Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014

Tamanho: px
Começar a partir da página:

Download "Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014"

Transcrição

1 Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Objetivo: Decidir se um conjunto de dados segue uma determinada distribuição de probabilidades. Exemplo 1: Uma emissora de TV desconfia da qualidade do método utilizado por um instituto para medir a audiência de programas de TV. Tal instituto aponta que em um determinado horário a emissora A tem 37% da audiência, enquanto que a emissora B tem 30%, a C tem 13% e as demais têm 20%. A emissora contratou uma empresa de pesquisa de mercado que selecionou uma amostra de 300 residências. Em cada uma, perguntou-se em qual canal a principal TV da casa estava sintonizada, na última semana, no horário determinado. Dos 300, 95 declararam estar assistindo a emissora A, 87 a emissora B, 51 a C e 67 uma das demais emissoras, ou não estava com a TV ligada. Há evidências de que os dados do instituto estejam errados? Admita: : probabilidade da emissora A ser sintonizada, : probabilidade da emissora B ser sintonizada, : probabilidade da emissora C ser sintonizada, : probabilidade de outras emissoras serem sintonizada, = 95: número de pessoas da amostra que declararam assistir a emissora A, = 87: número de pessoas da amostra que declararam assistir a emissora B, = 51: número de pessoas da amostra que declararam assistir a emissora C e = 67: número de pessoas da amostra que declararam assistir outras emissoras. Temos =4 categorias de resposta e = =300. Além disso, segundo o instituto, = 0,37, = 0,30, = 0,13 e = 0,20. A estatística qui-quadrado busca aferir o quanto os dados são compatíveis com os valores de probabilidades fornecidos. Sua lógica consiste em comparar os dados observados com os dados que deveriam ser observados numa amostra de hipotética (amostra de referência) que obedecesse fielmente às probabilidades fornecidas. 1

2 Amostra de referência Se a amostra seguisse fielmente a estrutura de probabilidade dada por, quantas pessoas deveríamos ter observado em cada uma das quatro possíveis categorias de resposta? Nesse caso, para a primeira categoria (audiência da emissora A), esperaríamos ter 37% de observações, ou seja, a frequência esperada dessa categoria seria = 0,37 * 300 =111; para a segunda = 0,30 * 300 =90, para a terceira = 0,13 * 300 = 39 e, por fim, para a última = 0,20 * 300 =60. Resultado 1: Seja o valor que seria observado na classe, =1,,, se a amostra seguisse fielmente a estrutura de probabilidade dada por. =. Estatística qui-quadrado A estatística qui-quadrado é uma medida da distância entre os valores efetivamente observados ( ) e os que esperaríamos observar se a amostra seguisse fielmente a estrutura de probabilidades fornecida ( ). A constrição dessa medida será feita passo a passo a partir dos dados do Exemplo 1. Na Tabela 1, estão dispostos, lado a lado, os valores observados e esperados. Note que a soma das respectivas colunas é igual ao tamanho da amostra. Isso decorre do Resultado 2. Resultado 2: =. Prova: = = =. Na quinta coluna da tabela são apresentadas as diferenças entre os valores observados e os valores esperados. Caso a estrutura de probabilidades fornecida seja de fato seguida pelos dados, espera-se que esses valores sejam próximos de zero. A estatística qui-quadrado baseia-se na distância quadrática entre os valores observados e esperados (ver Resultado 3). Resultado 3: A distância quadrática entre os valores observados e esperados é dada por:. 2

