UNIVERSIDADE ESTADUAL DE GOIÁS Unidade Universitária de Ciências Exatas e Tecnológicas Curso de Licenciatura em Matemática

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE ESTADUAL DE GOIÁS Unidade Universitária de Ciências Exatas e Tecnológicas Curso de Licenciatura em Matemática"

Transcrição

1 UNIVERSIDADE ESTADUAL DE GOIÁS Unidade Universitária de Ciências Exatas e Tecnológicas Curso de Licenciatura em Matemática Métodos de Aproximação de Raízes de Funções VICTOR VAZ DE CAMPOS ANÁPOLIS 2015

2 VICTOR VAZ DE CAMPOS Métodos de Aproximação de Raízes de Funções Trabalho de Curso apresentado a Coordenação Adjunta de TC, como parte dos requisitos para obtenção do título de Graduado no Curso de Licenciatura em Matemática da Universidade Estadual de Goiás, sob a orientação da Professora Ma. Selma Marques de Paiva. ANÁPOLIS 2015

3

4 Resumo Este trabalho abrange algumas formas de aproximar raízes de funções utilizando métodos numéricos. Para isto, apresentamos alguns pré-requisitos como: conjuntos, equação da reta, função, sequências, derivada, reta tangente, erro de aproximação etc. Enunciamos quatro métodos para determinar os zeros de uma função: gráfico, bisseção, Newton-Raphson e babilônico, com o intuito de resolver alguns problemas. Como ferramenta da pesquisa utilizamos recursos tecnológicos como softwares gráficos, planilhas eletrônicas e calculadora científica. Esta pesquisa é bibliográfica e tem por objetivo principal comparar a eficiência dos métodos da bisseção e Newton-Raphson, bem como as vantagens e desvantagens da utilização dos mesmos. Com o intuito de verificar que a matemática se encontra em diversas áreas, mostramos algumas aplicações em física, química e engenharia. Palavras-chave: Aproximação, Função, Raiz

5 Agradecimentos À Deus, por não ter me deixado faltar saúde e ter me dado forças para realizar mais uma conquista. À minha família, que sempre esteve ao meu lado durante o curso. À professora Selma Marques de Paiva, pela orientação, apoio e dedicação durante a execução deste trabalho. Pelo tempo disposto e contribuição à minha formação acadêmica, bem como as discussões feitas no laboratório de matemática. À todos os professores do curso de licenciatura em matemática da UEG/UnUCET por terem me ensinado que a matemática é um desencadeamento de ideias e que o pleno entendimento de um conceito depende da compreensão de conceitos anteriores, bem como pela paciência em explicarem tais conceitos. Agradeço também a professora Eliane de Fátima Rodrigues Martins que, mesmo com problemas de saúde, muito contribuiu e inspirou boa parte do trabalho. Aos meus colegas e possíveis formandos 2014: Alessandro, Aymáas, Celiane, Daniela de Jesus, Daniela Ferreira, Elizete, Érica, Evelyn, Juliana, Luana, Maysa, Mírian, Raquel, Renan e Thaís, pela dedicação e compromisso durante o curso. Agradeço a todos que, direta ou indiretamente, tornaram possível a realização deste trabalho.

6 Não há ramo da matemática, por mais abstrato que seja, que não possa um dia vir a ser aplicado aos fenômenos do mundo real. Nicolai Lobackevsky

7 Sumário Introdução Conceitos Básicos Conjuntos Conjuntos Numéricos Equação da Reta Função Sequência Derivada Regras de Arredondamento Intervalo Erro de Aproximação Apresentação dos Métodos Método Gráfico Método da Bisseção Método de Newton-Raphson Método Babilônico Aplicações Problemas de Matemática Financeira Problema de Física Problema de Química Problema de Engenharia Considerações Finais Referências Bibliográficas Apêndice A Calculadora Científica Apêndice B Resolução Problema Apêndice C Resolução Problema Apêndice D Resolução Problema Apêndice E Resolução Problema Apêndice F Resolução Problema

8 Introdução Quem nunca calculou um zero de função? Ao menos na educação básica nos deparamos com a conhecida fórmula de Bháskara, que nada mais é que um algoritmo para encontrar as raízes da função quadrática. Aprofundando no assunto, temos a fórmula de Cardano, que é um algoritmo para resolver equações cúbicas. A partir daí, polinômios do 4 o grau, não existem algoritmos que garantam um resultado exato para a raiz, entrando em cena os métodos numéricos, que podem, e devem, ser usados com o objetivo de aproximar zeros de função, com a tolerância desejada (na k-ésima casa decimal). Neste sentido, o presente trabalho pode ser aplicado nos primeiros períodos dos cursos de ciências exatas, tendo como pré-requisito a disciplina de Cálculo Diferencial e Integral I. Muitos dos conceitos aqui tratados são estudados na disciplina de Cálculo Numérico e para um melhor aproveitamento, faz-se necessário inserir as respectivas interpretações geométricas, pois necessitam de ilustração, como: o teorema de Bolzano, os métodos no sentido de visualizar o comportamento da função, as tangentes etc. Obstante a isto, esta pesquisa quer verificar a eficiência dos métodos da bisseção e de Newton-Raphson, bem como as vantagens e desvantagens da utilização dos mesmos. Este trabalho tem a pretensão de incentivar a pesquisa de tópicos de cálculo e suas aplicações, bem como ampliar a literatura, deixando algumas contribuições relevantes como a resolução dos problemas e um mini-manual ensinando a encontrar raízes de função pela calculadora científica, feito no Apêndice A. Usamos, como ferramentas de pesquisa, livros e recursos tecnológicos como softwares gráficos, planilhas eletrônicas e calculadora científica, com o intuito de que o leitor compreenda a importância do assunto e que ao final da leitura perceba as várias faces do tema escolhido, isto é, que há inúmeras aplicações cujo objetivo se reduz a encontrar raízes de funções. No capítulo 1 apresentamos uma coletânea de alguns conteúdos importantes para o pleno entendimento do trabalho. Tais conteúdos são: conjuntos, conjuntos numéricos, equação da reta, função, sequência, derivada da função polinomial, reta tangente, regras de arredondamento (de acordo com a ABNT Associação Brasileira de Normas Técnicas), intervalos da reta e erro de aproximação. Queremos deixar claro que este capítulo é um apanhado da literatura matemática, de maneira que, se o leitor se interessar, ou tiver maiores dúvidas durante a leitura dos capítulos subsequentes, poderá consultar livros de matemática elementar, como por exemplo a Coleção Fundamentos de Matemática Elementar, do autor Gelson Iezzi com a colaboração de diversos coautores (11 volumes). Já no capítulo 2, tratamos a respeito de alguns métodos de aproximação de raízes. Tais métodos são divididos, segundo BARROSO, em direto e iterativo. O único método direto abordado neste trabalho é o método gráfico. Outros, como o método da bisseção, método de Newton-Raphson e método babilônico são iterativos, isto é, geram uma sequência de pontos que convergem para o nosso objetivo: encontrar o zero da função. No capítulo 3 mostramos algumas aplicações envolvendo zeros de função. Este capítulo, tem por objetivo mostrar ao leitor algumas aplicações acerca do tema desta monografia. Foram

