Orientar os alunos na obtenção do critério ângulo, ângulo (AA) de semelhança de triângulos usando como meio algumas atividades experimentais.

Tamanho: px
Começar a partir da página:

Download "Orientar os alunos na obtenção do critério ângulo, ângulo (AA) de semelhança de triângulos usando como meio algumas atividades experimentais."

Transcrição

1 EIXO TEMÁTICO III: ESPAÇO E FORMA Tema 1: Relações geométricas entre figuras planas Tópico 17: Teorema de tales e semelhança de triângulos Objetivos: Orientar os alunos na obtenção do critério ângulo, ângulo (AA) de semelhança de triângulos usando como meio algumas atividades experimentais. Providências para a realização da atividade: Leitura, pelo professor, da OP 18 : Teorema de Tales e semelhança de triângulos. Folhas de papel A4 em branco, papel transparente e tesouras. Conjuntos de réguas, compassos e transferidores. Cópias do texto Descobrindo as condições de semelhança de triângulos" Pré-requisitos: É recomendável que esse roteiro seja precedido pela atividade Uma introdução ao estudo de semelhança com o uso de papel quadriculado. Saber desenhar triângulos, usando régua, compasso e transferidor. Noções básicas de proporcionalidade. Definição de semelhança de triângulos, conceitos e terminologias correspondentes. Descrição dos procedimentos: 1) Propor à turma um problema de determinação de uma medida inacessível cuja solução exija o uso de semelhança de triângulos e deixá-lo em aberto para a conclusão da atividade. Sugestão: Como determinar a altura de um poste, num horário adequado de um dia de sol, conhecendo-se somente a altura do observador. 2) Relembrar a definição de semelhança de triângulos e deixá-la escrita no quadro como referência. 3) Relembrar, se necessário, a construção de um triângulo usando régua e compasso. 4) Dividir os alunos em duplas e distribuir entre elas as folhas de papel, réguas, transferidores, tesouras e as cópias do texto. 5) Dar instruções claras para a realização das tarefas contidas no texto. 6) Acompanhar o trabalho das duplas na realização dos trabalhos, orientando-as no que se fizer necessário. 7) Encerrar a atividade com uma discussão dirigida tendo como objetivo organizar, sistematizar e resumir os resultados. 8) Nessa sistematização o professor deve dar ênfase à: a. Definição de semelhança de triângulos com as suas seis condições: três pares de ângulos de mesma medida e três pares de lados correspondentes proporcionais. b. Identificação ângulos correspondentes e de lados homólogos ou correspondentes.

2 c. Notação usual de semelhança e da importância da ordem nessa notação. d. Economia de trabalho ao se usar o critério AA de semelhança, já que dele decorre a igualdade das medidas do terceiro ângulo e a proporcionalidade dos lados correspondentes e, portanto, dispensa a verificação das outras quatro condições necessárias de semelhança. e. Explicitar e definir o que é razão de semelhança. 9) Discutir coletivamente com a turma a resolução do problema proposto no início da atividade. 10) Texto: Descobrindo as condições de semelhança de triângulos Cumprindo as tarefas a seguir você irá encontrar um resultado interessante e fundamental sobre a semelhança de triângulos que lhe será útil na resolução de muitas situações problema como, por exemplo, aquela que foi proposta pelo professor. 1) Usando a régua e o compasso, construa três triângulos ABC, EFG e MNP cujos lados, em centímetros, meçam respectivamente: Triângulo ABC AB = 4 BC = 3 AC = 2 Triângulo EFG EF = 8 FG = 6 EG = 4 Triângulo MNP MN= 12 NP = 9 MP = 6 2) Observe que esses triângulos têm a mesma forma mas os tamanhos são diferentes. Verifique que: a. As medidas dos lados do triângulo ABC são proporcionais às medidas dos lados correspondentes do triângulo EFG. (Você se lembra? Basta verificar se os quocientes iguais). b. Os lados do triângulo ABC são proporcionais aos lados correspondentes do triângulo MNP. c. Os lados do triângulo EFG são proporcionais aos lados correspondentes do triângulo MNP. são todos 3) Pela definição de semelhança o que está faltando para que se possa concluir que esses três triângulos sejam semelhantes entre si? 4) Corte os dois triângulos menores e por superposição verifique quais são os ângulos correspondentes que têm a mesma medida e escreva os resultados dessa verificação. 5) Depois disso, você pode concluir que os três triângulos são semelhantes? Por quê? 6) Observe os triângulos ABC e DEF da figura a seguir. Os pontos que você vê sobre os lados desses triângulos dividem esses lados em segmentos, todos de mesma medida. (É como se eles fossem construídos usando palitos de fósforo, todos de mesmo comprimento). Você acha que eles são semelhantes? Justifique por escrito a sua