3 Voltando à Tabela 1, nota-se uma distância de 256 para a primeira categoria de resposta e 144 para a terceira. Será que de fato, em termos qualitativos, a discrepância na categoria 1 é mais importante do que a observada na categoria 3? Tabela 1: Determinação da estatística qui-quadrado para os dados do Exemplo 1. Categoria ( - ( - ( - / 1 0, ,0-16,0 256,00 2,31 2 0, ,0-3,0 9,00 0,10 3 0, ,0 12,0 144,00 3,69 4 0, ,0 7,0 49,00 0,82 Total 1, ,0 6,92 Na categoria 1, esperávamos encontrar 111 pessoas e na categoria 3, 39. Ao se fazer a razão entre a distância e os valores esperados para essas duas categorias, temos, respectivamente, 2,31 e 3,69. Isso indica que, em termos relativos, o afastamento observado na categoria 3 é mais importante do que na categoria 1. A estatística quiquadrado é construída com base nesse raciocínio. Definição 1: Seja a probabilidade hipotética de uma observação pertencer á categoria de resposta, =1,,, com =1. Seja o número de indivíduos classificados na categoria e seu respectivo valor esperado, conforme definido no Resultado 1, =1,,. Define-se a estatística qui-quadrado como =. Em suma a estatística qui-quadrado nada mais é do que a distância quadrática entre os valores da amostra e da amostra de referência, ponderada pelos valores esperados sob a hipótese de que a estrutura de probabilidades fornecida é correta. Quanto maior o valor dessa estatística, maior é a evidência de que os dados não seguem a estrutura de probabilidades fornecida. Para o Exemplo 1, =6,92. Exemplo 2: A Tabela 2 descreve o número de reclamações diárias observado em 100 dias de funcionamento de um biblioteca. Um analista desconfia que uma distribuição de Poisson poderia ser utilizada para descrever o comportamento dessa variável. Com base nos dados apresentados na Tabela 2, pode-se concluir que ele tem razão? 3

4 O primeiro passo para a determinação da estatística qui-quadrado é o cálculo da probabilidade de ocorrência de cada categoria da variável em questão. Aventa-se a hipótese de que a distribuição de Poisson é adequada para modelar este fenômeno, no entanto, não foi fornecido o valor do parâmetro da distribuição. Desse modo, é necessário estimá-lo a partir dos dados. Como o parâmetro da Poisson é a média da distribuição, decidiu-se estimá-lo por 1,49, a média aritmética dos dados. Tabela 2: Número de reclamações diárias observadas em 100 dias de atividade Número de reclamações Dias Total 100 A Tabela 3 traz as probabilidades de cada categoria, obtidas a partir de uma distribuição de Poisson com média 1,49. Note que essas probabilidades não somam 100%, condição estabelecida para o cálculo da estatística qui-quadrado. Para contornar esse problema, e para levar em conta que há poucas observações na última categoria de resposta, decidiu-se reorganizar os dados conforme a Tabela 4. Tabela 3: Probabilidades associadas aos dados da Tabela 2. Número de reclamações Dias Probabilidade , , , , , ,0138 Total 100 0,9957 4

5 Tabela 4: Número de reclamações diárias observadas em 100 dias de atividade e probabilidades associadas ás categorias de resposta Número de reclamações Dias Probabilidade , , , , ,0644 Total 100 1,0000 Para os dados do Exemplo 2, obteve-se =3,34. A Tabela 5 resume o cálculo dessa estatística. Note que os valores esperados não são números inteiros. Isso é uma ocorrência comum que não deve ser corrigida, uma vez que os valores esperado constituem apenas pontos de referência. Tabela 5: Determinação da estatística qui-quadrado para os dados da Tabela 4. Categoria ( - ( - ( - / 0 0, ,54 2,46 6,07 0,27 1 0, ,58 1,42 2,01 0,06 2 0, ,02-7,02 49,25 1,97 3 0, ,43 0,57 0,33 0,03 >3 0, ,44 2,56 6,56 1,02 Total 1, ,00 3,34 Exemplo 3: Uma empresa pode ser multada se emitir poluentes acima de níveis tolerados. Especula-se que o nível de emissão de certo poluente segue uma distribuição normal. Os dados da Tabela 5 reproduzem os níveis de emissão em 284 dias. Há evidências de que a emissão segue uma distribuição normal? 5

