do tabuleiro: bp (b): número de peças pretas no tabuleiro b rp (b): número de peças vermelhas sobre b bk (b): número de reis pretos sobre b rk (b): número de reis vermelhos sobre b bt (b): número de peças vermelhas ameaçadas pelas pretas (i.e., que podem ser tiradas na vez do preto) rt (b): número de peças pretas ameaçadas pelas vermelhas. Mestrado/Doutorado em Informática Aprendizagem de Máquina 41 Mestrado/Doutorado em Informática Aprendizagem de Máquina 42 Representação para Função Objetiva Projeto Parcial Então, a aprendizagem irá representar V (b ) como uma função linear da forma: V (b) = w 0 + w 1 bp (b ) + w 2 rp (b ) + w 3 bk (b ) + w 4 rk (b ) + w 5 bt (b ) + w 6 rt (b ) onde w 0 a w 6 são coeficientes numéricos, ou pesos, a serem escolhidos pelo algoritmo de aprendizagem. Os valores aprendidos para os pesos w 1 a w 6 determinarão a importância relativa das várias características do tabuleiro. Tarefa T : jogar damas Medida de Performance P : percentagem de partidas ganhas Experiência de Treinamento E : partidas jogadas contra si mesmo Função Objetivo: V : B R Representação da Função Objetiva: V (b) = w 0 + w 1 bp (b ) + w 2 rp (b ) + w 3 bk (b ) + w 4 rk (b ) + w 5 bt (b ) + w 6 rt (b ) Mestrado/Doutorado em Informática Aprendizagem de Máquina 43 Mestrado/Doutorado em Informática Aprendizagem de Máquina 44

12 Projeto Parcial Algoritmo de Aproximação O itens anteriores correspondem a especificação da tarefa de aprendizagem; Os dois itens finais são escolhas do projeto para a implementação da aprendizagem. Em resumo, o conjunto de escolhas do projeto: Problema de aprender uma estratégia Problema de aprender os valores dos coeficientes da representação da função objetiva. Para aprender a função objetiva V necessitamos de um conjunto de exemplos de treinamento, cada um descrevendo um estado b específico do tabuleiro e o valor de treinamento V train (b ) para b. Cada exemplo de treinamento é um par ordenado na forma <b, V train (b ) > Mestrado/Doutorado em Informática Aprendizagem de Máquina 45 Mestrado/Doutorado em Informática Aprendizagem de Máquina 46 Algoritmo de Aproximação Algoritmo de Aproximação A única informação disponível é se a partida foi eventualmente ganha ou perdida. Necessitamos de exemplos de treinamento que atribuam valores específicos para estados específicos do tabuleiro. É fácil atribuir valores para os estados do tabuleiro que correspondem ao final do jogo. É menos óbvio atribuir valores de treinamento para os numerosos estados intermediários que ocorrem antes do jogo acabar. Uma solução simples: atribuir o valor de treinamento de V train (b ) para qualquer estado intermediário b do tabuleiro ser V (Sucessor (b )), onde V é a aproximação atual de V e V (Sucessor (b )) indica o próximo estado seguindo b para o qual é novamente a vez do programa mover. Regra para estimar valores de treinamento: V train (b ) V (Sucessor (b )) Mestrado/Doutorado em Informática Aprendizagem de Máquina 47 Mestrado/Doutorado em Informática Aprendizagem de Máquina 48

13 Algoritmo de Aproximação Algoritmo de Aproximação Ainda falta especificar o algoritmo de aprendizagem que melhor ajusta os pesos w i ao conjunto de exemplos de treinamento {<b, V train (b )>}. O que significa melhor ajuste aos dados de treinamento? Uma solução: minimizar o erro quadrático E entre os valores de treinamento e os valores preditos pela hipótese V. E < b, V train ( Vtrain( b) V'( b) ) ( b) > amostrasde treinamento 2 Existem diversos algoritmos para encontrar pesos de uma função linear que minimiza E. Um deles é o LMS (mínimos quadrados). Regra de atualização dos pesos LMS Faça repetidamente Selecione aleatoriamente um exemplo de treinamento b 1.Calcule o erro(b) erro(b) = V train (b)-v (b) 2.Para cada característica do tabuleiro f i, atualize o peso w i como: w i w i + η f i erro(b) onde η é uma pequena constante (p.e. 0.1) que regula a taxa da atualização do peso (aprendizagem). Mestrado/Doutorado em Informática Aprendizagem de Máquina 49 Mestrado/Doutorado em Informática Aprendizagem de Máquina 50 Projeto Final Exemplo A seqüência de escolhas de projeto feitas... Um problema de classificação: predizer as notas para os estudantes matriculados neste curso (aprendizagem de máquina). Mestrado/Doutorado em Informática Aprendizagem de Máquina 51 Mestrado/Doutorado em Informática Aprendizagem de Máquina 52

