Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014

Tamanho: px
Começar a partir da página:

Download "Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014"

Transcrição

1 Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Objetivo: Decidir se um conjunto de dados segue uma determinada distribuição de probabilidades. Exemplo 1: Uma emissora de TV desconfia da qualidade do método utilizado por um instituto para medir a audiência de programas de TV. Tal instituto aponta que em um determinado horário a emissora A tem 37% da audiência, enquanto que a emissora B tem 30%, a C tem 13% e as demais têm 20%. A emissora contratou uma empresa de pesquisa de mercado que selecionou uma amostra de 300 residências. Em cada uma, perguntou-se em qual canal a principal TV da casa estava sintonizada, na última semana, no horário determinado. Dos 300, 95 declararam estar assistindo a emissora A, 87 a emissora B, 51 a C e 67 uma das demais emissoras, ou não estava com a TV ligada. Há evidências de que os dados do instituto estejam errados? Admita: : probabilidade da emissora A ser sintonizada, : probabilidade da emissora B ser sintonizada, : probabilidade da emissora C ser sintonizada, : probabilidade de outras emissoras serem sintonizada, = 95: número de pessoas da amostra que declararam assistir a emissora A, = 87: número de pessoas da amostra que declararam assistir a emissora B, = 51: número de pessoas da amostra que declararam assistir a emissora C e = 67: número de pessoas da amostra que declararam assistir outras emissoras. Temos =4 categorias de resposta e = =300. Além disso, segundo o instituto, = 0,37, = 0,30, = 0,13 e = 0,20. A estatística qui-quadrado busca aferir o quanto os dados são compatíveis com os valores de probabilidades fornecidos. Sua lógica consiste em comparar os dados observados com os dados que deveriam ser observados numa amostra de hipotética (amostra de referência) que obedecesse fielmente às probabilidades fornecidas. 1

2 Amostra de referência Se a amostra seguisse fielmente a estrutura de probabilidade dada por, quantas pessoas deveríamos ter observado em cada uma das quatro possíveis categorias de resposta? Nesse caso, para a primeira categoria (audiência da emissora A), esperaríamos ter 37% de observações, ou seja, a frequência esperada dessa categoria seria = 0,37 * 300 =111; para a segunda = 0,30 * 300 =90, para a terceira = 0,13 * 300 = 39 e, por fim, para a última = 0,20 * 300 =60. Resultado 1: Seja o valor que seria observado na classe, =1,,, se a amostra seguisse fielmente a estrutura de probabilidade dada por. =. Estatística qui-quadrado A estatística qui-quadrado é uma medida da distância entre os valores efetivamente observados ( ) e os que esperaríamos observar se a amostra seguisse fielmente a estrutura de probabilidades fornecida ( ). A constrição dessa medida será feita passo a passo a partir dos dados do Exemplo 1. Na Tabela 1, estão dispostos, lado a lado, os valores observados e esperados. Note que a soma das respectivas colunas é igual ao tamanho da amostra. Isso decorre do Resultado 2. Resultado 2: =. Prova: = = =. Na quinta coluna da tabela são apresentadas as diferenças entre os valores observados e os valores esperados. Caso a estrutura de probabilidades fornecida seja de fato seguida pelos dados, espera-se que esses valores sejam próximos de zero. A estatística qui-quadrado baseia-se na distância quadrática entre os valores observados e esperados (ver Resultado 3). Resultado 3: A distância quadrática entre os valores observados e esperados é dada por:. 2