6 Tabela 6: Emissões diárias de poluentes de uma empresa Emissão Dias 30,0 a 34,5 4 34,5 a 37,5 8 37,5 a 40, ,5 a 43, ,5 a 46, ,5 a 49, ,5 a 52,5 40 Total 284 Assim como no Exemplo 2, não foram fornecidos os parâmetros da distribuição de probabilidades. Sua determinação a partir da média e desvio-padrão amostral dos dados resultou numa média de 44,3 e desvio-padrão de 4,15. Teoricamente, a distribuição normal pode assumir qualquer valor real, desse modo é necessário fazer alterações nas categorias de resposta para fazer com que a soma de suas probabilidades de ocorrência atinja 100%. Conforme pode ser visto na Tabela 7, a primeira categoria foi considerada como Inferior a 34,5 e a última 49,5 ou mais. Tabela 7: Determinação da estatística qui-quadrado para os dados da Tabela 6. Emissão ( - ( - / - a 34,5 0, ,585 1,415 0,775 34,5 a 37,5 0, ,801-3,801 1,224 37,5 a 40,5 0, ,712-4,712 0,605 40,5 a 43,5 0, ,196 14,804 3,167 43,5 a 46,5 0, ,070-5,070 0,325 46,5 a 49,5 0, ,787-12,787 2,985 49,5 a 0, ,849 10,151 3,452 Total ,000 0,000 12,533 A partir dos dados chega-se a =12,533. A lógica de análise da estatística qui-quadrado é bastante simples: valores muito distantes de zero indicam que a distribuição de probabilidades não segue a distribuição de probabilidades considerada no problema. A dificuldade é sabe se o valor observado está distante o suficiente de zero para se tirar essa conclusão. 6

7 Distribuição de Pode-se construir um teste de hipóteses para verificar se os dados seguem a distribuição em consideração que utiliza como estatística de teste. Nesse caso, temos H 0 : os dados seguem a distribuição em consideração. H 1 : os dados não seguem a distribuição em consideração. Prova-se, sob a hipótese de que os dados seguem a distribuição de probabilidades em consideração e para grandes amostras, que a distribuição de pode ser aproximada por uma distribuição qui-quadrado 1 com = 1 graus, sendo o número de parâmetros estimados a partir dos dados. Desse modo, a conclusão final pode ser feita a partir da probabilidade de se observar um valor tão grande ou maior do que o observado (valor p); quanto menor o valor, maior a evidência de que os dados não seguem a distribuição em consideração. Na Tabela 8 são apresentados os valores p associados aos resultados dos exemplos 1, 2 e 3. A partir desses valores podemos concluir que há evidências fortes para rejeitar a hipótese de normalidade dos dados do Exemplo 3, alguma evidência contrária à distribuição apresentada no Exemplo 1 e evidências muito fracas com a hipótese de que os dados do Exemplo 2 seguem uma distribuição de Poisson. Tabela 8: Valor p associados à análise dos exemplos 1, 2 e 3. Exemplo Valor p Comando excel para cálculo do valor p 1 6, ,0745 DIST.QUIQUA.CD(6,92;3) 2 3, ,3421 DIST.QUIQUA.CD(3,34;3) 3 12, ,0138 DIST.QUIQUA.CD(12,53;3) 1 Uma regra empírica diz que a amostra é suficientemente grande para utilizar a distribuição qui-quadrado quando 5 e 1 5, para todo =1,,. Quando a regra não for satisfeita, recomenda-se redefinir as categorias de resposta, agrupando as que a violarem. 7

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

Padronização. Momentos. Coeficiente de Assimetria

Padronização. Momentos. Coeficiente de Assimetria Padronização Seja X 1,..., X n uma amostra de uma variável com com média e desvio-padrão S. Então a variável Z, definida como, tem as seguintes propriedades: a) b) ( ) c) é uma variável adimensional. Dizemos