14 Exemplo Exemplo Um problema de classificação: predizer as notas para os estudantes matriculados neste curso (aprendizagem de máquina). Passos principais: 1. Dados: Podemos contar com qual experiência anterior? Passos principais: 1. Dados 2. Hipóteses 3. Representação 4. Estimação 5. Avaliação 6. Escolha do Modelo Mestrado/Doutorado em Informática Aprendizagem de Máquina 53 Mestrado/Doutorado em Informática Aprendizagem de Máquina 54 Exemplo Exemplo Passos principais: Passos principais: 1. Dados: Podemos contar com qual experiência anterior? 2. Hipóteses: O que podemos assumir a respeito dos estudantes ou sobre o curso? 1. Dados: Podemos contar com qual experiência anterior? 2. Hipóteses: O que podemos assumir a respeito dos estudantes ou sobre o curso? 3. Representação: Como podemos resumir um estudante? Mestrado/Doutorado em Informática Aprendizagem de Máquina 55 Mestrado/Doutorado em Informática Aprendizagem de Máquina 56

15 Exemplo Exemplo Passos principais: Passos principais: 1. Dados: Podemos contar com qual experiência anterior? 2. Hipóteses: O que podemos assumir a respeito dos estudantes ou sobre o curso? 3. Representação: Como podemos resumir um estudante? 4. Estimação: Como construímos um mapa estudantes notas? 1. Dados: Podemos contar com qual experiência anterior? 2. Hipóteses: O que podemos assumir a respeito dos estudantes ou sobre o curso? 3. Representação: Como podemos resumir um estudante? 4. Estimação: Como construímos um mapa estudantes notas? 5. Avaliação: Quão bem estamos predizendo? Mestrado/Doutorado em Informática Aprendizagem de Máquina 57 Mestrado/Doutorado em Informática Aprendizagem de Máquina 58 Exemplo Exemplo Passos principais: 1. Dados: Podemos contar com qual experiência anterior? 2. Hipóteses: O que podemos assumir a respeito dos estudantes ou sobre o curso? 3. Representação: Como podemos resumir um estudante? 4. Estimação: Como construímos um mapa estudantes notas? 5. Avaliação: Quão bem estamos predizendo? 6. Escolha do Modelo: Podemos fazer ainda melhor? Os dados que temos disponíveis (a princípio): Nomes e notas dos estudantes no curso nos anos anteriores Boletim acadêmico dos estudantes atuais e anteriores Mestrado/Doutorado em Informática Aprendizagem de Máquina 59 Mestrado/Doutorado em Informática Aprendizagem de Máquina 60

16 Dados Hipóteses Dados para treinamento: Estudante AdeM Curso 1 João A B Maria B A Dados para teste: Curso 2 A A Existem várias hipóteses que podemos fazer para facilitar as predições: 1. O curso permaneceu aproximadamente o mesmo nos últimos anos Estudante José Ana AdeM?? Curso 1 C A Curso 2 A A 2. Cada estudante atua independentemente dos outros Alguma coisa mais que possamos utilizar? Mestrado/Doutorado em Informática Aprendizagem de Máquina 61 Mestrado/Doutorado em Informática Aprendizagem de Máquina 62 Representação Representação Boletins acadêmicos são particularmente diversos, então devemos limitar os resumos a alguns poucos cursos selecionados O dados disponíveis nesta representação Treinamento Teste Por exemplo, podemos resumir o estudante i o (João), por um vetor: x i = [A C B ] onde as notas correspondem a (digamos): 9.6, 5.8, 7.3 Estudante x 1 x 2... Nota em AdeM A B... Estudante x 1 x 2... Nota em AdeM??... Mestrado/Doutorado em Informática Aprendizagem de Máquina 63 Mestrado/Doutorado em Informática Aprendizagem de Máquina 64

