QUESTÃO 17 Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.

Tamanho: px
Começar a partir da página:

Download "QUESTÃO 17 Cada um dos cartões abaixo tem de um lado um número e do outro uma letra."

Transcrição

1 Nome: N.º: endereço: data: telefone: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 A piscina da casa de Roberto vai ser decorada com azu lejos. Em cada uma das 5 figuras que se seguem, estão representados dois azulejos. Em qual delas o azulejo da direita é imagem do azulejo da esquerda, por meio de uma rotação, com centro no ponto O, de amplitude 90, no sentido anti-horário (sentido con - trário ao dos ponteiros do relógio)? I) Figura da esquerda: II) Figura da direita após giro de 90 no sentido anti-horário: Resposta: B QUESTÃO 7 Cada um dos cartões abaixo tem de um lado um número e do outro uma letra. Alguém afirmou que todos os cartões que têm uma vogal numa face têm um número par na outra. Para verificar se tal afirmação é verdadeira: a) é necessário virar todos os cartões. b) é suficiente virar os dois primeiros cartões. c) é suficiente virar os dois últimos cartões. d) é suficiente virar os dois cartões do meio. e) é suficiente virar o primeiro e o último cartão. MATEMÁTICA DESAFIO. a SÉRIE

2 Para confirmar a afirmação todos os cartões que têm uma vogal numa face têm um número par na outra, basta virar o primeiro (pois como A é vogal deve aparecer um número par na outra face), e o último (para confirmar que não há vogal na outra face do 3 que é ímpar). Observe que, no caso de haver uma consoante, pode aparecer qualquer número na outra face, já que a afirmação não cita este fato. Resposta: E QUESTÃO 8 (UNESP) Um grupo de x estudantes se juntou para comprar um computador portátil (notebook) que custa R$ 3 50,00. Alguns dias depois, mais três pessoas se juntaram ao grupo, formando um novo grupo com x + 3 pessoas. Ao fazer a divisão do valor do computador pelo número de pessoas que estão compondo o novo grupo, verificou-se que cada pessoa pa ga ria R$ 75,00 a menos do que o inicialmente programado para cada um no pri meiro grupo. O número x de pessoas que forma vam o primeiro grupo é: a) 9 b) 0 c) d) e) 3 Sejam x > 0 e y > 0, respectivamente, o número inicial de estudantes e o valor inicial da parcela que cabe a cada um x. y = 350 (x + 3). (y 75) = = + 75 x + 3x 30 = 0 x = 0 x x + 3 Resposta: B 350 y = x 350 y = + 75 x + 3 QUESTÃO 9 (UNESP) Em um dado comum, a soma dos nú meros de pontos desenhados em quaisquer duas faces opos tas é sempre igual a 7. Três dados comuns e idênticos são cola - dos por faces com o mesmo número de pontos. Em seguida, os da dos são colados sobre uma mesa não transparente, como mostra a figura. Sabendo-se que a soma dos números de pontos de todas as faces livres é igual a 36, a soma dos números de pontos das três faces que estão em contato com a mesa é igual a a) 3 b) 4 c) 5 d) 6 e) 8 MATEMÁTICA DESAFIO. a SÉRIE

3 Sejam: a) a, b e c os números marcados nas faces que estão em contato com a mesa. b) 7 a, 7 b, 7 c os números marcados nas faces superiores dos três dados. c) x o número da face lateral esquerda do dado da esquerda e 7 x o número da face lateral direita do primeiro dado, que é também o da face lateral esquerda do. dado. d) x, analogamente, é o número da face lateral comum do. e do 3. dado. e) 7 x é o número da face lateral direita do terceiro dado. f) = é a soma dos números das três faces da frente com as três faces de trás. Assim: (x + 7 x) (7 a) + (7 b) + (7 c) = (a + b + c) = 36 a + b + c = a + b + c = 3 QUESTÃO 0 A função f : é tal que, para todo x, temos f (x) = f (x). Se f (4) = 8, então: a) f() = 7 b) f() = 8 c) f() = 9 d) f() = 0 e) f() não pode ser calculada Se f(x) = f(x), "x e f(4) = 8 então: I) Para x =, temos: f(4) =. f() = 8 f() = 4 II) Para x =, temos: f() =. f() = 4 fi f() = 7 3 MATEMÁTICA DESAFIO. a SÉRIE