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Medidas de associação para variáveis categóricas em tabelas de dupla entrada

Medidas de associação para variáveis categóricas em tabelas de dupla entrada Medidas de associação para variáveis categóricas em tabelas de dupla entrada a) Quiquadrado de Pearson: mede a associação de tabelas de dupla entrada, sendo definida por: c ( e e ij ij n ) ij, em que é

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

AT = Maior valor Menor valor

AT = Maior valor Menor valor UNIVERSIDADE FEDERAL DA PARAÍBA TABELAS E GRÁFICOS Departamento de Estatística Luiz Medeiros DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente interesse resumir as informações

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Testes t para médias

Testes t para médias Testes t para médias 1-1 Testes t para médias Os testes t aplicam-se tanto a amostras independentes como a amostras emparelhadas. Servem para testar hipóteses sobre médias de uma variável quantitativa

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido

Leia mais

Comparando riscos e chances. Risco relativo e Razão de Chances

Comparando riscos e chances. Risco relativo e Razão de Chances Comparando riscos e chances Risco relativo e Razão de Chances Exemplo Inicial Estudo para verificar se a ingestão de extrato de guaraná tem efeito sobre a fadiga em pacientes tratados com quimioterapia

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

AMEI Escolar Matemática 8º Ano Estatística: Organização e Tratamento de Dados

AMEI Escolar Matemática 8º Ano Estatística: Organização e Tratamento de Dados AMEI Escolar Matemática 8º Ano Estatística: Organização e Tratamento de Dados Conteúdos desta unidade: Organização, representação e interpretação de dados; Medidas de tendência central; Medidas de localização.

Leia mais

APONTAMENTOS DE SPSS

APONTAMENTOS DE SPSS Instituto de Ciências Biomédicas de Abel Salazar APONTAMENTOS DE SPSS Rui Magalhães 2010-1 - - 2 - Menu DATA Opção SPLIT FILE Permite dividir, de uma forma virtual, o ficheiro em diferentes ficheiros com

Leia mais

NOTA TÉCNICA: Conversão da escala do NSE médio das escolas e criação de grupos. Maria Teresa Gonzaga Alves 1

NOTA TÉCNICA: Conversão da escala do NSE médio das escolas e criação de grupos. Maria Teresa Gonzaga Alves 1 1 NOTA TÉCNICA: Conversão da escala do NSE médio das escolas e criação de grupos Maria Teresa Gonzaga Alves 1 Flávia Pereira Xavier José Francisco Soares GAME-FAE/UFMG 1. Conversão da escala A escala original

Leia mais

Conteúdo. 1 Introdução. Histograma do Quarto Sorteio da Nota Fiscal Paraná 032/16. Quarto Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do Quarto Sorteio da Nota Fiscal Paraná 032/16. Quarto Sorteio Eletrônico da Nota Fiscal Paraná Quarto Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este documento apresenta a análise dos resultados

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

Significância do Coeficiente de Correlação

Significância do Coeficiente de Correlação Significância do Coeficiente de Correlação A primeira coisa que vamos tentar fazer nesta aula é apresentar o conceito de significância do coeficiente de correlação. Uma vez entendido este conceito, vocês

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II) ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)! Como calcular o retorno usando dados históricos?! Como calcular a variância e o desvio padrão?! A análise do retorno através da projeção de retornos

Leia mais

Testes de Significância Estatística para Avaliação de Algoritmos

Testes de Significância Estatística para Avaliação de Algoritmos Testes de Significância Estatística para Avaliação de Algoritmos Prof. Eduardo R. Hruschka Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de

Leia mais

Comprovação Estatística de Medidas Elétricas

Comprovação Estatística de Medidas Elétricas Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Métodos e Técnicas de Laboratório em Eletrônica Comprovação Estatística de Medidas Elétricas Florianópolis,

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão.