3 7) Note que os ângulos A e C do triângulo ABC têm, respectivamente, as mesmas medidas dos ângulos F e E do triângulo DEF. a. Copie o triângulo ABC numa folha, recorte-o, e verifique por superposição se o ângulo A é igual ao ângulo F e o ângulo C é igual ao ângulo E. b. Use a distância entre dois pontos consecutivos sobre os lados dos triângulos (um palito de fósforo) como unidade de medida de comprimento e calcule os três quocientes entre as medidas dos lados correspondentes dos dois triângulos. Lembre-se que lados correspondentes são aqueles que se opõem aos ângulos de mesma medida. Que conclusão você pode tirar com relação a esses três quocientes? Não se esqueça de simplificá-los. c. Com os resultados da análise que você obteve até agora sobre os dois ângulos e os três lados desses dois triângulos você dá a mesma resposta dada no item 5? Justifique por escrito a sua d. Você sabe que a soma dos ângulos internos de um triângulo é 180º. Sem usar superposição você pode garantir que o ângulo B do triângulo ABC tem a mesma medida do ângulo D do triângulo DEF? Por quê? 8) Na figura abaixo você vê o ponto M sobre o lado EF do triângulo DEF. a. Trace por M a paralela ao lado DE e chame de N a interseção dessa paralela com o lado DF. b. O ângulo F é comum aos triângulos DEF e MFN. Que relação existe entre o ângulo E do triângulo DEF e o ângulo M do triângulo MFN? Por quê? E entre o ângulo D e o ângulo N? Por quê?

4 c. Use a distância entre dois pontos consecutivos sobre os lados dos triângulos (um palito de fósforo) como unidade de medida de comprimento e calcule os três quocientes entre as medidas dos lados do triângulo DEF e as medidas dos lados correspondentes do triângulo MFN. Lembre-se que lados correspondentes são aqueles que se opõem aos ângulos de mesma medida. Que conclusão você pode tirar com relação à esses três quocientes? d. Falso ou verdadeiro? Os triângulos DEF e MFN são semelhantes. Justifique por escrito a sua e. Falso ou verdadeiro? Os triângulos MFN e CAB são semelhantes. Justifique por escrito sua Com esses exercícios que você fez, você verificou o seguinte fato: Se dois triângulos têm dois pares de ângulos de mesma medida então esses triângulos são semelhantes. Esse fato é conhecido como CRITÉRIO DE SEMELHANÇA ÂNGULO, ÂNGULO. Resumidamente critério AA de semelhança. Isto significa que para garantir que dois triângulos sejam semelhantes, BASTA verificar se eles têm dois pares de ângulos de mesma medida e assim garantir que os lados correspondentes são proporcionais. 9) Pense, agora, no problema: Como determinar a altura de um poste, num horário adequado de um dia de sol, conhecendo-se somente a altura do observador. A figura abaixo pode ajudá-lo a resolver esse problema. Suponha que a altura do observador é 1,68 m e sua sombra mede 1,8m. Calcule a altura do poste. Possíveis dificuldades: Os alunos podem, eventualmente, encontrar dificuldades em: Construir triângulos usando régua e compasso. Relacionar, ordenadamente, os lados correspondentes de dois triângulos semelhantes. Perceber que a proporcionalidade dos lados correspondentes de triângulos semelhantes se expressa por um número chamado razão de semelhança. Alerta para riscos: Não Há Glossário: Não Há

5 Roteiro de Atividade: Descobrindo um critério de semelhança de triângulos Currículo Básico Comum - Matemática Ensino Fundamental Autor(a): Prof.: Carlos Afonso Rego. Colb.: Profas. Ângela M. Vidigal e Maria das Graças G. Barbosa. Centro de Referência Virtual do Professor - SEE-MG/2006

Figuras, Triângulos e Problemas Semelhantes

Figuras, Triângulos e Problemas Semelhantes Reforço escolar M ate mática Figuras, Triângulos e Problemas Semelhantes Dinâmica 8 1ª Série 3º Bimestre Professor DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Geométrico Razões trigonométricas

Leia mais

Reconhecer e resolver uma equação do 1º grau com uma incógnita dando significado à definição e às técnicas de resolução.

Reconhecer e resolver uma equação do 1º grau com uma incógnita dando significado à definição e às técnicas de resolução. EIXO TEMÁTICO II: ÁLGEBRA Tema 2: Equações algébricas Tópico 10: Equações do primeiro grau Objetivos: Reconhecer e resolver uma equação do 1º grau com uma incógnita dando significado à definição e às técnicas

Leia mais

Verificação experimental de algumas propriedades geométricas elementares com o uso de dobraduras.