3 Voltando à Tabela 1, nota-se uma distância de 256 para a primeira categoria de resposta e 144 para a terceira. Será que de fato, em termos qualitativos, a discrepância na categoria 1 é mais importante do que a observada na categoria 3? Tabela 1: Determinação da estatística qui-quadrado para os dados do Exemplo 1. Categoria ( - ( - ( - / 1 0, ,0-16,0 256,00 2,31 2 0, ,0-3,0 9,00 0,10 3 0, ,0 12,0 144,00 3,69 4 0, ,0 7,0 49,00 0,82 Total 1, ,0 6,92 Na categoria 1, esperávamos encontrar 111 pessoas e na categoria 3, 39. Ao se fazer a razão entre a distância e os valores esperados para essas duas categorias, temos, respectivamente, 2,31 e 3,69. Isso indica que, em termos relativos, o afastamento observado na categoria 3 é mais importante do que na categoria 1. A estatística quiquadrado é construída com base nesse raciocínio. Definição 1: Seja a probabilidade hipotética de uma observação pertencer á categoria de resposta, =1,,, com =1. Seja o número de indivíduos classificados na categoria e seu respectivo valor esperado, conforme definido no Resultado 1, =1,,. Define-se a estatística qui-quadrado como =. Em suma a estatística qui-quadrado nada mais é do que a distância quadrática entre os valores da amostra e da amostra de referência, ponderada pelos valores esperados sob a hipótese de que a estrutura de probabilidades fornecida é correta. Quanto maior o valor dessa estatística, maior é a evidência de que os dados não seguem a estrutura de probabilidades fornecida. Para o Exemplo 1, =6,92. Exemplo 2: A Tabela 2 descreve o número de reclamações diárias observado em 100 dias de funcionamento de um biblioteca. Um analista desconfia que uma distribuição de Poisson poderia ser utilizada para descrever o comportamento dessa variável. Com base nos dados apresentados na Tabela 2, pode-se concluir que ele tem razão? 3

4 O primeiro passo para a determinação da estatística qui-quadrado é o cálculo da probabilidade de ocorrência de cada categoria da variável em questão. Aventa-se a hipótese de que a distribuição de Poisson é adequada para modelar este fenômeno, no entanto, não foi fornecido o valor do parâmetro da distribuição. Desse modo, é necessário estimá-lo a partir dos dados. Como o parâmetro da Poisson é a média da distribuição, decidiu-se estimá-lo por 1,49, a média aritmética dos dados. Tabela 2: Número de reclamações diárias observadas em 100 dias de atividade Número de reclamações Dias Total 100 A Tabela 3 traz as probabilidades de cada categoria, obtidas a partir de uma distribuição de Poisson com média 1,49. Note que essas probabilidades não somam 100%, condição estabelecida para o cálculo da estatística qui-quadrado. Para contornar esse problema, e para levar em conta que há poucas observações na última categoria de resposta, decidiu-se reorganizar os dados conforme a Tabela 4. Tabela 3: Probabilidades associadas aos dados da Tabela 2. Número de reclamações Dias Probabilidade , , , , , ,0138 Total 100 0,9957 4

5 Tabela 4: Número de reclamações diárias observadas em 100 dias de atividade e probabilidades associadas ás categorias de resposta Número de reclamações Dias Probabilidade , , , , ,0644 Total 100 1,0000 Para os dados do Exemplo 2, obteve-se =3,34. A Tabela 5 resume o cálculo dessa estatística. Note que os valores esperados não são números inteiros. Isso é uma ocorrência comum que não deve ser corrigida, uma vez que os valores esperado constituem apenas pontos de referência. Tabela 5: Determinação da estatística qui-quadrado para os dados da Tabela 4. Categoria ( - ( - ( - / 0 0, ,54 2,46 6,07 0,27 1 0, ,58 1,42 2,01 0,06 2 0, ,02-7,02 49,25 1,97 3 0, ,43 0,57 0,33 0,03 >3 0, ,44 2,56 6,56 1,02 Total 1, ,00 3,34 Exemplo 3: Uma empresa pode ser multada se emitir poluentes acima de níveis tolerados. Especula-se que o nível de emissão de certo poluente segue uma distribuição normal. Os dados da Tabela 5 reproduzem os níveis de emissão em 284 dias. Há evidências de que a emissão segue uma distribuição normal? 5