4 QUESTÃO Em um terreno de formato trian gular, deseja-se cons truir uma casa com formato retan - gular. Determine x e y de modo que a área construída seja máxima a) x =,5 e y = 7,5 b) x = 3 e y = 9 c) x = 4,5 e y = 0,5 d) x = 5 e y = 5 e) x = 3 e y = 0 I) Por semelhança de triângulos, podemos afirmar que x 5 y = 3x = 5 y y = 5 3x 5 5 II) A área do retângulo é dada por A = x. y = x. (5 3x) = 3x + 5x III) A área é uma função do ọ grau cujo gráfico é uma pará bola com concavidade para baixo (a < 0). Portanto, a área máxima ocorre para b 5 x v = = =,5 a 6 IV) Para x =,5, temos: y = 5 3. (,5) = 5 7,5 = 7,5 QUESTÃO (UNESP) O proprietário de um terreno trapezoidal, representado na figura, deseja colocar grama sintética em toda sua extensão. O metro quadrado de grama sintética custa 0 reais. Considerando 3 =,7 e des prezan - do outras despesas decorrentes dessa obra, serão gastos a) 90 reais. b) 98 reais. c) 0 reais. d) 0 reais. e) 60 reais. 4 MATEMÁTICA DESAFIO. a SÉRIE

5 h I) tg 60 = fi h = 3. x x 4 x 4 x II) tg 60 = fi 3 = fi 3x = 4 x fi x = h x3 Logo h = 3,7. (B + b). h (8 + 4).,7 III) área = = = 6.,7 = 0, IV) Serão gastos 0, m. 0 Resposta: C reais m = 0 reais. QUESTÃO 3 Em um determinado edifício, os primeiros andares são destinados às garagens e ao salão de festas e os demais andares, aos apartamentos. Interessado nas dimensões desse prédio, um topógrafo coloca um teodolito (instrumento óptico para medir ângulos horizontais e ângulos verticais) a uma distância d do pré dio. Com um ângulo vertical de 30, esse topógrafo observou que o primeiro piso de aparta men tos está a uma altura de,80 m do solo; e com um ângulo verti cal de 60, avistou o topo do edifício, conforme a figura a seguir. 5 MATEMÁTICA DESAFIO. a SÉRIE

6 De acordo com esses dados e saben do-se que a luneta do teodolito está a,70 m do solo, a altura do edifício é: a) 3 m b) 3,60 m c) 30,30 m d),90 m e) 3 m 0, I) tg 30 = fi d = d 0,0 tg 30 x + 0,0 II) tg 60 = d 0,0 fi tg 60. tg 30 fi tg 60. d = x + 0,0 fi = x + 0,0 fi fi 30,30 = x + 0,0 fi x = 0,0 III) A altura do edifício, em metros, é 0,0 + 0,0 +,70 = 3 Resposta: E QUESTÃO 4 (FUVEST) Em um triângulo retângulo OAB, retângulo em O, com AO = a e OB = b, são dados os pontos P em AO e Q em OB de tal maneira que AP = PQ = QB = x. Nestas condições, o valor de x é: a) ab a b c) a + b b) a + b ab d) a + b + ab e) ab + a + b No triângulo retângulo OPQ, temos: x = (a x) + (b x) x = a ax + x + b bx + x x (a + b)x + (a + b ) = 0 x = x = (a + b) ± ab Como x < a e x < b, a única possibilidade é x = a + b ab. Resposta: B (a + b) ± 8ab x = (a + b) ± ab 6 MATEMÁTICA DESAFIO. a SÉRIE

7 QUESTÃO 5 Na figura abaixo está representada a função real f, dada por f(x) = log a x, para todo x > 0. De acordo com os dados da figura, é correto concluir que a área do trapézio ABCO, em unidades de superfície, é a) 4 b) 4,5 c) 5 d) 5,5 e) 6 I) P ; f e, portanto: f = log a = a = a = II) f(x) = log 4 x III) A(0; ) e B(x B ; ) f Logo: f(x B ) = log 4 x B = x B = 4 fi B(4; ) IV) x C = x D e D(x C ;,5) f Logo: f(x C ) = log 4 (x C ) =,5 x C = 4,5 = 3 = 8 fi C(8; 0) e D(8;,5) V) A área do trapézio ABCO, em unidade de área é: OC + AB OA =. = 6 Resposta: E 7 MATEMÁTICA DESAFIO. a SÉRIE