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Medidas Resumo Medidas de Posição/ Medidas de Dispersão A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Prof. MSc. Herivelto Marcondes Março/2009 1 Medidas Resumo

Leia mais

Relatório de análise estatística Bairro : Dois Irmãos Recife/PE

Relatório de análise estatística Bairro : Dois Irmãos Recife/PE Relatório de análise estatística Bairro : Dois Irmãos Recife/PE 1 INTRODUÇÃO O objetivo deste relatório é determinar fatores de risco e proteção para a ocorrência de ovos do mosquito Aedes aegypti para

Leia mais

Disciplina: Algoritmos e Programação Professor: Paulo César Fernandes de Oliveira, BSc, PhD

Disciplina: Algoritmos e Programação Professor: Paulo César Fernandes de Oliveira, BSc, PhD 1. Faça um algoritmo que: leia 20 números inteiros; escreva os números que são negativos; escreva a média dos números positivos. 2. Faça um algoritmo que leia 15 números inteiros e escreva, para cada número

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

6 Aplicação do modelo: Galeão

6 Aplicação do modelo: Galeão 6 Aplicação do modelo: Galeão Os resultados do capítulo 5.2 mostraram que o comportamento de chegadas e partidas de aeronaves em um determinado dia poderia ser extrapolado para os demais sem que isso afetasse

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Estatística Descritiva: organização dos dados 1 SÉRIES ESTATÍSTICAS

Estatística Descritiva: organização dos dados 1 SÉRIES ESTATÍSTICAS Universidade Estadual de Alagoas UNEAL Campus II Santana do Ipanema Curso: Zootecnia. Disciplina: Estatística Básica. Professor: Wellyngton Chaves Monteiro da Silva Estatística Descritiva: organização

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 8 Testes de hipóteses APOIO: Fundação de Ciência e Tecnologia

Leia mais

HEP-5800 BIOESTATÍSTICA

HEP-5800 BIOESTATÍSTICA HEP-5800 BIOESTATÍSTICA UNIDADE III INFERÊNCIA ESTATÍSTICA : AMOSTRAGEM PROBABILÍSTICA, DISTRIBUIÇÃO AMOSTRAL, INTERVALOS DE CONFIANÇA. Nilza Nunes da Silva Regina T. I. Bernal 2 1. AMOSTRAGEM PROBABILISTICA

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37

Leia mais

CAPÍTULO 5 RESULTADOS. São apresentados neste Capítulo os resultados obtidos através do programa Classific, para

CAPÍTULO 5 RESULTADOS. São apresentados neste Capítulo os resultados obtidos através do programa Classific, para CAPÍTULO 5 RESULTADOS São apresentados neste Capítulo os resultados obtidos através do programa Classific, para as imagens coletadas no verão II, período iniciado em 18/01 e finalizado em 01/03 de 1999,

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016 Planificação a médio e longo prazo Matemática B 11º Ano de escolaridade. Total de aulas previstas: 193 Ano letivo 2015/2016 Professor responsável: Paulo Sousa I O programa Matemática B do 11º Ano - Página

Leia mais

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO Luiz Fernando Stringhini 1 Na tentativa de mostrar as possibilidades de uso das ferramentas da estatística dentro da contabilidade,

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

Análise descritiva de Dados. A todo instante do nosso dia-a-dia nos deparamos com dados.

Análise descritiva de Dados. A todo instante do nosso dia-a-dia nos deparamos com dados. Análise descritiva de Dados A todo instante do nosso dia-a-dia nos deparamos com dados. Por exemplo, para decidir pela compra de um eletrodoméstico, um aparelho eletrônico ou até mesmo na compra de uma

Leia mais

Análise de Desempenho do Google Mapas para Determinação de Melhor Trajeto entre O Bairro Céu Azul e a Cidade Administrativa