9 selecionados cinco problemas: dois de matemática financeira (sequências de pagamento), um de física (lançamento horizontal), um de química (concentração de íons e ph) e um de engenharia (comprimento de cabo). Estes problemas foram resolvidos com a ajuda da tecnologia, em particular, das planilhas eletrônicas e da calculadora científica, pelos métodos da bisseção e Newton-Raphson, respectivamente. Quanto às resoluções, procuramos ser bem didáticos, explicando passo a passo todo o cálculo envolvido (a função objetivo, o zero da função, a derivada, o método etc.), finalizando com a resposta do problema. O uso da tecnologia para a resolução de métodos numéricos tem facilitado muito o processo, no entanto, é necessário um conhecimento prévio acerca dos recursos tecnológicos escolhidos, é o caso da calculadora científica e das planilhas eletrônicas. Neste sentido, achamos necessário preparar um material auto-explicativo que ensina os comandos da calculadora científica, modelo CASIO fx-82ms, para a resolução dos problemas utilizando o método de Newton- Raphson. Quanto às planilhas eletrônicas, espera-se que o leitor tenha um conhecimento básico das funções, já que as tabelas anexadas foram construídas utilizando o software Microsoft Office Excel. 8

10 Capítulo 1 Conceitos Básicos Pretendemos neste capítulo revisar os conceitos básicos que irão dar suporte à leitura dos métodos numéricos enunciados no próximo capítulo. Os conceitos aqui tratados referem-se a matemática elementar e alguns tópicos de cálculo diferencial. 1.1 Conjuntos Segundo LIMA, em [9], um conjunto é uma coleção de objetos, conhecidos como elementos do conjunto. Normalmente, usam-se letras maiúsculas para denotar os conjuntos e letras minúsculas para denotar os elementos do conjunto. As vogais formam um conjunto e pode ser denotado da seguinte forma M = {a, e, i, o, u}. Figura 1.1: M é o conjunto das vogais Fonte: Elaborada pelo autor Conjuntos Numéricos Conjunto dos Números Naturais (N) N = {0, 1, 2, 3, 4, 5, } Conjunto dos Números Inteiros (Z) Z = {, 3, 2, 1, 0, 1, 2, 3, } Conjunto dos Números Racionais (Q) Q = {p/q, p Z, q Z } Conjunto dos Números Irracionais (I) Conjunto dos Números Reais (R) 1.2 Equação da Reta I p q R = Q I Segundo IEZZI, em [5], equação geral da reta pode ser definida através do seguinte teorema: A toda reta r do plano cartesiano está associada ao menos uma equação da forma ax+by+c = 0 onde a, b, c são números reais, a 0 ou b 0, e (x, y) representa um ponto genérico de r.

11 10 A demonstração deste teorema encontra-se em [5], e se baseia na definição de pontos colineares. Assim, conhecendo a equação geral da reta ax +by +c = 0, admitindo b 0 e isolando y, obtemos a equação reduzida da reta: y = a b x + c b (1.1) Trocando a por m (Coeficiente Angular) e c b b obtemos a tradicional equação reduzida da reta: por n (Coeficiente Linear) na equação (1.1) y = mx + n 1.3 Função Segundo IEZZI, em [6], o conceito de função pode ser escrito da seguinte forma: Dados dois conjuntos reais A e B, não vazios, uma relação f de A em B recebe o nome de aplicação de A em B ou função definida em A com imagens em B se, e somente se, para todo x A existe um só y B tal que (x, y) f. Em notação matemática: fé uma aplicação de A em B ( x A)(! y B (x, y) f) Todo número cuja imagem é nula, recebe o nome de zero da função (ou raiz), em notação f(x) = Sequência Chama-se sequência x n de números reais uma função f : N R, ou seja, uma função cujo domínio é o conjunto dos números naturais. Escreve-se: (f(0), f(1), f(2),, f(n), ) Por convenção, escrevemos com outra notação: (x 0, x 1, x 2,, x n, ) Dizemos que uma sequência converge quando existe um limite e escrevemos lim n x n ou, simplesmente lim x n. Isto é, dado um ɛ > 0, existe um índice n 0 N tal que todos os termos a partir de x n0 são valores aproximados de a com erro menor que ɛ. Em notação: Dado ɛ > 0 n 0 N; n > n 0 x n a < ɛ

12 Derivada Derivada da função polinomial Toda função polinomial de grau n com coeficientes constantes a i s, é da forma: n p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + a 3 x a n x n (1.2) i=0 A derivada de (1.2) é definida por: p (x) = n ia i x i 1 = 0 + a 1 + 2a 2 x + 3a 3 x na n x n 1 i=0 Reta Tangente Dada a equação geral da reta y y 0 = m(x x 0 ), uma reta tangente ao ponto (x 0, y 0 ) é definida por: y y 0 = f (x 0 )(x x 0 ) Onde f (x 0 ) é a derivada aplicada no ponto x 0, em outras palavras, é o coeficiente angular m, ou melhor, a tangente do ângulo que a reta faz com o eixo x. Exemplo. Na figura abaixo temos a função f(x) = x e a reta tangente, ao ponto (1, 1), g(x) = x Figura 1.2: Reta tangente ao gráfico de f(x) = x no ponto (1, 1) Fonte: Elaborada pelo autor Nota: Gráfico construído utilizando o software Winplot 1.4 Regras de Arredondamento Para esta seção pesquisamos diretamente nas normas da ABNT, em [1]. Tais regras são: 1 a - Quando o algarismo imediatamente seguinte ao último algarismo a ser conservado for inferior a 5, o último algarismo a ser conservado permanecerá sem modificação.