6 Tabela 6: Emissões diárias de poluentes de uma empresa Emissão Dias 30,0 a 34,5 4 34,5 a 37,5 8 37,5 a 40, ,5 a 43, ,5 a 46, ,5 a 49, ,5 a 52,5 40 Total 284 Assim como no Exemplo 2, não foram fornecidos os parâmetros da distribuição de probabilidades. Sua determinação a partir da média e desvio-padrão amostral dos dados resultou numa média de 44,3 e desvio-padrão de 4,15. Teoricamente, a distribuição normal pode assumir qualquer valor real, desse modo é necessário fazer alterações nas categorias de resposta para fazer com que a soma de suas probabilidades de ocorrência atinja 100%. Conforme pode ser visto na Tabela 7, a primeira categoria foi considerada como Inferior a 34,5 e a última 49,5 ou mais. Tabela 7: Determinação da estatística qui-quadrado para os dados da Tabela 6. Emissão ( - ( - / - a 34,5 0, ,585 1,415 0,775 34,5 a 37,5 0, ,801-3,801 1,224 37,5 a 40,5 0, ,712-4,712 0,605 40,5 a 43,5 0, ,196 14,804 3,167 43,5 a 46,5 0, ,070-5,070 0,325 46,5 a 49,5 0, ,787-12,787 2,985 49,5 a 0, ,849 10,151 3,452 Total ,000 0,000 12,533 A partir dos dados chega-se a =12,533. A lógica de análise da estatística qui-quadrado é bastante simples: valores muito distantes de zero indicam que a distribuição de probabilidades não segue a distribuição de probabilidades considerada no problema. A dificuldade é sabe se o valor observado está distante o suficiente de zero para se tirar essa conclusão. 6

7 Distribuição de Pode-se construir um teste de hipóteses para verificar se os dados seguem a distribuição em consideração que utiliza como estatística de teste. Nesse caso, temos H 0 : os dados seguem a distribuição em consideração. H 1 : os dados não seguem a distribuição em consideração. Prova-se, sob a hipótese de que os dados seguem a distribuição de probabilidades em consideração e para grandes amostras, que a distribuição de pode ser aproximada por uma distribuição qui-quadrado 1 com = 1 graus, sendo o número de parâmetros estimados a partir dos dados. Desse modo, a conclusão final pode ser feita a partir da probabilidade de se observar um valor tão grande ou maior do que o observado (valor p); quanto menor o valor, maior a evidência de que os dados não seguem a distribuição em consideração. Na Tabela 8 são apresentados os valores p associados aos resultados dos exemplos 1, 2 e 3. A partir desses valores podemos concluir que há evidências fortes para rejeitar a hipótese de normalidade dos dados do Exemplo 3, alguma evidência contrária à distribuição apresentada no Exemplo 1 e evidências muito fracas com a hipótese de que os dados do Exemplo 2 seguem uma distribuição de Poisson. Tabela 8: Valor p associados à análise dos exemplos 1, 2 e 3. Exemplo Valor p Comando excel para cálculo do valor p 1 6, ,0745 DIST.QUIQUA.CD(6,92;3) 2 3, ,3421 DIST.QUIQUA.CD(3,34;3) 3 12, ,0138 DIST.QUIQUA.CD(12,53;3) 1 Uma regra empírica diz que a amostra é suficientemente grande para utilizar a distribuição qui-quadrado quando 5 e 1 5, para todo =1,,. Quando a regra não for satisfeita, recomenda-se redefinir as categorias de resposta, agrupando as que a violarem. 7

Gráfico de Probabilidades

Gráfico de Probabilidades Gráfico de Probabilidades Objetivo: Verificar se um conjunto de dados pode ter sido gerado a partir de uma específica distribuição de probabilidades contínua. Exemplo: Os dados abaixo se referem aos retornos

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

Padronização. Momentos. Coeficiente de Assimetria

Padronização. Momentos. Coeficiente de Assimetria Padronização Seja X 1,..., X n uma amostra de uma variável com com média e desvio-padrão S. Então a variável Z, definida como, tem as seguintes propriedades: a) b) ( ) c) é uma variável adimensional. Dizemos

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba.

Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba. Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba. 1 Introdução Erivaldo de Araújo Silva Edwirde Luiz Silva Os testes

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

NT 206. Distribuições Estatísticas aplicadas ao tráfego. Engº: Sun Hsien Ming. a) f(x) 0 (1) 1. Introdução

NT 206. Distribuições Estatísticas aplicadas ao tráfego. Engº: Sun Hsien Ming. a) f(x) 0 (1) 1. Introdução NT 206 Distribuições Estatísticas aplicadas ao tráfego Engº: Sun Hsien Ming 1. Introdução Durante os trabalhos para desenvolver o Manual de Critérios de Implantação de Semáforos, houve a necessidade de

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

Otimização. Otimização e Teoria dos Jogos. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia

Otimização. Otimização e Teoria dos Jogos. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia Otimização Otimização e Teoria dos Jogos Paulo Henrique Ribeiro Gabriel phrg@ufu.br Faculdade de Computação Universidade Federal de Uberlândia 2016/2 Paulo H. R. Gabriel (FACOM/UFU) GSI027 2016/2 1 / 26

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 2 de Agosto de 2013 3 Modelos de Poisson podem ser usados para analisar tabelas de contingência.