Análise de Desempenho do Google Mapas para Determinação de Melhor Trajeto entre O Bairro Céu Azul e a Cidade Administrativa Análise de Desempenho do Google Mapas para Determinação de Melhor Trajeto entre O Bairro Céu Azul e a Cidade Administrativa Cristiano Torres do Amaral crisweb@ig.com.br Pós-Graduação em Engenharia Elétrica

Leia mais

EXPECTATIVA DE CONSUMO DOS PERNAMBUCANOS PARA RECIFE PESQ. Nº 067/2009

EXPECTATIVA DE CONSUMO DOS PERNAMBUCANOS PARA RECIFE PESQ. Nº 067/2009 EXPECTATIVA DE CONSUMO DOS PERNAMBUCANOS PARA 2010.1 RECIFE PESQ. Nº 067/2009 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA: OBJETIVO: verificar a expectativa de consumo dos indivíduos para o primeiro semestre de

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

Estatística Descritiva (I)

Estatística Descritiva (I) Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

ESTATÍSTICA. Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA

ESTATÍSTICA. Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA 1 ESTATÍSTICA Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA Estatística descritiva : o objectivo é sintetizar e representar de uma forma

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência Tabelas e Diagramas de Freqüência Probabilidade e Estatística I Antonio Roque Aula 2 O primeiro passo na análise e interpretação dos dados de uma amostra consiste na descrição (apresentação) dos dados

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

REGRESSÃO E CORRELAÇÃO

REGRESSÃO E CORRELAÇÃO Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Noções de Amostragem

Noções de Amostragem Noções de Amostragem AMOSTRAGEM Amostragem: é a área da estatística que estuda técnicas e procedimentos para retirar e analisar uma amostra com o objetivo de fazer inferência a respeito da população de

Leia mais

Página 2 em diante devem estar contemplados os seguintes itens:

Página 2 em diante devem estar contemplados os seguintes itens: 1 TEMPLATE - Projeto de pesquisa FORMATAÇÃO Fonte: Texto: Arial ou Times New Roman, tamanho 12. Títulos: Arial ou Times New Roman, tamanho 14, negrito Espaço: duplo Margens: 2,5 cm em todas as margens

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

Como avaliar a discriminação de Sistemas de Medição por Variáveis

Como avaliar a discriminação de Sistemas de Medição por Variáveis Como avaliar a discriminação de Sistemas de Medição por Variáveis Por Cristina Werkema Um dos problemas que freqüentemente surgem associados aos sistemas de medição é a utilização de unidades de medida

Leia mais

CONCEITOS FUNDAMENTAIS

CONCEITOS FUNDAMENTAIS CONCEITOS FUNDAMENTAIS ECONOMETRIA É a aplicação de métodos estatísticos e matemáticos na análise de dados econômicos com o propósito de dar conteúdo empírico a teorias econômicas e confirmá-las ou não.

Leia mais

Estatística descritiva básica: Medidas de tendência central

Estatística descritiva básica: Medidas de tendência central Estatística descritiva básica: Medidas de tendência central ACH2021 Tratamento e Análise de Dados e Informações Marcelo de Souza Lauretto marcelolauretto@usp.br www.each.usp.br/lauretto *Parte do conteúdo

Leia mais

PROVA DE QUI-QUADRADO QUADRADO. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM -

PROVA DE QUI-QUADRADO QUADRADO. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - PROVA DE QUI-QUADRADO QUADRADO Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - 1 Objetivos Específicos Identificar as situações que requerem uma Prova de Aderência;

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

Medidas Estatísticas NILO FERNANDES VARELA

Medidas Estatísticas NILO FERNANDES VARELA Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

HEP Bioestatística

HEP Bioestatística HEP 57800 Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Amostragem Aleatória e Descrição de Dados - parte II

Amostragem Aleatória e Descrição de Dados - parte II Amostragem Aleatória e Descrição de Dados - parte II 2012/02 1 Diagrama de Ramo e Folhas 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Construir e interpretar disposições gráficas dos

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Engenharia Informática 3. Ciclo de Estudos 1º

Leia mais