13 12 2 a - Quando o algarismo imediatamente seguinte ao último algarismo a ser conservado for superior a 5, ou sendo 5, for seguido de no mínimo um algarismo diferente de zero, o último algarismo a ser conservado deverá ser aumentado de uma unidade. 3 a - Quando o algarismo imediatamente seguinte ao último algarismo a ser conservado for 5 seguido de zeros, dever-se-á arredondar o algarismo a ser conservado para o algarismo par mais próximo. Consequentemente, o último algarismo a ser retido, se for ímpar, aumentará uma unidade. 4 a - Quando o algarismo imediatamente seguinte ao último algarismo a ser conservado for 5 seguido de zeros, se for par o algarismo a ser conservado, ele permanecerá sem modificação. 1.5 Intervalo Chama-se intervalo a todo subconjunto da reta real. Segundo LEITHOLD, em [7], o intervalo pode ser aberto, fechado, semiaberto a esquerda ou semiaberto a direita. i. Intervalo aberto: É quando os extremos não pertencem ao subconjunto real. Notação: (a, b) = {x a < x < b} ii. Intervalo fechado: É quando os extremos pertencem ao subconjunto real. Notação: [a, b] = {x a x b} iii. Intervalo semi-aberto a esquerda: É quando apenas o lado direito pertence ao subconjunto real. Notação: (a, b] = {x a < x b} iv. Intervalo semi-aberto a direita: É quando apenas o lado esquerdo pertence ao subconjunto real. Notação: [a, b) = {x a x < b} 1.6 Erro de Aproximação O erro que se comete numa aproximação é calculado pelo módulo da diferença entre o valor real (y) e o valor aproximado (x). Em notação: Erro = y x O erro é sempre um número positivo, chamado de tolerância e indicado por ɛ. Por exemplo: Digamos que se queira aproximar uma raiz na 4 a casa decimal, isto é equivalente a dizer que queremos uma tolerância menor que Em Notação: ɛ 10 4 Finalizamos aqui este capítulo na esperança que o leitor tenha compreendido os conceitos aqui tratados para serem utilizados no restante deste trabalho.

14 Capítulo 2 Apresentação dos Métodos Este capítulo está dividido em quatro seções, tendo como principais referências BARROSO, em [2], BOYER, em [3] e LIMA, em [8]. Primeiramente, abordaremos um método intuitivo que requer apenas a observação do gráfico de duas funções. Na segunda seção, discorreremos sobre o método da bisseção que consiste em cortar um certo intervalo (a, b) ao meio com o objetivo de aumentar as chances de aproximar um zero de função contido neste intervalo. Assim, cada vez que cortamos um intervalo e um novo intervalo, iterativamente ao meio, estamos encontrando, com maior precisão, a raiz desejada. Já na terceira seção, deduziremos a fórmula do método de Newton-Raphson ou método das tangentes, já que utiliza este artifício para aproximar zeros de função. Iremos também, deduzir um caso particular de Newton-Raphson: a fórmula do método babilônico. 2.1 Método Gráfico Uma raiz real de uma função é um ponto onde a função f(x) toca o eixo das abscissas (eixo x). Para encontrarmos tal número é necessário esboçar o gráfico de f(x) e averiguar as proximidades desse ponto que anula a função. Vamos enunciar o método: Uma maneira de resolver este problema é encontrar duas funções g e h tal que: g(x) h(x) = f(x) Assim, o ponto onde a função f zera é o ponto de interseção entre as funções g e h. Digamos que a raiz da função f seja ξ, ou seja, f(ξ) = 0. O método acima garante encontrar um intervalo significativo que contenha esse zero de função uma vez que vale a seguinte equivalência: f(ξ) g(ξ) = h(ξ) Exemplo. Encontrar intervalos significativos, que garantam boas aproximações, para as raízes da equação 1 9 x3 x = 0.

15 14 Com base no método gráfico, a raiz desejada pode ser encontrada através da comparação dos gráficos das funções g(x) = 1 9 x3 e h(x) = x 1 3, visto que a equação 1 9 x3 x = 0 é equivalente a g(x) h(x) = 0. Figura 2.1: Interseções entre os gráficos de g(x) = 1 9 x3 e h(x) = x 1 3 Fonte: Elaborada pelo autor Nota: Gráfico construído utilizando o software Winplot Assim, as interseções das funções g e h são as raízes da equação 1 9 x3 x+ 1 = 0. Percebe-se, 3 pela análise do gráfico acima, que existem 3 raízes reais e distintas: ξ 1, ξ 2 e ξ 3. Concluindo: ξ 1 ( 4, 3); ξ 2 (0, 1) e ξ 3 (2, 3) Os intervalos que encontramos estão bem construídos, já que as raízes da equação objetivo são: ξ 1 = 3, 15452, ξ 2 = 0, e ξ 3 = 2, com uma aproximação de 5 casas decimais. 2.2 Método da Bisseção Antes de apresentarmos o método da bisseção, vamos expor o teorema de Bolzano. Segundo BARROSO, em [2], este teorema é uma condição necessária para a existência (ou não) de zeros de função num certo intervalo (a, b). Seja f(x) = 0 uma equação algébrica com coeficientes reais e x (a, b). i. Se f(a) f(b) < 0, então existe um número ímpar de raízes reais (contando suas multiplicidades) no intervalo (a, b). Ver figura (2.2a); ii. Se f(a) f(b) > 0, então existe um número par de raízes reais (contando suas multiplicidades) ou não existem raízes reais no intervalo (a, b). Ver figura (2.2b) e (2.2c).

16 15 (a) f(a) f(b) < 0 (b) f(a) f(b) > 0 (c) f(a) f(b) > 0 Figura 2.2: Exemplos de gráficos envolvendo o teorema de Bolzano Fonte: Adaptadas de BARROSO, 1987, p.92,94 e 95 Nos exemplos acima, verifica-se em (a) a primeira condição do teorema de Bolzano, visto que no intervalo (a, b) existem um número ímpar de raízes. Já em (b) e (c) verifica-se a segunda condição do teorema já que, respectivamente, não existe nenhuma raiz entre (a, b) e existe um número par de raízes entre (a, b). Motivados pelo teorema, vamos enunciar o método da bisseção: Seja f(x) uma função contínua no intervalo [a, b] e f(a) f(b) < 0, queremos encontrar um número ξ tal que f(ξ) = 0. Dividindo o intervalo [a, b] ao meio obtém-se x 0, havendo, pois, dois subintervalos, [a, x 0 ] e [x 0, b], a serem considerados. i. Se f(x 0 ) = 0, então, ξ = x 0 (Ou seja, x 0 já é a raiz); ii. Caso contrário, a raiz estará no subintervalo onde a função tem sinais opostos nos pontos extremos, ou seja, se f(a) f(x 0 ) < 0, então, ξ (a, x 0 ); senão f(a) f(x 0 ) > 0 e ξ (x 0, b). O novo intervalo [a 1, b 1 ] que contém ξ é dividido ao meio e obtém-se o ponto x 1. O processo se repete até que se obtenha uma aproximação para a raiz ξ, com a precisão desejada.

17 16 Figura 2.3: Interpretação geométrica do método da bisseção Fonte: Adaptado de BARROSO, 1987, p.107 Talvez por causa da semelhança com o teorema enunciado anteriormente, este método também é conhecido por método de Bolzano. Análise da Convergência Como a cada iteração dividimos ao meio o intervalo [a, b], na n-ésima iteração o comprimento do intervalo será: b n a n = b a 2 n O mínimo de iterações necessárias é encontrado a partir da tolerância ɛ. Assim: b n a n < ɛ b a < ɛ 2 n b a < 2 n ɛ ( ) b a ln < n ln 2 ɛ n > ln ( ) b a ɛ ln 2 (2.1) Assim, para calcularmos a raiz, com tolerância ɛ, de uma função serão necessárias, no mínimo, n iterações, onde n é dado pela expressão (2.1). 2.3 Método de Newton-Raphson Seja f : [a, b] R uma função contínua e ξ seu único zero; as derivadas f (x) e f (x) devem ser contínuas, com f (x) 0. Encontra-se uma aproximação x n para a raiz ξ fazendo uma expansão em série de Taylor para f(x) = 0.