Verificação experimental de algumas propriedades geométricas elementares com o uso de dobraduras. EIXO TEMÁTICO III: ESPAÇO E FORMA Tema 1: Relações geométricas entre figuras planas Tópico 13: Figuras planas Objetivos: Verificação experimental de algumas propriedades geométricas elementares com o uso

Leia mais

4) Após essas atividades de manipulação e usando uma das planificações o professor pode dirigir uma discussão coletiva com perguntas tais como:

4) Após essas atividades de manipulação e usando uma das planificações o professor pode dirigir uma discussão coletiva com perguntas tais como: EIXO TEMÁTICO: ESPAÇO E FORMA Tema: Planificações Tópico: Planificações de figuras tridimensionais Objetivos: O que significa planificar um sólido. Reconhecer as planificações do cubo e do bloco retangular

Leia mais

Prova Brasil de Matemática - 9º ano: espaço e forma

Prova Brasil de Matemática - 9º ano: espaço e forma Avaliações externas Prova Brasil de Matemática - 9º ano: espaço e forma A análise e as orientações didáticas a seguir são de Luciana de Oliveira Gerzoschkowitz Moura, professora de Matemática da Escola

Leia mais

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência

Leia mais

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. » Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os

Leia mais

PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS

PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS 8. PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS 1). Ideia de figuras semelhantes 2). Semelhança de polígonos e triângulos 3). Razão de semelhança 4). Escalas 5). s e problemas 1). Ideia de figuras semelhantes

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

Plano de Recuperação 1º Semestre EF2

Plano de Recuperação 1º Semestre EF2 Professores: Cíntia / Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

MATEMÁTICA 7º ANO SEMELHANÇA DE TRIÂNGULOS

MATEMÁTICA 7º ANO SEMELHANÇA DE TRIÂNGULOS MATEMÁTICA 7º ANO SEMELHANÇA DE TRIÂNGULOS CRITÉRIOS DE SEMELHANÇA DE TRIÂNGULOS CRITÉRIO AA: Dois triângulos são semelhantes se dois ângulos de um são iguais a dois ângulos do outro. CRITÉRIO LAL: Dois

Leia mais

Plano de Recuperação Final EF2

Plano de Recuperação Final EF2 Professor: Cíntia e Pupo Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho Geométrico, nos quais apresentou defasagens e que lhe servirão como pré-requisitos

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/2.ª Chamada/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI

Leia mais

TRIÂNGULOS SEMELHANTES

TRIÂNGULOS SEMELHANTES TRIÂNGULOS SEMELHANTES 1 Soma das amplitudes dos ângulos internos de um triângulo 2 Num triângulo existem três ângulos internos. Em qualquer triângulo, a soma das amplitudes dos seus ângulos internos é

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Caderno 1: 30 minutos. Tolerância: 10 minutos. (com recurso à calculadora)

Caderno 1: 30 minutos. Tolerância: 10 minutos. (com recurso à calculadora) PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/2.ª Chamada/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g)

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) 9º ano Matemática 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) Matemática Avaliação Produtiva 02. Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 03. Determine

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa

Leia mais

Exame Nacional de a chamada

Exame Nacional de a chamada Exame Nacional de 007. a chamada 1. O Paulo tem dois dados, um branco e um preto, ambos equilibrados e com a forma de um cubo. As faces do dado branco estão numeradas de 1 a, e as do dado preto estão numeradas

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos Classificac a o segundo os lados MA092 Francisco A. M. Gomes UNICAMP - IMECC Classificac a o Um tria ngulo e Equila tero, se tem tre s lados congruentes. Iso sceles, se tem dois lados congruentes. Escaleno,

Leia mais

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA. ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em

Leia mais

Teorema do ângulo externo e sua consequencias

Teorema do ângulo externo e sua consequencias Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado

Leia mais

Semelhança de Figuras na Resolução de Problemas

Semelhança de Figuras na Resolução de Problemas Escola Secundária Dr. Augusto César da Silva Ferreira Rio Maior Ano Lectivo 2008/2009 Ficha de Trabalho n.º 9 Nome: N.º Data / / Semelhança de Figuras na Resolução de Problemas Resolver Problemas com Figuras

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Verifique se as afirmações abaixo são verdadeiras ou falsas Justifique sua resposta a) O número é irracional; (0,5