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016

Teste Chi-Quadrado de Independência. Prof. David Prata Novembro de 2016 Teste Chi-Quadrado de Independência Prof. David Prata Novembro de 2016 Duas Variáveis Categóricas Análise de variância envolve o exame da relação entre uma variável categórica explicativa e uma variável

Leia mais

Distribuição de frequências. Prof. Dr. Alberto Franke

Distribuição de frequências. Prof. Dr. Alberto Franke Distribuição de frequências Prof. Dr. Alberto Franke E-mail: alberto.franke@ufsc.br 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Medidas de associação para variáveis categóricas em tabelas de dupla entrada

Medidas de associação para variáveis categóricas em tabelas de dupla entrada Medidas de associação para variáveis categóricas em tabelas de dupla entrada a) Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c ( e e ij ij n ) ij, em que é

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior

ESTATÍSTICA INFERENCIAL. Prof. Dr. Guanis de Barros Vilela Junior ESTATÍSTICA INFERENCIAL Prof. Dr. Guanis de Barros Vilela Junior As Hipóteses A Hipótese Nula (H 0 ) é, em geral, uma afirmação conservadora sobre uma situação da pesquisa. Por exemplo, se você quer testar

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Nilza Nunes da Silva/Regina Bernal 1

Nilza Nunes da Silva/Regina Bernal 1 CAPÍTULO 1 - MEDIDAS QUANTITATIVAS UMA VARIÁVEL 1.10 MEDIDAS DE POSIÇÃO ( MÉDIA, MEDIANA, MODA) Variáveis Discretas Variáveis contínuas (valores em classes) 1.11 MEDIDAS DE DISPERSÃO (Variância, Desvio

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Medidas de associação entre duas variáveis qualitativas

Medidas de associação entre duas variáveis qualitativas Medidas de associação entre duas variáveis qualitativas Hoje vamos analisar duas variáveis qualitativas (categóricas) conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos

Leia mais

16/6/2014. Teste Qui-quadrado de independência

16/6/2014. Teste Qui-quadrado de independência UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela

Leia mais

APONTAMENTOS DE SPSS

APONTAMENTOS DE SPSS Instituto de Ciências Biomédicas de Abel Salazar APONTAMENTOS DE SPSS Rui Magalhães 2010-1 - - 2 - Menu DATA Opção SPLIT FILE Permite dividir, de uma forma virtual, o ficheiro em diferentes ficheiros com

Leia mais

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis = de Instrução e = Região de procedência. Neste caso, a distribuição de freqüências é apresentada como uma tabela

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

DISCIPLINA: PROBABILIDADE E ESTATÍSTICA TURMA: Informática de Gestão

DISCIPLINA: PROBABILIDADE E ESTATÍSTICA TURMA: Informática de Gestão Aula # 04 DISCIPLINA: PROBABILIDADE E ESTATÍSTICA TURMA: Informática de Gestão Escala de Medidas de Variáveis. Frequência absoluta e relativa de dados quantitativos. Professor: Dr. Wilfredo Falcón Urquiaga

Leia mais

- Testes Qui-quadrado. - Aderência e Independência

- Testes Qui-quadrado. - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: 1 Genética Equilíbrio

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA Introdução 1 PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA Fenômeno - MODELO MATEMÁTICO Q = L.H 3/2 F= γ.h.a Ênfase: forma da expressão relação entre : L e H Q γ, h e A F Aula 1 Introdução 2 HIDROLOGIA " É

Leia mais

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Bacharelado em Estatística

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Bacharelado em Estatística Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Estatística Bacharelado em Estatística Disciplina: Estatística Aplicada Professores: Héliton Tavares e Regina Tavares Aluna:

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO DOUTORADO - TURMA 20 VERSÃO

Leia mais

Exercícios. Finanças Benjamin M. Tabak

Exercícios. Finanças Benjamin M. Tabak Exercícios Finanças Benjamin M. Tabak ESAF BACEN - 2002 Uma carteira de ações é formada pelos seguintes ativos: Ações Retorno esperado Desvio Padrão Beta A 18% 16% 1,10 B 22% 15% 0,90 Também se sabe que