18 17 f(x) = 1 m=0 f (m) (x n ) (x x n ) m m! O somatório da equação acima é chamado de polinômio de Taylor de ordem 1, centrado em x n. Se desenvolvermo-lo, encontraremos um resultado bastante familiar, a reta tangente ao ponto x n : f(x) = f(x n ) + f (x n )(x x n ) Sabendo que a aproximação x n+1 é melhor que x n e f(x n+1 ) está suficientemente próximo de zero: { f(x) = f(x n ) + f (x n )(x x n ) f(x n+1 ) = 0 { f(x n+1 ) = f(x n ) + f (x n )(x n+1 x n ) f(x n+1 ) = 0 Obtemos: f(x n+1 ) = f(x n ) + f (x n )(x n+1 x n ) = 0 x n+1 x n = f(x n) f (x n ) x n+1 = x n f(x n) f (x n ) (2.2) A equação (2.2) é a fórmula do método de Newton-Raphson, também conhecido por método das tangentes, visto que a aproximação se dá por retas tangentes. Na figura (2.4) observamos que a reta tangente no ponto x 1 nos dá uma aproximação melhor para a raiz ξ que no ponto x 0. Para melhorarmos tal aproximação devemos construir uma reta tangente no ponto x 2 e assim sucessivamente, até que se obtenha uma aproximação com a precisão desejada. Figura 2.4: Interpretação geométrica do método de Newton Fonte: Adaptado de BARROSO, 1987, p.123

19 18 Escolha de x 0 Segundo BARROSO, em [2], é condição suficiente para que o método de Newton-Raphson venha a convergir que f (x) e f (x) sejam não nulas, e que preservem os sinal em [a, b]. A escolha de x 0 deve ser, tal que f(x 0 ) f (x 0 ) > 0. Análise da Convergência Sendo ξ o único zero em [a, b] e aplicando o limite na expressão de Newton-Raphson, obtemos: x n+1 = x n f(x n) f (x n ) lim x n+1 = lim x n lim f(x n) f (x n ) ξ = ξ f(ξ) f (ξ) f(ξ) = 0 O que verifica a convergência do algoritmo de Newton-Raphson, isto é, converge para ξ. Portanto, o método de Newton-Raphson consiste em: Seja f uma função contínua no intervalo [a, b], de classe C 2 (f (x) e f (x) contínuas) e ξ um único zero neste intervalo. A equação (2.2) garante uma boa aproximação para ξ, isto é, converge para a raiz de f. 2.4 Método Babilônico Vamos encontrar um caso particular do método da seção anterior a partir da seguinte função iterativa: f(x n ) = x 2 n a (2.3) Derivando (2.3): f (x n ) = 2x n (2.4) Substituindo (2.3) e (2.4) em (2.2), temos: x n+1 = x n x2 n a 2x n x n+1 = 2x2 n x 2 n + a 2x n x n+1 = x2 n + a 2x n

20 19 x n+1 = x n 2 + a 2x n ) (x n + axn x n+1 = 1 2 (2.5) A equação (2.5) nos dá uma boa aproximação para a raiz quadrada de a. Este resultado já era conhecido pelos babilônicos (2000 a.c a.c.) muito antes de Isaac Newton ( ). É um resultado prático, pois a melhor aproximação envolve apenas a média aritmética de x n e a x n. O algoritmo babilônico pode ser resumido através dos seguintes passos: i. Inicie com um número arbitrário x n (Aproximação inicial); ii. Substitua x n pela média aritmética de x n e a x n ; iii. Repita o segundo passo para obter uma melhor aproximação. Vimos neste capítulo quatro métodos de aproximação de raízes de funções e apresentaremos no capítulo seguinte algumas aplicações para que o leitor se familiarize mais com o conteúdo e saiba aplicá-los em diferentes áreas.

21 Capítulo 3 Aplicações Neste capítulo resolveremos aplicações de matemática financeira, física, química e engenharia. Utilizaremos como ferramentas para a resolução destes problemas a planilha eletrônica Microsoft Office Excel e a calculadora científica (modelo CASIO fx-82ms), que serão resolvidos pelos métodos da bisseção e Newton-Raphson, respectivamente. Os enunciados dos problemas foram retirados do capítulo três (Equações Algébricas e Transcendentes) da referência [2]. É recomendado o estudo do apêndice A antes da leitura deste capítulo, já que o mesmo tem a pretensão de ensinar a resolver problemas de cálculo numérico, pelo método de Newton- Raphson, utilizando a calculadora científica. Vale ressaltar que a escolha da aproximação inicial não foi tão rigorosa. Aconselhamos a tentativa, sempre acompanhada do bom senso (teoria fundamentada e aplicação). 3.1 Problemas de Matemática Financeira Problema 1. O preço à vista (PV) de uma mercadoria é R$ , 00 mas pode ser financiado com uma entrada (E) de R$ , 90 e 12 (P) prestações mensais (PM) de R$ , 00. Calcular os juros (j) sabendo que: 1 (1 + j) P j = P V E P M (3.1) Antes da resolução do problema, façamos uma mudança de variável na equação (3.1). Chamando x = 1 + j e k = P V E, obtemos a seguinte função de x: P M Derivando (3.2): Pelo método da bisseção f(x) = 1 x P k(x 1) (3.2) f (x) = P x P 1 k (3.3) A tabela que resolve este problema pelo método da bisseção encontra-se no Apêndice B. Pelo método de Newton-Raphson Aproximação inicial: 2 (Armazenado na variável A)