Leia mais

Trabalho 1º Bimestre - 9ºano

Trabalho 1º Bimestre - 9ºano Matéria: Matemática Data de entrega: 23/03/2017 Valor: 10 Trabalho 1º Bimestre - 9ºano TEMA: Problemas envolvendo números inteiros Desenvolvimento e Descrição: 1. Trabalho Individual manuscrito em folha

Leia mais

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 7ºANO 1º Período 2º Período 3º Período Apresentação,

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

Revisional 1º Bim - MARCELO

Revisional 1º Bim - MARCELO 6º Ano Revisional 1º Bim - MARCELO 1) O que você te lembra (ponto, reta e plano) quando obrserva: a) uma cabeça de alfinete; b) um poste; c) um grão de areia; d) o encontro entre duas paredes; e) a capa

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre LINHAS PROPORCIONAIS Geometria Plana PROF. HERCULES SARTI Mestre Exemplo 4: apostila Determine o perímetro do quadrilátero ABCD, circunscritível, da figura. Resolução: Exemplo 4: apostila Determine o perímetro

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo

Leia mais

Módulo de Elementos básicos de geometria plana. Condição de alinhamentos de três pontos e a desigualdade triangular. Oitavo Ano

Módulo de Elementos básicos de geometria plana. Condição de alinhamentos de três pontos e a desigualdade triangular. Oitavo Ano Módulo de Elementos básicos de geometria plana Condição de alinhamentos de três pontos e a desigualdade triangular Oitavo Ano Condição de alinhamentos de três pontos e a desigualdade triangular Exercícios

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I TPC nº 7 entregar no dia 4 0 013 1. O cubo da figura tem as faces paralelas aos planos coordenados

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo.

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. 21 3.6 TRIÂNGULOS Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. Propriedades P1. Num triângulo qualquer, a soma das

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO

Leia mais

Retas e planos. Posições relativas

Retas e planos. Posições relativas Retas e planos. Posições relativas Recordar Noção de Plano Se prolongares indefinidamente e em todas as direções o tampo do quadro, obténs um Plano. Como desenhar um plano é impossível, convencionou-se

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES.

OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES. Luing Argôlo Santos (UESC) discipuluing@yahoo.com.br OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES. Público alvo: Professores da educação básica, graduados e

Leia mais

MAT-230 Diurno 1ª Folha de Exercícios

MAT-230 Diurno 1ª Folha de Exercícios MAT-230 Diurno 1ª Folha de Exercícios Prof. Paulo F. Leite agosto de 2009 1 Problemas de Geometria 1. Num triângulo isósceles a mediana, a bissetriz e a altura relativas à base coincidem. 2. Sejam A e

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

ATIVIDADES ESTRATÉGIAS

ATIVIDADES ESTRATÉGIAS ENSINO BÁSICO Agrupamento de Escolas Nº 1 de Abrantes ESCOLA BÁSICA DOS 2.º E 3.º CICLOS D. MIGUEL DE ALMEIDA DISCIPLINA: MATEMÁTICA ANO: 7º ANO LETIVO 2013/2014 METAS DE APRENDIZAGEM: Multiplicar e dividir

Leia mais

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009 Gabarito da Prova de Matemática ª fase do Vestibular 009 Questão 01: (a) Enuncie o Teorema de Pitágoras Solução: Em todo triângulo retângulo, o quadrado da medida da hipotenusa é igual a soma dos quadrados

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Novas Tecnologias no Ensino da Matemática 2º semestre 2004/2005 Patrícia Alexandra Simões Lopes n.º 27830 Índice: Introdução - Introdução Histórica; - Introdução ao Trabalho;

Leia mais

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides. Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Lista 1 com respostas

Lista 1 com respostas Lista 1 com respostas Professora Nataliia Goloshchapova MAT0105/MAT0112-1 semestre de 2015 Exercício 1. Verifique se é verdadeira ou falsa cada afirmação e justifique sua resposta: (a) (A, B) (C, D) AB

Leia mais

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor

Leia mais

Objectivos Identificar e determinar as razões trigonométricas de ângulos agudos de um triângulo rectângulo.

Objectivos Identificar e determinar as razões trigonométricas de ângulos agudos de um triângulo rectângulo. Tópico Trigonometria do Triângulo Rectângulo. Comentários Objectivos Identificar e determinar as trigonométricas de ângulos agudos de um triângulo rectângulo. Conhecimentos Prévios Noção de triângulo rectângulo,

Leia mais

Usando estas propriedades, provamos que:

Usando estas propriedades, provamos que: Áreas de Polígonos Função área Uma função área é uma função que a cada região delimitada por um polígono, associa um número real com as seguintes propriedades: Regiões delimitada por polígonos congruentes

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega DESENHO Felizes aqueles que se divertem com problemas Matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês) AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções

Leia mais

MATEMÁTICA 3º ANO. Novo programa de matemática Objetivos específicos. Currículo Paulo VI. Números naturais. Relações numéricas Múltiplos e divisores

MATEMÁTICA 3º ANO. Novo programa de matemática Objetivos específicos. Currículo Paulo VI. Números naturais. Relações numéricas Múltiplos e divisores MATEMÁTICA 3º ANO NÚMEROS E OPERAÇÕES Tópicos Números naturais Relações numéricas Múltiplos e divisores Novo programa de matemática Objetivos específicos Realizar contagens progressivas e regressivas a

Leia mais

MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO

MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO Produto Final da Dissertação apresentada à Pontifícia Universidade Católica de São Paulo

Leia mais

UNIDADE 1 ESTATÍSTICA E PROBABILIDADES 9 tempos de 45 minutos

UNIDADE 1 ESTATÍSTICA E PROBABILIDADES 9 tempos de 45 minutos EBIAH 9º ANO PLANIFICAÇÃO A LONGO E MÉDIO PRAZO EBIAH PLANIFICAÇÃO A MÉDIO PRAZO 9º ANO - 1º Período Integração dos alunos 1 tempo ESTATÍSTICA A aptidão para entender e usar de modo adequado a linguagem

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA PLANIFICAÇÃO ANUAL 7.

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA PLANIFICAÇÃO ANUAL 7. AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA PLANIFICAÇÃO ANUAL 7.º ANO ANO LECTIVO 2009/2010 DOMÍNIO TEMÁTICO: NÚMEROS E CÁLCULO 1.º PERÍODO

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA EPECIALIZAÇÃO EM EDUCAÇÃO MATEMÁTICA. Atividade 1

UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA EPECIALIZAÇÃO EM EDUCAÇÃO MATEMÁTICA. Atividade 1 UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA EPECIALIZAÇÃO EM EDUCAÇÃO MATEMÁTICA Atividade 1 Disciplina: Conteúdos e metodologias do ensino de matemática para a Educação Básica

Leia mais

Ampliando os horizontes geométricos

Ampliando os horizontes geométricos Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de

Leia mais

Prova Final de Matemática

Prova Final de Matemática Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 39/0, de 5 de julho Prova 9/.ª Fase Braille, Entrelinha,5, sem figuras Critérios de Classificação Páginas 05 Prova 9/.ª F. CC Página

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO 3.º CICLO (CÓDIGO DA PROVA 92) 21 DE JUNHO 2016

PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO 3.º CICLO (CÓDIGO DA PROVA 92) 21 DE JUNHO 2016 PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO º CICLO (CÓDIGO DA PROVA 9) DE JUNHO 0 Constante de proporcionalidade: k 0 porque o produto das coordenadas de qualquer ponto do gráfico de uma proporcionalidade

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

Escola Secundária c/3º CEB de Lousada

Escola Secundária c/3º CEB de Lousada Escola Secundária c/3º CEB de Lousada Planificação Anual da Disciplina de Matemática 9º Ano Ano Lectivo: 2011/2012 CONTEÚDOS 1º PERÍODO OBJECTIVOS E COMPETÊNCIAS Nº de Tempos (45min.) Equações -Equações

Leia mais

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015

GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015 Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 1ª SÉRIE ENSINO MÉDIO GABARITO PROVA A A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Leia mais

Critérios de correção

Critérios de correção PROBLEMA 1 XXXIX OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (8 de agosto de 2015) Nível (6 o e 7 o anos do Ensino Fundamental) de correção www.opm.mat.br Item a: 1 ponto Encontrar o total

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.

Leia mais

PROPOSTA DE RESOLUÇÃO

PROPOSTA DE RESOLUÇÃO Prova de Avaliação Global MATEMÁTICA Versão 1 Duração da Prova: 90 minutos Junho de 011 9.º Ano de Escolaridade Decreto-Lei n.º 6/011, de 18 de janeiro PROPOSTA DE RESOLUÇÃO Página 1/ 14 1. Na empresa

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Linhas proporcionais. 1 Divisão de um segmento. 2 Linhas Proporcionais. 1.1 Divisão interna Divisão externa. 1.3 Divisão harmônica

Linhas proporcionais. 1 Divisão de um segmento. 2 Linhas Proporcionais. 1.1 Divisão interna Divisão externa. 1.3 Divisão harmônica Linhas proporcionais 1 Divisão de um segmento 1.1 Divisão interna Um ponto M divide internamente um segmento AB na razão k quando pertence ao segmento AB e 1.4.1 Razão Áurea AP P B = AB AP φ 1 = φ + 1

Leia mais