8 QUESTÃO 6 (FUVEST) Os pontos D e E pertencem ao gráfico da função y = log a x, com a > (figura abaixo). Suponha que B = (x,0), C = (x +,0) e A = (x, 0). Então, o valor de x, para o qual a área do trapézio BCDE é o triplo da área do triângulo ABE, é a) b) + c) + 5 d) + 5 e) + 5 A BCDE = 3 A ABE fi log a x + log a (x + ). log a x fi. = 3. fi fi log a [x(x + )] = log a x 3 fi x + x = x 3 fi fi x(x x ) = 0 fi fi x = 0 ou x = ou x = fi + 5 fi x =, pois x > 0 x = Observação: Se x = +, então x = <. Assim, o ponto A encontra-se à esquerda do ponto de abscissa. 5 8 MATEMÁTICA DESAFIO. a SÉRIE

9 QUESTÃO 7 O produto das raízes da equação 4x x log x = 0 vale: a) b) c) 4 d) 6 e) 8 I) 4x x log x = 0 4x = x log x log (4x) = log (x log x ) log 4 + log x = log x. log x II) Substituindo log x por y, temos + y = y y y = 0 y = ± 3 y = ou y = III) Se y = então log x = x = 4 IV) Se y = então log x = x = V) O produto das raízes dessa equação é 4. = Resposta: B QUESTÃO 8 Na divisão 08 r k 5 são em número de:, k e r são números naturais com 0 r < k. Os possíveis valores de k a) 3 b) 4 c) 5 d) 6 e) 7 Se 08 r k 5, com {r; k} e 0 r k, então: 08 = 5k + r fi r = 08 5k fi k < k k 0 r < k 0 r < k 08 5k < k 08 k 5 fi k = 9 ou k = 0 ou k = 08 k,6 k > 8 k > 6 9 MATEMÁTICA DESAFIO. a SÉRIE

10 QUESTÃO 9 Na figura a seguir, os arcos QMP e MTQ me dem, respectivamente, 70 e 30. Então, o arco MSN mede: a) 60 b) 70 c) 80 d)00 e) 0 4) a = 80 a = 30 fi MSN = 60 QUESTÃO 30 Na praça principal de uma vila será inau gu rado um mural retangular. No projeto ilustrado na figura, o mu ral está representado pelo retângulo maior, e a tapeçaria pelo retân gulo menor, sombreado; x representa a medida, em metros, de um dos lados do mural. Cada um dos lados da tapeçaria ficará paralelo a dois dos lados do mural, com margens de 0,5 m e de m, como a figura ilustra. O mural terá 6 m de perímetro e < x <. 0 MATEMÁTICA DESAFIO. a SÉRIE

11 A área da tapeçaria em metros quadrados e o perímetro em metros, valem respectiva - mente: a) x x e b) x x e 0 c) x x e d) x + x e 0 e) x x e 0 Sendo x (indicado) e y as dimensões do mural, já que o perí metro é 6 m, temos: x + y = 6 x + y = 3 y = 3 x Portanto, de acordo com a figura, as dimensões da tapeçaria são, em metros, x 0,5 0,5 = x e y = y = 3 x = x Assim, a área da tapeçaria, em m, é A = (x )( x) = x + x e o perímetro é x + x = 0 Resposta: D MATEMÁTICA DESAFIO. a SÉRIE

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 Uma caixa contém 100 bolas apenas. Destas,

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4

( y + 4) = 16 16 = 0 y + 4 = 0 y = 4 UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas

Leia mais

Construção de funções a partir de problemas geométricos

Construção de funções a partir de problemas geométricos Construção de funções a partir de problemas geométricos Atividade introdutória M. Elisa. E. L. Galvão IME-USP/UNIBAN Problema: entre todos os retângulos de mesmo perímetro, qual é o de maior área? Como

Leia mais

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.

1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. 1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Escola Secundária de Lousada Matemática do 8º ano FT nº15 Data: / / 013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Apresentação dos Conteúdos e Objetivos para o 3º Teste de Avaliação de

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ECONOMIA Profa. Maria Antônia C. Gouveia QUESTÃO 0 Laura caminha pelo menos km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

QUESTÃO 1 ALTERNATIVA D

QUESTÃO 1 ALTERNATIVA D OBMEP 015 Nível 3 1 QUESTÃO 1 Como,5 = 5 x 0,5, o tempo que o frango deve ficar no forno é 5 x 1 = 60 minutos. Logo, Paula deve colocar o frango no forno às 19 h, mas 15 minutos antes deve acender o forno.