22 21 Arredondamento: 4 casas decimais. Substituindo (3.1) e (3.3) em (2.2) sendo P = 12 prestações mensais, obtemos: x n+1 = x n 1 x 12 k(x 1) 12x 13 k (3.4) Escrevendo (3.4) na calculadora científica: A ((1 A 12 B(A 1)) (12A 13 B)) Observação: A variável B é representada pela fração constante k = P V E P M. Obtemos as seguintes iterações: x 0 = 2; x 1 = 1, 1175; x 2 = 1, 0712; x 3 = 1, 0592; x 4 = 1, 0576; x 5 = 1, 0575 Resposta: Concluímos, pelos dois métodos, que a expressão (1 + j) vale 1, Logo, os juros cobrados neste financiamento são de 0, 0575 ao mês (5,75% ao mês). Problema 2. Quais serão os juros se o plano de pagamento for uma entrada de R$ , 00 e 18 prestações mensais de R$ , 00? Pelo método da bisseção A tabela que resolve este problema pelo método da bisseção encontra-se no Apêndice C. Pelo método de Newton-Raphson Aproximação inicial: 2 (Armazenado na variável A) Arredondamento: 4 casas decimais. Substituindo (3.1) e (3.3) em (2.2) sendo P = 18 prestações mensais, obtemos: x n+1 = x n 1 x 18 k(x 1) 18x 19 k (3.5) Escrevendo (3.5) na calculadora científica: A ((1 A 18 B(A 1)) (18A 19 B)) Observação: A variável B é representada pela fração constante k = P V E P M. Obtemos as seguintes iterações: x 0 = 2; x 1 = 1, 1000; x 2 = 1, 0745;

23 22 x 3 = 1, 0709; x 4 = 1, 0708 Resposta: Concluímos, pelos dois métodos, que a expressão (1 + j) vale 1, Logo, os juros cobrados neste financiamento são de 0, 0708 ao mês (7,08% ao mês). 3.2 Problema de Física Problema 3. Uma bola é arremessada para cima com velocidade v 0 = 30 m/s a partir de uma altura x 0 = 5 m, em um local onde a aceleração da gravidade é g = 9, 81 m/s 2. Sabendo que: h(t) = x 0 + v 0 t gt2 qual será o tempo gasto para a bola tocar o solo, desconsiderando o atrito com o ar? A função correspondente ao problema é: Figura 3.1: Ilustração para a situação do Problema 3 Fonte: Elaborada pelo autor Derivando (3.6): Pelo método da bisseção h(t) = t 4, 905t 2 (3.6) h (t) = 30 9, 81t A tabela que resolve este problema pelo método da bisseção encontra-se no Apêndice D. Pelo método de Newton-Raphson

24 23 Aproximação inicial: 10 segundos (Armazenado na variável A) Arredondamento: 4 casas decimais. Encontrar o tempo que a bola gasta para tocar o solo é o mesmo que encontrar a raiz de h(t). A fórmula de Newton-Raphson associada ao problema é: Escrevendo (3.7) na calculadora científica: t n+1 = t n h(t n) h (t n ) (3.7) Obtemos as seguintes iterações: A ((5 + 30A 4, 905A 2 ) (30 9, 81A)) t 0 = 10s; t 1 = 7, 2761s; t 2 = 6, 3965s; t 3 = 6, 2806s; t 4 = 6, 2786s Resposta: Concluímos, pelos dois métodos, que nesta situação, o tempo gasto para a bola tocar o solo é de 6, 2786 segundos. 3.3 Problema de Química Problema 4. O ph de soluções diluídas de ácido fraco é calculado pela fórmula: Onde: [H 3 O + ] 3 + K a [H 3 O + ] 2 (K a C a + K w )[H 3 O + ] K w K a = 0 (3.8) ph = log[h 3 O + ] K a : constante de dissociação do ácido; C a : concentração do ácido; K w : produto iônico da água. Calcular o ph de uma solução de ácido bórico a 24 C, sabendo que: K a : 6, M; C a : 1, M; K w : 1, M 2. A solução deste problema será dividida em duas partes: Encontrar a concentração de íons ácido bórico (H 3 O + ). Depois, com este resultado, o ph de uma solução contendo ácido bórico por meio da fórmula (3.9): ph = log[h 3 O + ] (3.9) Desta maneira, comecemos a mudança de variável. Adotemos [H 3 O + ] como x. Substituindo os dados do problema em (3.8) obtemos a seguinte função de x:

25 24 f(x) = x 3 + 6, x 2 1, x 6, (3.10) O objetivo do problema é resolver f(x) = 0. Derivando (3.10): Pelo método da bisseção f (x) = 3x 2 + 1, x 1, A tabela que resolve este problema pelo método da bisseção encontra-se no Apêndice E. Pelo método de Newton-Raphson Aproximação Inicial: 10 6 ; Arredondamento: 2 a casa decimal. A fórmula de Newton-Raphson associada ao problema é: x n+1 = x n f(x) f (x) Escrevendo (3.11) na calculadora científica: (3.11) A ((A 3 +6, 5E 10 A 2 1, 65E 14 A 6, 5E 24) (3A 2 +1, 3E 9 A 1, 65E 14)) Obtemos as seguintes iterações: x 0 = 10 6 ; x 1 = 6, ; x 2 = 4, ; x 3 = 3, ; x 4 = 2, ; x 5 = 1, ; x 6 = 1, ; x 7 = 1, ; x 8 = 1, ; Resposta: Assim, a concentração de íons ácido bórico é de 1, Substituindo este resultado em (3.9), concluímos que o ph de uma sólução de ácido bórico é, ph 6, Problema de Engenharia Problema 5. Determinar o comprimento (L) de um cabo suspenso em dois pontos do mesmo nível e distantes (2x) 400 m, com flecha (f) de 100 m, sabendo que: ( x L = 2a sinh (3.12) a) sendo a a raiz da equação: [ ( x ] a cosh 1 f = 0 (3.13) a)

26 25 Figura 3.2: Ilustração para a situação do Problema 5 Fonte: Adaptado de FRANCO, 2006, p.109 Substituindo os dados do problema em (3.13) obtemos: [ ( ) ] 200 f(a) = a cosh (3.14) a Nosso problema decai em encontrar o zero de f(a). Derivando (3.14) obtemos: ( ) [ ( ) ] f (a) = cosh 1 a sinh a a a 2 (3.15) A derivada (3.15) não é tão elementar, uma vez que exige conhecimentos básicos de cálculo como a regra do produto e a regra da cadeia para funções trigonométricas, tópicos estes que podem ser facilmente encontrados em livros de cálculo 1, por exemplo [7]. Pelo método da bisseção A tabela que resolve este problema pelo método da bisseção encontra-se no Apêndice F. Pelo método de Newton-Raphson Aproximação inicial: 100; Arredondamento: 4 a casa decimal. A fórmula de Newton-Raphson associada ao problema é: x n+1 = x n f(a) f (a) Escrevendo (3.16) na calculadora científica: (3.16) A ((A(cosh(200 A) 1) 100) ((cosh(200 A) 1) A(sinh(200 A) (200 A 2 )))) Obtemos as seguintes iterações: a 0 = 100; a 1 = 139, 2338; a 2 = 182, 2935; a 3 = 208, 9070; a 4 = 214, 6665; a 5 = 214, 8638; a 6 = 214, 8640

27 26 Resposta: Chegamos, pelos dois métodos, que a raiz da equação (3.13) é a = 214, Substituindo este resultado em (3.12) e sabendo que x = 200, concluímos que L 460, 3164 metros. Neste capítulo resolvemos cinco situações-problema pelos métodos da bisseção e Newton- Raphson. Para as considerações finais iremos comparar estes resultados e tirar algumas conclusões sobre algumas das vantagens e desvantagens da utilização de tais métodos.