17 Estimação Estimação Dado os dados de treinamento Estudante x 1 x 2... Nota em AdeM A B... Precisamos encontrar um mapeamento dos vetores de entrada x para as etiquetas (labels) y codificando as notas do curso AdeM Solução possível classificador vizinhos mais próximos (nearest neighbour): 1. Para cada estudante x, encontrar o estudante x i mais próximo no conjunto de treinamento; 2. Predizer y i, como sendo a nota do estudante mais próximo x i. Mestrado/Doutorado em Informática Aprendizagem de Máquina 65 Mestrado/Doutorado em Informática Aprendizagem de Máquina 66 Avaliação Escolha do Modelo Como podemos dizer se nossas predições são boas? Podemos esperar até o final do curso Podemos tentar avaliar a precisão baseando se nos dados que já temos (conjunto de treinamento) Solução possível: Dividir o conjunto de treinamento em novos conjuntos de treinamento e teste Avaliar o classificador construído baseando se somente no novo conjunto de treinamento sobre o novo conjunto de testes Podemos refinar: O algoritmo de estimação (por exemplo, utilizando um classificador diferente); A representação (por exemplo, basear o resumo em um conjunto diferente de cursos); As hipóteses (talvez os estudantes trabalhem em grupos, etc.) Temos que nos basear no método de avaliação da precisão de nossas predições para escolher entre os possíveis refinamentos. Mestrado/Doutorado em Informática Aprendizagem de Máquina 67 Mestrado/Doutorado em Informática Aprendizagem de Máquina 68

18 Tipos de Problemas de Aprendizagem Tipos de Problemas de Aprendizagem Uma classificação aproximada dos problemas de aprendizagem: Aprendizagem Supervisionada: temos um conjunto de entradas e saídas para fazer o treinamento. Ex: classificação, regressão. Aprendizagem com Reforço: somente obtemos um feedback na forma de quão bem estamos fazendo (e não o que deveríamos estar fazendo). Ex: planejamento Aprendizagem Não Supervisionada: estamos interessados em capturar uma organização inerente dos dados. Ex: clustering, estimação de densidade. Mestrado/Doutorado em Informática Aprendizagem de Máquina 69 Mestrado/Doutorado em Informática Aprendizagem de Máquina 70 Aprendizagem Supervisionada Aprendizagem Supervisionada Exemplo: reconhecimento de dígitos (dígitos binários 8X8) dígito binário classe alvo Desejamos aprender o mapeamento de dígitos para classes. Um mudança na representação que preserva as informações relevantes pode tornar impossível a aprendizagem. Mestrado/Doutorado em Informática Aprendizagem de Máquina 71 Mestrado/Doutorado em Informática Aprendizagem de Máquina 72

19 Aprendizagem Supervisionada Aprendizagem Não Supervisionada Os dígitos novamente... Dado um conjunto de exemplos de treinamento { (x 1,y 1 ),..., (x n,y n ) }, queremos aprender um mapeamento f : X Y tal que: y i f (x i ), i = 1,...,n Gostaríamos de entender o processo de criação dos exemplos (neste caso, dígitos) Mestrado/Doutorado em Informática Aprendizagem de Máquina 73 Mestrado/Doutorado em Informática Aprendizagem de Máquina 74 Aplicações Processamento Visual Verificação de faces Reconhecimento de manuscritos Processamento da Fala Fonemas, palavras, sentenças, reconhecimento de pessoas Outros Finanças: predição de ações, gerenciamento de risco e portofolio Telecomunicações: predição de tráfego Datamining: fazer uso de grandes conjuntos de dados mantidos por grandes corporações Jogos: xadrez, gamão, etc. Controle: robôs... e muitas outras é claro! Mestrado/Doutorado em Informática Aprendizagem de Máquina 75

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local

Leia mais

Aprendizado de Máquina

Aprendizado de Máquina Referências Aula 1 http://www.ic.uff.br/~bianca/aa/ Slides das aulas: na página http://www.ic.uff.br/~bianca/aa/ Livro-texto: Machine Learning Tom M. Mitchell McGraw-Hill, 1997 http://www.cs.cmu.edu/~tom/mlbook.html

Leia mais

Aprendizagem de Máquina. Ivan Medeiros Monteiro

Aprendizagem de Máquina. Ivan Medeiros Monteiro Aprendizagem de Máquina Ivan Medeiros Monteiro Definindo aprendizagem Dizemos que um sistema aprende se o mesmo é capaz de melhorar o seu desempenho a partir de suas experiências anteriores. O aprendizado

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Algoritmo k Means Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) 2 Problema do Agrupamento Seja x = (x 1, x 2,,

Leia mais

Introdução. Capítulo 1

Introdução. Capítulo 1 Capítulo 1 Introdução Em computação, muitos problemas são resolvidos por meio da escrita de um algoritmo que especifica, passo a passo, como resolver um problema. No entanto, não é fácil escrever um programa