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Análise Exploratória de Dados As técnicas de análise exploratória de dados consistem em gráficos simples de desenhar que podem ser

Leia mais

Testes de Aderência Testes de Independência Testes de Homogeneidade

Testes de Aderência Testes de Independência Testes de Homogeneidade Testes de Aderência Testes de Independência Testes de Homogeneidade 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Genética

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

PERT PERT PERT PERT PERT PERT. O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas);

PERT PERT PERT PERT PERT PERT. O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas); O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas); A duração de cada atividade na prática, contudo, pode ser diferente daquela prevista no projeto; Existem muitos fatores

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME:

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: Observação: A resolução completa das perguntas inclui a justificação

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis X = Grau de Instrução e Y = Região

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Tratamento estatístico de observações

Tratamento estatístico de observações Tratamento estatístico de observações Prof. Dr. Carlos Aurélio Nadal OBSERVAÇÃO: é o valor obtido durante um processo de medição. DADO: é o resultado do tratamento de uma observação (por aplicação de uma

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Aula 10 Estimação e Intervalo de Confiança

Aula 10 Estimação e Intervalo de Confiança Aula 10 Estimação e Intervalo de Confiança Objetivos da Aula Fixação dos conceitos de Estimação; Utilização das tabelas de Distribuição Normal e t de Student Introdução Freqüentemente necessitamos, por

Leia mais

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II) ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)! Como calcular o retorno usando dados históricos?! Como calcular a variância e o desvio padrão?! A análise do retorno através da projeção de retornos

Leia mais

Teste de hipóteses para uma média populacional com variância conhecida e desconhecida

Teste de hipóteses para uma média populacional com variância conhecida e desconhecida Teste de hipóteses para uma média populacional com variância conhecida e desconhecida Teste de hipóteses para uma média populacional com variância conhecida Tomando-se como exemplo os dados de recém-nascidos

Leia mais

Distribuição de Probabilidade de Poisson

Distribuição de Probabilidade de Poisson 1 Distribuição de Probabilidade de Poisson Ernesto F. L. Amaral Magna M. Inácio 07 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4)

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ MEDIDAS DESCRITIVAS Vimos que é possível sintetizar os dados sob a forma de distribuições

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO MESTRADO - TURMA 2012 PROVA

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

ESTATÍSTICA APLICADA

ESTATÍSTICA APLICADA ESTATÍSTICA APLICADA TEMA I ESTATÍSTICA DESCRITIVA SUMÁRIO: CLASSIFICAÇÃO DOS DADOS SEGUNDO A ESCALA DISTRIBUIÇÕES DE FREQUENCIA PARA DADOS CONTÍNUOS. DISTRIBUIÇÃO EM CLASSES Distribuição para Dados Quantitativos

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Prof. Dr. Engenharia Ambiental, UNESP

Prof. Dr. Engenharia Ambiental, UNESP INTRODUÇÃO A ESTATÍSTICA ESPACIAL Análise Exploratória dos Dados Estatística Descritiva Univariada Roberto Wagner Lourenço Roberto Wagner Lourenço Prof. Dr. Engenharia Ambiental, UNESP Estrutura da Apresentação

Leia mais

AT = Maior valor Menor valor

AT = Maior valor Menor valor UNIVERSIDADE FEDERAL DA PARAÍBA TABELAS E GRÁFICOS Departamento de Estatística Luiz Medeiros DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente interesse resumir as informações

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Comprovação Estatística de Medidas Elétricas

Comprovação Estatística de Medidas Elétricas Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Métodos e Técnicas de Laboratório em Eletrônica Comprovação Estatística de Medidas Elétricas Florianópolis,

Leia mais

Teste Anova. Prof. David Prata Novembro de 2016

Teste Anova. Prof. David Prata Novembro de 2016 Teste Anova Prof. David Prata Novembro de 2016 Tipo de Variável Introduzimos o processo geral de teste de hipótese. É hora de aprender a testar a sua própria hipótese. Você sempre terá que interpretar

Leia mais

Disciplina: Algoritmos e Programação Professor: Paulo César Fernandes de Oliveira, BSc, PhD

Disciplina: Algoritmos e Programação Professor: Paulo César Fernandes de Oliveira, BSc, PhD 1. Faça um algoritmo que: leia 20 números inteiros; escreva os números que são negativos; escreva a média dos números positivos. 2. Faça um algoritmo que leia 15 números inteiros e escreva, para cada número