28 Considerações Finais Neste trabalho discorremos sobre quatro métodos de aproximação de raízes, com a preocupação de situar o leitor em diversos contextos matemáticos. Para isso, enunciamos os métodos com o intuito de resolver as aplicações do capítulo três. Os cinco problemas deste capítulo foram resolvidos por dois métodos, bisseção e Newton, com o objetivo de averiguarmos a eficiência dos mesmos, bem como suas vantagens e desvantagens. A tabela abaixo mostra, resumidamente, quantas iterações foram necessárias para resolver cada problema pelos dois métodos. Iterações Bisseção Newton Problema Problema Problema Problema Problema Resultados do capítulo 3 Ao analisarmos esta tabela e o que abordamos neste trabalho, podemos concluir que: 1. O método de Newton tem uma convergência extraordinariamente rápida ao compará-lo com o método da bisseção; 2. O algoritmo de Newton tem excessiva bagagem teórica, visto que o leitor deve compreender o conceito de derivada e associá-la à reta tangente; 3. Apesar do método da bisseção ser muito lento, ele é de fácil compreensão, isto é, não requer conceitos muito profundos, apenas conceitos básicos como intervalo de reta, divisão do intervalo etc. Percebe-se uma relação entre os métodos, isto é, um complementa o outro. Por exemplo, para encontrarmos uma raiz podemos utilizar o método gráfico para uma primeira aproximação e, assim, recorrer a um método iterativo para melhorá-la. Quanto aos outros métodos, caso o leitor não conheça um intervalo significativo espera-se que utilize o método de Newton. Lembrando que o número de iterações depende sempre da aproximação inicial, por isso ressaltamos a importância da análise de convergência bem como de uma boa escolha de x 0. Este trabalho é mais um exemplo de que a matemática pode ser aplicada em outras áreas, apresentamos aqui seu uso em física, química e engenharia. Percebemos também que o uso da tecnologia para a resolução de métodos numéricos facilita e agiliza o processo de resolução dos problemas. Para finalizar, fica para o a leitor a sugestão de que ele pesquise outros métodos iterativos, tais como: método das cordas, método Pégaso e o método da iteração linear.

29 Referências Bibliográficas [1] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Online. NBR 5891: Regras de Arredondamento na Numeração Decimal. Rio de Janeiro, Disponível em < capturado em 08 ago [2] BARROSO, L. C. et al. Cálculo Numérico (Com Aplicações), 2 a ed. São Paulo: Harbra Editora, p. [3] BOYER, C. B. História da Matemática. Tradução de Elza Furtado Gomide. 11 a ed. São Paulo: Edgard Blucher, p. [4] FRANCO, N. B. Cálculo Numérico, 2 a ed. São Paulo: Pearson Prentice Hall, p. [5] IEZZI, G. Fundamentos de Matemática Elementar 7: Geometria Analítica. 1 a ed. São Paulo: Atual Editora, p. [6] IEZZI, G., MURAKAMI, C. Fundamentos de Matemática Elementar 1: Conjuntos e Funções. 3 a ed. São Paulo: Atual Editora, p. [7] LEITHOLD, L. O Cálculo com Geometria Analítica Volume 1, 3 a ed. São Paulo: Harbra Editora, p. [8] LIMA, E. L. et al. A Matemática do Ensino Médio Volume 1. 2 a ed. Rio de Janeiro: SBM, p. [9] LIMA, P. C. Fundamentos de Análise I. 1 a ed. Belo Horizonte: CAED-UFMG, p. [10] PAPELARIA UNIVERSITÁRIA. Online. Calculadora Científica fx-82ms - Casio. Disponível em: < 82ms-casio.htm>, Capturado em 03 set [11] SILVA, G. L. Online. Segredos da CASIO FX-82MS: Tudo o que o manual não ensina. Engenharia Cotidiana, capturado do blog < Obra licenciada sobre Licença Creative Commons: 2012.

30

31 Apêndice A Calculadora Científica Neste apêndice iremos ensinar os comandos básicos da calculadora científica, modelo CA- SIO fx-82ms, para o cálculo aproximado de raízes de funções utilizando o método de Newton- Raphson. Adaptado de SILVA, referência [11]. Calculadora Científica Modelo CASIO fx-82ms Fonte: Papelaria Universitária, capturada em 03 set Usaremos um exemplo para explicar. Digamos que nosso objetivo é encontrar uma aproximação para É equivalente a encontrar a raiz da função f(x) = x Com um pouco de esforço, percebemos que essa raiz se encontra no intervalo fechado [4, 5]. Consideremos o arredondamento na 4 a casa decimal. O primeiro passo é configurar a calculadora para fazer o arredondamento. Tecle MODE até aparecer FIX; Tecle 1 (Para selecionar FIX); Tecle 4 que são as 4 casas decimais. O segundo passo é armazenar na calculadora a aproximação inicial, que no nosso caso é 4. Assim, vamos armazenar essa aproximação na variável A. Digite 4; Tecle SHIFT; STO; A.

32 31 Agora, lembremos que a fórmula de Newton-Raphson é x n+1 = x n f(x n) f (x n ), onde: f(x n ) = x 5 n 2014 e f (x n ) = 5x 4 n Onde x n é o valor gravado em A. Feito isso, vamos escrever a fórmula de Newton-Raphson na calculadora. Cuidado, é um procedimento que requer bastante cautela. Deve-se digitar a seguinte expressão na calculadora: A ((A ) (5A 4 )) Lembrando que para digitar a letra A basta apertar a tecla ALPHA seguida de A. Assim, apertando a tecla igual (=), teremos a primeira iteração (4, 7734). Para encontrar as outras iterações devemos fazer o segundo passo novamente, só que com o 4,7734 no visor. Ou seja, tecle SHIFT + STO + A. Depois é só apertar igual novamente. Todas as vezes que apertar igual será feita uma iteração. No nosso exemplo temos: 1. 4, , , , 5794 A partir de 4, 5794 as iterações começam a repetir, pois a calculadora já encontrou todos os possíveis resultados com 4 casas decimais. Daí concluímos que, = 4, 5794 com uma precisão de 4 casas decimais.