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda

Leia mais

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados SUMÁRIO - AULA1 O Processo de KDD O processo de KDD Interpretação e Avaliação Consolidação de dados Seleção e Pré-processamento Warehouse Data Mining Dados Preparados p(x)=0.02 Padrões & Modelos Conhecimento

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

Avaliando o que foi Aprendido

Avaliando o que foi Aprendido Avaliando o que foi Aprendido Treinamento, teste, validação Predição da performance: Limites de confiança Holdout, cross-validation, bootstrap Comparando algoritmos: o teste-t Predecindo probabilidades:função

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Agrupamento de dados

Agrupamento de dados Organização e Recuperação de Informação: Agrupamento de dados Marcelo K. A. Faculdade de Computação - UFU Agrupamento de dados / 7 Overview Agrupamento: introdução Agrupamento em ORI 3 K-médias 4 Avaliação

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Jogos - aula 2. Xadrez chinês. Exemplo de função de avaliação:

Jogos - aula 2. Xadrez chinês. Exemplo de função de avaliação: Exemplo de jogo: Xadrez chinês Jogos - aula 2 Função de avaliação? Prof. Luis Otavio Alvares 1 2 Xadrez chinês Ligue 4 Exemplo de função de avaliação: o valor das peças é de acordo com a sua posição: 12

Leia mais

A Computação e as Classificações da Ciência

A Computação e as Classificações da Ciência A Computação e as Classificações da Ciência Ricardo de Almeida Falbo Metodologia de Pesquisa Departamento de Informática Universidade Federal do Espírito Santo Agenda Classificações da Ciência A Computação

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

Regressão Linear Multivariada

Regressão Linear Multivariada Regressão Linear Multivariada Prof. Dr. Leandro Balby Marinho Inteligência Artificial Prof. Leandro Balby Marinho / 37 UFCG DSC Roteiro. Introdução 2. Modelo de Regressão Multivariada 3. Equações Normais

Leia mais

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Modelando Novas Palavras

Modelando Novas Palavras Modelando Novas Palavras Introdução Modelando palavras fora do vocabulário (OOV Out Of- Vocabulary) Formulação Probabilística Métodos independentes do Domínio Conhecendo unidades de subpalavras OOV Modelos

Leia mais

Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21. Catálogo de Treinamentos 2013

Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21. Catálogo de Treinamentos 2013 Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21 Nesta edição Lean Office - Dez dicas para economizar tempo no trabalho Estatística Seis Sigma - Estatística não

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Licenciatura em Computação Prof. Adriano Avelar Site: www.adrianoavelar.com Email: eam.avelar@gmail.com Agentes Inteligentes Um agente é algo capaz de perceber seu ambiente por

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Análise e Complexidade de Algoritmos

Análise e Complexidade de Algoritmos Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha prof.rodrigorocha@yahoo.com http://www.bolinhabolinha.com

Leia mais

Do neurônio biológico ao neurônio das redes neurais artificiais

Do neurônio biológico ao neurônio das redes neurais artificiais Do neurônio biológico ao neurônio das redes neurais artificiais O objetivo desta aula é procurar justificar o modelo de neurônio usado pelas redes neurais artificiais em termos das propriedades essenciais

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Problemas insolúveis. Um exemplo simples e concreto

Problemas insolúveis. Um exemplo simples e concreto Surge agora uma outra questão. Viemos buscando algoritmos para resolver problemas. No entanto, será que sempre seria possível achar esses algoritmos? Colocando de outra forma: será que, para todo problema,

Leia mais

Exemplo de aprendizagem máquina

Exemplo de aprendizagem máquina (Primeiro exemplo) Jogo de damas c/ aprendizagem Tom Mitchell, Machine Learning, McGraw-Hill, 1997 chapter 1 17-Jul-13 http://w3.ualg.pt/~jvo/ml 12 1 Exemplo de aprendizagem máquina 1. Descrição do problema

Leia mais

Jogos - aula 2. Prof. Luis Otavio Alvares II / UFRGS

Jogos - aula 2. Prof. Luis Otavio Alvares II / UFRGS Jogos - aula 2 Prof. Luis Otavio Alvares II / UFRGS 1 Função de avaliação: Xadrez chines 2 Xadrez chinês Exemplo de função de avaliação: o valor das peças é de acordo com a sua posição: 12 para a última

Leia mais

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Adriano Lima de Sá Faculdade de Computação Universidade Federal de Uberlândia 20 de junho de 2014 Adriano L. Sá (UFU)