Leia mais

TESTES NÃO PARAMÉTRICOS (para mediana/média)

TESTES NÃO PARAMÉTRICOS (para mediana/média) MAE212: Introdução à Probabilidade e à Estatística II - Profas. Beti e Chang (2012) 1 TESTES NÃO PARAMÉTRICOS (para mediana/média) Os métodos de estimação e testes de hipóteses estudados até agora nessa

Leia mais

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA

RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA RESOLUÇÃO DAS QUESTÕES DE ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Estatística da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei a numeração da prova

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA DOCENTE: CIRA SOUZA PITOMBO UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG J21 Ajustamentos de observações geodésicas A AULA 9 TESTES ESTATÍSTICOS DE

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se

Leia mais

6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada

6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada 6. Medidas de associação entre variáveis categóricas em tabelas de dupla entrada Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c (e e ij n ij ij ), em que é

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Teste Qui-quadrado. Comparando proporções Verificando a hipótese de associação entre variáveis qualitativas

Teste Qui-quadrado. Comparando proporções Verificando a hipótese de associação entre variáveis qualitativas Teste Qui-quadrado Comparando proporções Verificando a hipótese de associação entre variáveis qualitativas Exemplo Inicial: Igualdade de Proporções A administração de um hospital deseja verificar se luvas

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Intervalos de conança

Intervalos de conança Intervalos de conança Prof. Hemílio Fernandes Campos Coêlho Departamento de Estatística - Universidade Federal da Paraíba - UFPB Exemplo Suponha que se deseja estimar o diâmetro da pupila de coelhos adultos.

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Análise descritiva de Dados. A todo instante do nosso dia-a-dia nos deparamos com dados.

Análise descritiva de Dados. A todo instante do nosso dia-a-dia nos deparamos com dados. Análise descritiva de Dados A todo instante do nosso dia-a-dia nos deparamos com dados. Por exemplo, para decidir pela compra de um eletrodoméstico, um aparelho eletrônico ou até mesmo na compra de uma

Leia mais

Processos Hidrológicos CST 318 / SER 456. Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016

Processos Hidrológicos CST 318 / SER 456. Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016 Processos Hidrológicos CST 318 / SER 456 Tema 9 -Métodos estatísticos aplicados à hidrologia ANO 2016 Camilo Daleles Rennó Laura De Simone Borma http://www.dpi.inpe.br/~camilo/prochidr/ Caracterização

Leia mais

REGRESSÃO E CORRELAÇÃO

REGRESSÃO E CORRELAÇÃO Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE SATISFAÇÃO COM A DEMOCRACIA

PESQUISA DE OPINIÃO PÚBLICA SOBRE SATISFAÇÃO COM A DEMOCRACIA PESQUISA DE OPINIÃO PÚBLICA SOBRE SATISFAÇÃO COM A DEMOCRACIA SETEMBRO DE 2015 JOB1250 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL O principal objetivo desse projeto é monitorar a satisfação com

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

RACIOCÍNIO LÓGICO-QUANTITATIVO Prova comentada ANAC / ANALISTA / 2016 Professor Josimar Padilha

RACIOCÍNIO LÓGICO-QUANTITATIVO Prova comentada ANAC / ANALISTA / 2016 Professor Josimar Padilha RACIOCÍNIO LÓGICO-QUANTITATIVO Prova comentada ANAC / ANALISTA / 2016 Professor Josimar Padilha 1. A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por: a. não choveu

Leia mais

Aula 4 Medidas de dispersão

Aula 4 Medidas de dispersão AULA 4 Aula 4 Medidas de dispersão Nesta aula, você estudará as medidas de dispersão de uma distribuição de dados e aprenderá os seguintes conceitos: amplitude desvios em torno da média desvio médio absoluto

Leia mais

Estatística I Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 2 Prof.: Patricia Maria Bortolon, D. Sc. Análise Exploratória de Dados Consiste em resumir e organizar os dados coletados Utiliza-se tabelas, gráficos ou medidas numéricas para resumir

Leia mais

TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG

TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG Pretende-se realizar a experiência clássica de Thomas Young e utilizar o padrão de interferência de duas fontes pontuais

Leia mais