33 Apêndice B Resolução Problema 1 k a b x f(a) f(b) f(x) b a 0 1,0001 2,0000 1,5001 0,0003-7,4982-3,2571 0, ,0001 1,5001 1,2501 0,0003-3,2571-1,1938 0, ,0001 1,2501 1,1251 0,0003-1,1938-0,3061 0, ,0001 1,1251 1,0626 0,0003-0,3061-0,0145 0, ,0001 1,0626 1,0313 0,0003-0,0145 0,0431 0, ,0313 1,0626 1,0470 0,0431-0,0145 0,0244 0, ,0470 1,0626 1,0548 0,0244-0,0145 0,0072 0, ,0548 1,0626 1,0587 0,0072-0,0145-0,0031 0, ,0548 1,0587 1,0567 0,0072-0,0031 0,0022 0, ,0567 1,0587 1,0577 0,0022-0,0031-0,0005 0, ,0567 1,0577 1,0572 0,0022-0,0005 0,0009 0, ,0572 1,0577 1,0575 0,0009-0,0005 0,0002 0, ,0575 1,0577 1,0576 0,0002-0,0005-0,0001 0, ,0575 1,0576 1,0575 0,0002-0,0001 0,0000 0,0001 Resolução do problema 1 pelo método da bisseção Fonte: Elaborada pelo Autor Nota: Tabela construída pelo software Microsoft Office Excel

34 Apêndice C Resolução Problema 2 k a b x f(a) f(b) f(x) b a 0 1,0001 2,0000 1,5001 0,0008-9,0000-4,0012 0, ,0001 1,5001 1,2501 0,0008-4,0012-1,5187 0, ,0001 1,2501 1,1251 0,0008-1,5187-0,3707 0, ,0001 1,1251 1,0626 0,0008-0,3707 0,0388 0, ,0626 1,1251 1,0938 0,0388-0,3707-0,1374 0, ,0626 1,0938 1,0782 0,0388-0,1374-0,0400 0, ,0626 1,0782 1,0704 0,0388-0,0400 0,0021 0, ,0704 1,0782 1,0743 0,0021-0,0400-0,0183 0, ,0704 1,0743 1,0724 0,0021-0,0183-0,0080 0, ,0704 1,0724 1,0714 0,0021-0,0080-0,0029 0, ,0704 1,0714 1,0709 0,0021-0,0029-0,0004 0, ,0704 1,0709 1,0706 0,0021-0,0004 0,0009 0, ,0706 1,0709 1,0708 0,0009-0,0004 0,0002 0, ,0708 1,0709 1,0708 0,0002-0,0004-0,0001 0,0001 Resolução do problema 2 pelo método da bisseção Fonte: Elaborada pelo Autor Nota: Tabela construída pelo software Microsoft Office Excel

35 Apêndice D Resolução Problema 3 k a b t h(a) h(b) h(t) b a 0 2,0000 8,0000 5, , , ,3750 6, ,0000 8,0000 6, , ,9200-7,2363 3, ,0000 6,5000 5, ,3750-7, ,3284 1, ,7500 6,5000 6, ,3284-7,2363 4,7359 0, ,1250 6,5000 6,3125 4,7359-7,2363-1,0778 0, ,1250 6,3125 6,2188 4,7359-1,0778 1,8722 0, ,2188 6,3125 6,2656 1,8722-1,0778 0,4080 0, ,2656 6,3125 6,2891 0,4080-1,0778-0,3322 0, ,2656 6,2891 6,2773 0,4080-0,3322 0,0386 0, ,2773 6,2891 6,2832 0,0386-0,3322-0,1466 0, ,2773 6,2832 6,2803 0,0386-0,1466-0,0540 0, ,2773 6,2803 6,2788 0,0386-0,0540-0,0077 0, ,2773 6,2788 6,2781 0,0386-0,0077 0,0154 0, ,2781 6,2788 6,2784 0,0154-0,0077 0,0039 0, ,2784 6,2788 6,2786 0,0039-0,0077-0,0019 0, ,2784 6,2786 6,2785 0,0039-0,0019 0,0010 0, ,2785 6,2786 6,2786 0,0010-0,0019-0,0005 0,0001 Resolução do problema 3 pelo método da bisseção Fonte: Elaborada pelo Autor Nota: Tabela construída pelo software Microsoft Office Excel

36 Apêndice E Resolução Problema 4 k a b x f(a) f(b) f(x) b a 0 1,00E-06 1,00E-08 5,05E-07 9,84E-19-1,70E-22 1,21E-19-9,90E ,05E-07 1,00E-08 2,58E-07 1,21E-19-1,70E-22 1,29E-20-4,95E ,58E-07 1,00E-08 1,34E-07 1,29E-20-1,70E-22 1,91E-22-2,48E ,34E-07 1,00E-08 7,19E-08 1,91E-22-1,70E-22-8,18E-22-1,24E ,34E-07 7,19E-08 1,03E-07 1,91E-22-8,18E-22-6,09E-22-6,19E ,34E-07 1,03E-07 1,18E-07 1,91E-22-6,09E-22-2,94E-22-3,09E ,34E-07 1,18E-07 1,26E-07 1,91E-22-2,94E-22-7,43E-23-1,55E ,34E-07 1,26E-07 1,30E-07 1,91E-22-7,43E-23 5,25E-23-7,73E ,30E-07 1,26E-07 1,28E-07 5,25E-23-7,43E-23-1,24E-23-3,87E ,30E-07 1,28E-07 1,29E-07 5,25E-23-1,24E-23 1,97E-23-1,93E ,29E-07 1,28E-07 1,28E-07 1,97E-23-1,24E-23 3,57E-24-9,67E-10 Resolução do problema 4 pelo método da bisseção Fonte: Elaborada pelo Autor Nota: Tabela construída pelo software Microsoft Office Excel

37 Apêndice F Resolução Problema 5 k a b x f(a) f(b) f(x) b a 0 200, , ,0000 8, , , , , , ,0000 8, ,6413-5, , , , ,5000 8,6161-5,1020 1, , , , ,7500 1,2736-5,1020-2, , , , ,6250 1,2736-2,0224-0,4029 6, , , ,0625 1,2736-0,4029 0,4281 3, , , ,8438 0,4281-0,4029 0,0108 1, , , ,2344 0,0108-0,4029-0,1965 0, , , ,0391 0,0108-0,1965-0,0930 0, , , ,9414 0,0108-0,0930-0,0411 0, , , ,8926 0,0108-0,0411-0,0152 0, , , ,8682 0,0108-0,0152-0,0022 0, , , ,8560 0,0108-0,0022 0,0043 0, , , ,8621 0,0043-0,0022 0,0011 0, , , ,8651 0,0011-0,0022-0,0006 0, , , ,8636 0,0011-0,0006 0,0002 0, , , ,8643 0,0002-0,0006-0,0002 0, , , ,8640 0,0002-0,0002 0,0000 0, , , ,8642 0,0000-0,0002-0,0001 0, , , ,8641 0,0000-0,0001 0,0000 0, , , ,8640 0,0000 0,0000 0,0000 0,0001 Resolução do problema 5 pelo método da bisseção Fonte: Elaborada pelo Autor Nota: Tabela construída pelo software Microsoft Office Excel

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Ensaio sobre o método de Newton-Raphson usando calculadora científica.