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

Problemas de Satisfação de Restrições

Problemas de Satisfação de Restrições Computação Inteligente Problemas de Satisfação de Restrições Lucas Augusto Carvalho Mestrado em Ciência da Computação 2011.1 DCOMP - Universidade Federal de Sergipe 1 Conteúdo Problemas de Satisfação de

Leia mais

Introdução a Datamining (previsão e agrupamento)

Introdução a Datamining (previsão e agrupamento) Introdução a Datamining (previsão e agrupamento) Victor Lobo Mestrado em Estatística e Gestão de Informação E o que fazer depois de ter os dados organizados? Ideias base Aprender com o passado Inferir

Leia mais

Reconhecimento de Padrões

Reconhecimento de Padrões Engenharia Informática (ramos de Gestão e Industrial) Departamento de Sistemas e Informação Reconhecimento de Padrões Projecto Final 2004/2005 Realizado por: Prof. João Ascenso. Departamento de Sistemas

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Guia de bolso de técnicas de análise estatística

Guia de bolso de técnicas de análise estatística Guia de bolso de técnicas de análise estatística Guia de bolso de técnicas de análise estatística para uso em ferramentas de aperto Capítulo...Página 1. Introdução...4 2. Estatística básica...5 2.1 Variação...5

Leia mais

Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls

Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls Boletim de Guia para os Pais das Escolas Públicas Elementar de Central Falls O objetivo principal do cartão de relatório elementar é comunicar o progresso do aluno para os pais, alunos e outros funcionários

Leia mais

Reconhecimento de Padrões. Reconhecimento de Padrões

Reconhecimento de Padrões. Reconhecimento de Padrões Reconhecimento de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superior de Tecnologia Engenharia Informática Reconhecimento de Padrões Prof. João Ascenso e Prof.

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais . O Mapa Auto-Organizável (SOM) Redes Neurais Mapas Auto-Organizáveis Sistema auto-organizável inspirado no córtex cerebral. Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências

Leia mais

Otimização de Recuperação de Informação usando Algoritmos Genéticos

Otimização de Recuperação de Informação usando Algoritmos Genéticos Otimização de Recuperação de Informação usando Algoritmos Genéticos Neide de Oliveira Gomes, M. Sc., nog@inpi.gov.br Prof. Marco Aurélio C. Pacheco, PhD Programa de Doutorado na área de Métodos de Apoio

Leia mais

Linguagem Específica de Domínio para Programação de Robôs

Linguagem Específica de Domínio para Programação de Robôs Linguagem Específica de Domínio para Programação de Robôs François Jumes, Luiz Claudio Rossafa Honda Curso de Bacharelado em Sistemas de Informação Departamento de Informática e Estatística Universidade

Leia mais

Paradigmas da IA. Eixos centrais (das diferenças)

Paradigmas da IA. Eixos centrais (das diferenças) Paradigmas da IA Paradigmas da IA Simbólico: metáfora lingüística/lógica Sistemas de produção Conexionista: metáfora cérebro Redes neurais Evolucionista: metáfora teoria da evolução natural Algoritmos

Leia mais

Análise e Projeto de Algoritmos

Análise e Projeto de Algoritmos Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br eduardo.barrere@ice.ufjf.br www.barrere.ufjf.br Complexidade de Algoritmos Computabilidade: Um problema é computável

Leia mais

Introdução a Datamining (previsão e agrupamento)

Introdução a Datamining (previsão e agrupamento) E o que fazer depois de ter os dados organizados? Introdução a Datamining (previsão e agrupamento) Victor Lobo Mestrado em Estatística e Gestão de Informação Ideias base Aprender com o passado Inferir

Leia mais

Integração avançada entre sistemas de movimento e visão

Integração avançada entre sistemas de movimento e visão Integração avançada entre sistemas de movimento e visão Marcelo Costa Engenheiro de Vendas Telles Soares Engenheiro de Campo Agenda Benefícios da integração Tipos de integração e exemplos MOVIMENTO VISÃO

Leia mais

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3.