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

UFJF CONCURSO VESTIBULAR 2012-2 GABARITO DA PROVA DE MATEMÁTICA

UFJF CONCURSO VESTIBULAR 2012-2 GABARITO DA PROVA DE MATEMÁTICA UFJF CONCURSO VESTIBULAR 0- GABARITO DA ROVA DE MATEMÁTICA Questão Uma construtora, para construir o novo prédio da biblioteca de uma universidade, cobra um valor fixo para iniciar as obras e mais um valor,

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Questão 01. Questão 02

Questão 01. Questão 02 PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

b) Determine o valor inicial cobrado pela construtora para a construção do prédio da biblioteca.

b) Determine o valor inicial cobrado pela construtora para a construção do prédio da biblioteca. Questão 1 Uma construtora, para construir o novo prédio da biblioteca de uma universidade, cobra um valor fixo para iniciar as obras e mais um valor, que aumenta de acordo com o passar dos meses da obra.

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E FRENTE ÁLGEBRA MATEMÁTICA E Nas questões de a, calcular o quociente e o resto das divisões dos polinômios, utilizando o Dispositivo de Briot-Ruffini.. x x + 6x + por x MÓDULO 8 DISPOSITIVO DE BRIOT-RUFFINI

Leia mais

COLÉGIO MONS. JOVINIANO BARRETO

COLÉGIO MONS. JOVINIANO BARRETO GABARITO ª CHAMADA 3ª ETAPA MATEMÁTICA COLÉGIO MONS. JOVINIANO BARRETO 5 ANOS DE HISTÓRIA ENSINO E DISCIPLINA Rua Frei Vidal, 161 São João do Tauape/Fone/Fax: 37-195 www.jovinianobarreto.com.br º ANO Nº

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 20 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO Uma forma de medir o percentual de gordura corporal

Leia mais

Questão 1 Uma circunferência de equação. ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine:

Questão 1 Uma circunferência de equação. ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine: Questão 1 Uma circunferência de equação 2 2 x + y 8x + 8y + 16 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas no ponto N. Sabendo que T é o centro da circunferência, determine:

Leia mais

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros.

4000 litros. 9min = 2400 litros 15 min. 80%. 200 litros = 160 litros. A quantidade total de água necessária, após a redução é de 2 560 litros. MATEMÁTICA 1 c Para manter funcionando um chuveiro elétrico durante um banho de 15 minutos e um forno de microondas durante 5 minutos, as quantidades de água que precisam passar pelas turbinas de certa

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

Espelho Plano. www.nsaulasparticulares.com.br Página 1 de 21

Espelho Plano. www.nsaulasparticulares.com.br Página 1 de 21 Espelho Plano 1. (Fuvest 2013) O telêmetro de superposição é um instrumento ótico, de concepção simples, que no passado foi muito utilizado em câmeras fotográficas e em aparelhos de medição de distâncias.

Leia mais

SEMELHANÇA DE FIGURAS GEOMÉTRICAS PLANAS

SEMELHANÇA DE FIGURAS GEOMÉTRICAS PLANAS Página 1 SEMELHANÇA DE FIGURAS GEOMÉTRICAS PLANAS Um conceito muito utilizado em Geometria é a ideia de figuras semelhantes. Ele vem sendo utilizado desde a Antiguidade. Uma ampliação, uma redução e até

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas

Leia mais

Unidade didáctica: circunferência e polígonos. Matemática 9º ano

Unidade didáctica: circunferência e polígonos. Matemática 9º ano Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

QUESTÕES DE MATEMÁTICA

QUESTÕES DE MATEMÁTICA LEANDRO CARVALHO VIEIRA E GILMAR DE PAULA MATTA QUESTÕES DE MATEMÁTICA NO VESTIBULAR - VOLUME QUESTÕES RESOLVIDAS E COMENTADAS 007-010 (FUVEST, PUC, UERJ, UFF, UFJF, UFLA, UFOP, UFRJ, UFSJ, UFV, UNESP,

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

Canguru Matemático sem Fronteiras 2009

Canguru Matemático sem Fronteiras 2009 Duração: 1h30min Destinatários: alunos do 1 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis: Problemas

Leia mais

Espelho, espelho meu...