Ensaio sobre o método de Newton-Raphson usando calculadora científica. Ensaio sobre o método de Newton-Raphson usando calculadora científica www.matematicaemdados.com.br Matemática em dados Ensaio sobre o método de Newton-Raphson usando calculadora científica Djanir Angelim

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

Ensaio sobre o método de Newton-Raphson usando calculadora científica.

Ensaio sobre o método de Newton-Raphson usando calculadora científica. Ensaio sobre o método de Newton-Raphson usando calculadora científica www.matematicaemdados.com.br Matemática em dados Ensaio sobre o método de Newton-Raphson usando calculadora científica Djanir Angelim

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Resolução Numérica de Equações (Parte II)

Resolução Numérica de Equações (Parte II) Cálculo Numérico Módulo III Resolução Numérica de Equações (Parte II) Prof: Reinaldo Haas Cálculo Numérico Bissecção Métodos Iterativos para a Obtenção de Zeros Reais de Funções Bissecção Newton-Raphson

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

1.1 Conceitos Básicos

1.1 Conceitos Básicos 1 Zeros de Funções 1.1 Conceitos Básicos Muito frequentemente precisamos determinar um valor ɛ para o qual o valor de alguma função é igual a zero, ou seja: f(ɛ) = 0. Exemplo 1.1 Suponha que certo produto

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

Equações não lineares

Equações não lineares Capítulo 2 Equações não lineares Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real e de uma variável, queremos encontrar uma solução x que satisfaça a

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números

Leia mais

Cálculo Numérico. Zeros de funções reais

Cálculo Numérico. Zeros de funções reais Cálculo Numérico Zeros de funções reais Agenda Introdução Isolamento de raízes Refinamento Bissecção Posição Falsa Método do ponto fixo (MPF) Método de Newton-Raphson Método da secante Introdução Um número

Leia mais

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim Cálculo Numérico Aula 4 Zeros de Funções 2014.1-09/04/2014 Prof. Rafael mesquita rgm@cin.ufpe.br Adpt. por Prof. Guilherme Amorim gbca@cin.ufpe.br Últimas aulas... Aritmética de máquina Erros Sistema de

Leia mais

Solução aproximada de equações de uma variável

Solução aproximada de equações de uma variável Cálculo Numérico de uma variável Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Parte I Localização de zeros e Método da bissecção Motivação: Queda de um

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Equações Não-Lineares Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Localização

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.

Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de Função Exponencial Gráfico da Função Exponencial Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 0 de dezembro de 018 1 Funções convexas

Leia mais

Exercícios sobre zeros de funções Aula 7

Exercícios sobre zeros de funções Aula 7 Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas. MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa

Leia mais

Integração Numérica. = F(b) F(a)

Integração Numérica. = F(b) F(a) Integração Numérica Do ponto de vista analítico, existem diversas regras que podem ser utilizadas na prática. Contudo, embora tenhamos resultados básicos e importantes para as técnicas de integração analítica,

Leia mais

Equações não lineares

Equações não lineares DMPA IM UFRGS Cálculo Numérico Índice 1 Método da bissecção 2 Método Newton-Raphson 3 Método da secante Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Determinação de raízes de funções: Marina Andretta/Franklina Toledo ICMC-USP 18 de outubro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina Toledo (ICMC-USP)

Leia mais

1.1 DERIVADA COMO RETA TANGENTE E TAXA DE VARIAÇÃO

1.1 DERIVADA COMO RETA TANGENTE E TAXA DE VARIAÇÃO 1 PLANO DE AULA II - DERIVADAS Essa aula tem como principal objetivo, introduzir o conceito de derivadas, de uma maneira rápida, para que, quando o professor fazer uso dos softwares na resolução de problemas

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

C alculo Num erico Ra ızes de Equa c oes Ana Paula Ana Paula C alculo Num erico

C alculo Num erico Ra ızes de Equa c oes Ana Paula Ana Paula C alculo Num erico Raízes de Equações Sumário 1 Introdução 2 3 Revisão Introdução Introdução Introdução Introdução Serão estudados aqui métodos numéricos para a resolução do problema de determinar as raízes de uma equação

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

Capítulo 6 - Equações Não-Lineares

Capítulo 6 - Equações Não-Lineares Sistemas de Capítulo 6 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário

A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário Renan de Oliveira Pereira, Ouro Preto, MG, Brasil Wenderson Marques Ferreira, Ouro Preto, MG, Brasil Eder Marinho

Leia mais

Teorema Do Ponto Fixo Para Contrações 1

Teorema Do Ponto Fixo Para Contrações 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Teorema Do Ponto Fixo

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas. Resolução de Equações Não Lineares

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas. Resolução de Equações Não Lineares UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Computação José Álvaro Tadeu Ferreira Cálculo Numérico Notas de aulas Resolução de Equações Não Lineares Ouro

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

Modelagem Computacional. Parte 2 2

Modelagem Computacional. Parte 2 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos Tópicos Tópicos - Métodos numéricos - Métodos analíticos versus métodos numéricos - Necessidade de se usar métodos numéricos - Métodos iterativos - Resolução de problemas - Problemas com equações não lineares

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Sistemas de inequações Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Funções da forma x elevado a menos n

Funções da forma x elevado a menos n Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções da forma x elevado a menos n Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 Funções

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO Projecto Delfos: Escola de Matemática Para Jovens 1 Uma função, f, é uma aplicação de um conjunto, D, que designamos por domínio, para um conjunto, C, designado por contra-domínio, segundo uma lei, f(x),

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

PAULO XAVIER PAMPLONA

PAULO XAVIER PAMPLONA Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental-UACTA Cálculo Numérico por PAULO XAVIER PAMPLONA

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Derivada e Diferencial de uma Função Professora Renata Alcarde Sermarini Notas de aula

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade 1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

Tutorial Casio fx-82ms

Tutorial Casio fx-82ms Tutorial Casio fx-82ms Constantes Científicas e Conversão de Unidades Tutorial Casio Fx-82MS Aprendendo novas funções Gustavo Luiz da Silva Visite o Blog Engenharia Cotidiana www.engenhariacotidiana.com

Leia mais

ANÁLISE NUMÉRICA DO MÉTODO DE NEWTON PARA OBTENÇÃO DE ZEROS DE FUNÇÕES.

ANÁLISE NUMÉRICA DO MÉTODO DE NEWTON PARA OBTENÇÃO DE ZEROS DE FUNÇÕES. ANÁLISE NUMÉRICA DO MÉTODO DE NEWTON PARA OBTENÇÃO DE ZEROS DE FUNÇÕES. Edevilson Gomes Pereira PUCPR- edevilson.pereira@pucpr.b Viviana Cocco Mariani PUCPR- viviana.mariani@pucpr.br Resumo: Neste artigo

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

Máximos e mínimos em intervalos fechados

Máximos e mínimos em intervalos fechados Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir

Leia mais