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3. Definição de Data Mining (DM) Mineração de Dados (Data Mining) Doutorado em Engenharia de Produção Michel J. Anzanello Processo de explorar grandes quantidades de dados à procura de padrões consistentes

Leia mais

Planejamento. Futuro. Técnica ou processo que serve para lidar com o futuro. O que aumenta a incerteza nas organizações. Incerteza nas organizações

Planejamento. Futuro. Técnica ou processo que serve para lidar com o futuro. O que aumenta a incerteza nas organizações. Incerteza nas organizações Fonte: Introdução à Administração de Antonio Cesar Amaru Maximiano Índice Definição de planejamento Incertezas Eventos previsíveis Processo de planejamento Decisões de planejamento Planejar Atitudes em

Leia mais

Taxonomia da aprendizagem

Taxonomia da aprendizagem Taxonomia da aprendizagem Taxonomia de Bloom Desde 1948, um grupo de educadores assumiu a tarefa de classificar metas e objetivos educacionais. Eles propuseram-se a desenvolver um sistema de classificação

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

Análise e Projeto de. Aula 01. Profa Cristiane Koehler cristiane.koehler@canoas.ifrs.edu.br

Análise e Projeto de. Aula 01. Profa Cristiane Koehler cristiane.koehler@canoas.ifrs.edu.br Análise e Projeto de Sistemas I Aula 01 Profa Cristiane Koehler cristiane.koehler@canoas.ifrs.edu.br Análise e Projeto de Sistemas I Horário das Aulas: 2as feiras das 10h10 às 11h40 e 5as feiras das 08h25

Leia mais

Sistemas Inteligentes Lista de Exercícios sobre Busca

Sistemas Inteligentes Lista de Exercícios sobre Busca Sistemas Inteligentes Lista de Exercícios sobre Busca 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber o trajeto mais rápido

Leia mais

Fundamentos em Informática (Sistemas de Numeração e Representação de Dados)

Fundamentos em Informática (Sistemas de Numeração e Representação de Dados) 1 UNIVERSIDADE DO CONTESTADO / UnC CAMPUS CONCÓRDIA/SC CURSO DE SISTEMAS DE INFORMAÇÃO Fundamentos em Informática (Sistemas de Numeração e Representação de Dados) (Apostila da disciplina elaborada pelo

Leia mais

AGENTES INTELIGENTES. Isac Aguiar isacaguiar.com.br isacaguiar@gmail.com

AGENTES INTELIGENTES. Isac Aguiar isacaguiar.com.br isacaguiar@gmail.com AGENTES INTELIGENTES Isac Aguiar isacaguiar.com.br isacaguiar@gmail.com Agentes Inteligentes Um agente é tudo o que pode ser considerado capaz de perceber seu ambiente por meio de sensores e de agir sobre

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Utilização da programação de computadores em Estatística

Utilização da programação de computadores em Estatística Universidade Federal de Minas Gerais Luana Sílvia dos Santos Utilização da programação de computadores em Estatística Belo Horizonte Dezembro, 2012 O computador tem desempenhado um papel muito importante

Leia mais

Data Science e Big Data

Data Science e Big Data InforAbERTA IV Jornadas de Informática Data Science e Big Data Luís Cavique, Porto, março 2014 Agenda 1. Definições: padrões micro e Macro 2. Novos padrões para velhos problemas: Similis, Ramex, Process

Leia mais

Circuitos Elétricos Resposta em Frequência Parte 1

Circuitos Elétricos Resposta em Frequência Parte 1 Introdução Circuitos Elétricos Resposta em Frequência Parte 1 Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Na análise de circuitos CA estudamos como

Leia mais

PROJETO : Jogando e aprendendo com a matemática

PROJETO : Jogando e aprendendo com a matemática Prefeitura Municipal de Rafael Jambeiro Secretaria de Educação PROJETO : Jogando e aprendendo com a matemática Área: Matemática Elaborado por : Cristiane M. Rios Coordenadora da SME 1.Apresentação Ensinar

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Estudos Comparativos Recentes - Behavior Scoring Roteiro Objetivo Critérios de Avaliação

Leia mais

Estruturas de Dados Árvores

Estruturas de Dados Árvores Estruturas de Dados Árvores Prof. Eduardo Alchieri Árvores (introdução) Importância de estruturas unidimensionais ou lineares (vetores e listas) é inegável Porém, estas estruturas não são adequadas para

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE II

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE II O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE II! Como implementar o escore de crédito?! Como avaliar o escore de crédito?! Como calcular a função discriminante usando o Excel?! Como aplicar a função

Leia mais

Unidade VI. Validação e Verificação de Software Teste de Software. Conteúdo. Técnicas de Teste. Estratégias de Teste

Unidade VI. Validação e Verificação de Software Teste de Software. Conteúdo. Técnicas de Teste. Estratégias de Teste Unidade VI Validação e Verificação de Software Teste de Software Profa. Dra. Sandra Fabbri Conteúdo Técnicas de Teste Funcional Estrutural Baseada em Erros Estratégias de Teste Teste de Unidade Teste de