Espelho, espelho meu... A UU L AL A Espelho, espelho meu... No meio do trânsito ouve-se a sirene da ambulância. Ernesto vira-se e pergunta ao pai: - Por que as letras escritas no capô da ambulância estão todas invertidas? Figura

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

Resolução de Matemática da Prova Objetiva FGV Administração - 06-06-10

Resolução de Matemática da Prova Objetiva FGV Administração - 06-06-10 QUESTÃO 1 VESTIBULAR FGV 010 JUNHO/010 RESOLUÇÃO DAS 15 QUESTÕES DE MATEMÁTICA DA PROVA DA MANHÃ MÓDULO OBJETIVO PROVA TIPO A O mon i tor de um note book tem formato retangular com a di ag o nal medindo

Leia mais

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1)

9xy yx9 = (9 100+x 10+y) (y 100+x 10+9) = (8 y) 100+9 10+(y+1) Gabarito da Prova do Nível II Primeira Questão: ANULADA- Com três algarismos distintos, formamos três números: O primeiro número é obtido ordenando-se os algarismos em ordem decrescente, da esquerda para

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países. Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

COLÉGIO PEDRO II MEC EXAME DE SELEÇÃO E CLASSIFICAÇÃO 1ª SÉRIE DO ENSINO MÉDIO REGULAR/ DIURNO 2008 QUESTÃO 1

COLÉGIO PEDRO II MEC EXAME DE SELEÇÃO E CLASSIFICAÇÃO 1ª SÉRIE DO ENSINO MÉDIO REGULAR/ DIURNO 2008 QUESTÃO 1 QUESTÃO 1 COLÉGIO PEDRO II MEC EXAME DE SELEÇÃO E CLASSIFICAÇÃO 1ª SÉRIE DO ENSINO MÉDIO REGULAR/ DIURNO 2008 No inverno de 2007, o calor e a seca foram causadores de um grande problema ecológico. Leia

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Atividade experimental 2º bimestre 10 pontos Nome: N.: Nome: N.: Nome: N.: Nome: N.: Nome: N.: Série: 1ª série Profª Elizangela Goldoni Conteúdo: Função quadrática

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

1 ÁREA DO TRIÂNGULO. 1.3 Fórmula trigonométrica. 1.1 Fórmula clássica. 1.4 Triângulo equilátero. 1.2 Triângulo retângulo. Matemática 2 Pedro Paulo

1 ÁREA DO TRIÂNGULO. 1.3 Fórmula trigonométrica. 1.1 Fórmula clássica. 1.4 Triângulo equilátero. 1.2 Triângulo retângulo. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA XVI 1 ÁREA DO TRIÂNGULO Neste capítulo, estamos encerrando o nosso estudo de Geometria Plana que, como o nome diz, é sobre figuras planas. E uma grandeza muito

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

O coeficiente angular

O coeficiente angular A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir

Leia mais

EXAME DE ACESSO PROFMAT - 2015 - SOLUÇÕES (B) 7 (E) 12

EXAME DE ACESSO PROFMAT - 2015 - SOLUÇÕES (B) 7 (E) 12 EXAME DE ACESSO PROFMAT - 015 - SOLUÇÕES 1. Se x é um número real tal que x + 1 x = 3, então x + 1 é igual a: x (A) 6 (D) 9 Resposta: B) (B) 7 (E) 1 (C) 8 Elevando ambos os membros da equação x + 1 = 3

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

Circunferência e Círculos

Circunferência e Círculos Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com

Leia mais

FÍSICA. Exatas/Tarde Física e Matemática Prova A Página 1

FÍSICA. Exatas/Tarde Física e Matemática Prova A Página 1 FÍSICA 01 - A figura a seguir representa um eletroímã e um pêndulo, cuja massa presa à extremidade é um pequeno imã. Ao fechar a chave C, é correto afirmar que C N S (001) o imã do pêndulo será repelido

Leia mais

Quinta lista de exercícios.

Quinta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quinta lista de exercícios. Triângulos retângulos. Polígonos regulares. Áreas de superfícies planas. 1. Qual deve ser o comprimento de uma escada

Leia mais

A Topografia no Sistema CR - Campeiro 7.0

A Topografia no Sistema CR - Campeiro 7.0 A Topografia no Sistema CR - Campeiro 7.0 Introdução a Topografia Enio Giotto Professor Titular da UFSM Elódio Sebem Professor Associado da UFSM SUMÁRIO 1 A TOPOGRAFIA E SEU CAMPO DE ATUAÇÃO 2 DIVISÃO

Leia mais