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Identificando necessidades e estabelecendo requisitos

Identificando necessidades e estabelecendo requisitos Identificando necessidades e estabelecendo requisitos Resumo A importância de requisitos Diferentes tipos de requisitos Coleta de dados para requisitos Descrição de tarefas: Cenários Casos de uso Casos

Leia mais

1 Tipos de dados em Análise de Clusters

1 Tipos de dados em Análise de Clusters Curso de Data Mining Sandra de Amo Aula 13 - Análise de Clusters - Introdução Análise de Clusters é o processo de agrupar um conjunto de objetos físicos ou abstratos em classes de objetos similares Um

Leia mais

Computação BioInspirada

Computação BioInspirada Computação BioInspirada Os Engenheiros da Natureza Fabrício Olivetti de França The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore

Leia mais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Elisângela Lopes de Faria (a) Marcelo Portes Albuquerque (a) Jorge Luis González Alfonso (b) Márcio Portes Albuquerque (a) José

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 02 Agentes Inteligentes Agentes Inteligentes Um agente é algo capaz de perceber seu ambiente por meio de sensores e de

Leia mais

A Preparação dos Dados

A Preparação dos Dados A Preparação dos Dados Escolhas Básicas Objetos, casos, instâncias Objetos do mundo real: carros, arvores, etc Ponto de vista da mineração: um objeto é descrito por uma coleção de características sobre

Leia mais

3 OOHDM e SHDM 3.1. OOHDM

3 OOHDM e SHDM 3.1. OOHDM 32 3 OOHDM e SHDM Com a disseminação em massa, desde a década de 80, de ambientes hipertexto e hipermídia, principalmente a Web, foi identificada a necessidade de elaborar métodos que estruturassem de

Leia mais

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s

Cálculo numérico. ln 1 = 0. Representação numérica. Exemplo. Exemplos. Professor Walter Cunha. ln 1. I s Representação numérica Cálculo numérico Professor Walter Cunha Um conjunto de ferramentas ou métodos usados para se obter a solução de problemas matemáticos de forma aproximada. Esses métodos se aplicam

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

SEO PARA INICIANTES Como otimizar um blog Guia passo a passo para fazer o seu blog otimizado e indexado corretamente!

SEO PARA INICIANTES Como otimizar um blog Guia passo a passo para fazer o seu blog otimizado e indexado corretamente! 1 SEO PARA INICIANTES Como otimizar um blog Guia passo a passo para fazer o seu blog otimizado e indexado corretamente! Fórmula Hotmart - www.formulahotmart.com 2 Este ebook pertence: Claudio J. Bueno

Leia mais

O endereço IP (v4) é um número de 32 bits com 4 conjuntos de 8 bits (4x8=32). A estes conjuntos de 4 bits dá-se o nome de octeto.

O endereço IP (v4) é um número de 32 bits com 4 conjuntos de 8 bits (4x8=32). A estes conjuntos de 4 bits dá-se o nome de octeto. Endereçamento IP Para que uma rede funcione, é necessário que os terminais dessa rede tenham uma forma de se identificar de forma única. Da mesma forma, a interligação de várias redes só pode existir se

Leia mais

TEORIA DOS JOGOS E APRENDIZADO

TEORIA DOS JOGOS E APRENDIZADO TEORIA DOS JOGOS E APRENDIZADO DE MÁQUINA Estudos Iniciais André Filipe de Moraes Batista Disciplina de Aprendizagem de Máquina UFABC 2010 TEORIA DOS JOGOS Ramo da matemática aplicada estuda situações

Leia mais

Modelo Funcional Essencial

Modelo Funcional Essencial Modelo Funcional Essencial Análise e Projeto - 1 Tem como objetivo definir o que o sistema deve fazer, ou seja, as funções que deve realizar para atender seus usuários. Na análise essencial fazemos essa

Leia mais

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com)

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com) 1. O dominó Você já deve conhecer o dominó. Não vamos pensar no jogo de dominós

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

Engenharia de Software

Engenharia de Software CENTRO UNIVERSITÁRIO NOVE DE JULHO Profº. Edson T. França edson.franca@uninove.br Software Sistemas Conjunto de elementos, entre os quais haja alguma relação Disposição das partes ou dos elementos de um

Leia mais

Eletrônicos PAE. Componente Curricular: Práticas de Acionamentos. 5.ª Prática Inversor de Frequência Vetorial da WEG CFW-08

Eletrônicos PAE. Componente Curricular: Práticas de Acionamentos. 5.ª Prática Inversor de Frequência Vetorial da WEG CFW-08 1 Componente Curricular: Práticas de Acionamentos Eletrônicos PAE 5.ª Prática Inversor de Frequência Vetorial da WEG CFW-08 OBJETIVO: 1) Efetuar a programação por meio de comandos de parametrização para

Leia mais

OPCEM 1.0. Versão 1.0 Copyright 2013 OpServices 1

OPCEM 1.0. Versão 1.0 Copyright 2013 OpServices 1 OPCEM 1.0 Versão 1.0 Copyright 2013 OpServices 1 OpCEM CONCEITO... 4 REQUISITOS MÍNIMOS... 4 INSTALANDO... 4 CONHECENDO A INTERFACE DO OPCEM... 7 CONFIGURAÇÃO DO GERENCIADOR... 7 ADICIONAR NOVO ROBÔ...

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS ESPECIALIZAÇÃO EM ESTATÍSTICAS EDUCACIONAIS. Prof. M.Sc.

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS ESPECIALIZAÇÃO EM ESTATÍSTICAS EDUCACIONAIS. Prof. M.Sc. UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS ESPECIALIZAÇÃO EM ESTATÍSTICAS EDUCACIONAIS Microsoft Office PowerPoint 2007 Prof. M.Sc. Fábio Hipólito Julho / 2009 Visite o site:

Leia mais

MÓDULO 1 - Abrindo o Winplot e construindo gráficos

MÓDULO 1 - Abrindo o Winplot e construindo gráficos 1 MÓDULO 1 - Abrindo o Winplot e construindo gráficos 1 - Abrindo o Winplot Para abrir o Winplot.exe clique duas vezes no ícone. Abrirá a caixa: Clique (uma vez) no botão. Surgirá uma coluna: Clique no

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Laboratório de Pesquisa e Desenvolvimento Universidade Federal de Alfenas versão

Leia mais

SLAG - Resolvendo o Problema do Caixeiro Viajante Utilizando Algoritmos Genéticos

SLAG - Resolvendo o Problema do Caixeiro Viajante Utilizando Algoritmos Genéticos SLAG - Resolvendo o Problema do Caixeiro Viajante Utilizando Algoritmos Genéticos Fredson Vieira Costa 1, Fábio Silveira Vidal 1, Claudomiro Moura Gomes André 1 1 Curso de Bacharelado em Ciência da Computação

Leia mais

Apresentação final do Trabalho de Conclusão -Novembro 2002. Autenticação On-line de assinaturas utilizando Redes Neurais. Milton Roberto Heinen

Apresentação final do Trabalho de Conclusão -Novembro 2002. Autenticação On-line de assinaturas utilizando Redes Neurais. Milton Roberto Heinen Apresentação final do Trabalho de Conclusão -Novembro 2002 Autenticação On-line de assinaturas utilizando Redes Neurais Milton Roberto Heinen miltonrh@ig.com.br Motivação Falta de segurança dos sistemas

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Satisfação de Restrições. Capítulo 5 (disponível online)

Satisfação de Restrições. Capítulo 5 (disponível online) Satisfação de Restrições Capítulo 5 (disponível online) Sumário Problemas de Satisfação de Restrições (CSPs) Procura com Retrocesso para CSPs Procura Local para CSPs Estrutura dos CSPs Problemas de Satisfação

Leia mais

Lista 5 - Introdução à Probabilidade e Estatística

Lista 5 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 5 - Introdução à Probabilidade e Estatística Variáveis Aleatórias 1 Duas bolas são escolhidas aleatoriamente de uma urna que contém 8 bolas brancas, 4 pretas e 2 laranjas.

Leia mais

ATIVIDADES PRÁTICAS SUPERVISIONADAS

ATIVIDADES PRÁTICAS SUPERVISIONADAS ATIVIDADES PRÁTICAS SUPERVISIONADAS 6ª Série Teoria da Computação Ciência da Computação A atividade prática supervisionada (ATPS) é um método de ensinoaprendizagem desenvolvido por meio de um conjunto

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

Lista de Exercícios Tratamento de Incerteza baseado em Probabilidade

Lista de Exercícios Tratamento de Incerteza baseado em Probabilidade Lista de Exercícios Tratamento de Incerteza baseado em Probabilidade 1) Explique o termo probabilidade subjetiva no contexto de um agente que raciocina sobre incerteza baseando em probabilidade. 2) Explique

Leia mais