Oficina Geoplano. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades:

Tamanho: px
Começar a partir da página:

Download "Oficina Geoplano. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades:"

Transcrição

1 Oficina Geoplano 1. Introdução O objetivo desta oficina é trabalhar com os alunos alguns conceitos ligados a medidas de comprimento e área de figuras planas, bem como investigar o Teorema de Pitágoras. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades: H21 Aplicar o conceito de área de figuras geométricas para solucionar problemas. H23 Aplicar o conceito de perímetro de uma figura geométrica plana para solucionar problemas. H31 Utilizar o teorema de Pitágoras para resolver situações apresentadas em diferentes contextos. H34 Relacionar a unidade de medida com a grandeza envolvida. Para isso, serão desenvolvidas atividades com o geoplano um material didático bastante simples, mas muito rico, que permite ao aluno, por meio de manipulações, explorar diversos conceitos geométricos. Ele consiste em uma superfície retangular com pontos (normalmente marcados com pregos) que formam uma malha quadriculada, como mostra a figura abaixo. Usando barbantes, os alunos constroem as figuras geométricas e investigam suas propriedades. Caso a escola não disponha do geoplano, é possível fazer um com uma tábua e pregos, isopor e tachinhas/alfinetes ou, em último caso, com lápis e papel. Vale mencionar que as possibilidades de uso do geoplano são muitas, assim como os conceitos matemáticos que podem ser estudados através delas.

2 2. Medidas de comprimento e área Discussão inicial Primeiramente, falar aos alunos que o trabalho na oficina envolverá figuras geométricas planas, então é interessante começar discutindo o que é um plano. Provavelmente os alunos conseguem identificar um plano, mas terão dificuldades para dizer o que ele é. E essa dificuldade não é só deles. Na verdade, nem os matemáticos conseguem definir o que é um plano. É o que na Matemática se chama de conceito primitivo conceitos relativamente óbvios para quase todas as pessoas mas que não podem ser definidos. Dizer que plano é um tipo de superfície lisa, reta, sem dobras, sem ondulações. Dar o exemplo de uma toalha uma toalha esticada forma uma superfície plana. Já uma toalha embolada forma uma superfície não-plana. Boa parte dos nossos estudos de geometria aborda as figuras planas. Após essa discussão, apresentar o geoplano aos alunos, mostrando algumas figuras que podemos formar nele. Em seguida, mostrar que há dois tipos de tamanho que podemos determinar em uma figura plana: um é o tamanho de linhas e outro é o tamanho de superfícies. Perguntar se eles sabem os nomes destes tamanhos. Conduzir a discussão para os conceitos de comprimento como a medida do tamanho de uma linha e da área como a medida do tamanho de uma superfície. Significado de uma medida Questionar os alunos sobre o significado de medir alguma coisa. Conduzir a discussão para o conceito de medida como a comparação com um padrão, denominado unidade: medir uma grandeza de um objeto significa determinar quantas vezes essa grandeza no objeto é maior ou menor do que a mesma grandeza no objeto-padrão. Quando se fala em grandeza, isso significa qualquer coisa que possa ser quantificada: peso, temperatura, comprimento, área, volume etc. Dar o exemplo de uma medida simples da grandeza comprimento feita com a régua. Quando posicionamos a régua sobre o livro do Telecurso e verificamos que a medida de sua largura vale 20,5 cm, isso significa que a largura do livro tem um comprimento 20,5 vezes maior do que o comprimento-padrão de 1 cm. As divisões da régua existem para facilitar a determinação desse número. Voltar ao geoplano. Propor aos alunos a criação de duas unidades convenientes para medir comprimentos e áreas de figuras no geoplano: - Unidade de medida de comprimento: segmento de reta entre dois pregos adjacentes (atenção, adjacentes na horizontal ou vertical, não na diagonal). Unidade de comprimento Unidade de comprimento

3 - Unidade de medida de área: superfície quadrada delimitada por quatro pregos, como mostra a figura. Unidade de área Nas atividades a seguir, trabalharemos com o uso dessas unidades para medir comprimentos (perímetros) e áreas de algumas figuras. Atividades Atividade 1: Pedir que os alunos montem com barbantes as figuras abaixo e determinem suas áreas e perímetros, em termos das unidades definidas acima. a) Resposta: Área = 6 unidades Perímetro = 10 unidades Comentário: Este exemplo é bastante simples. Se contornarmos o retângulo, verificaremos que ele é formado por 10 segmentos como aquele que foi definido como unidade de comprimento. Também podemos verificar que nesse retângulo cabem 6 quadrados como aquele definido como unidade de área. b) Resposta: Área = 6 unidades Perímetro = 12 unidades

4 Comentário: Este exemplo traz duas dificuldades em relação ao anterior. Para a medida da área desse triângulo, não há mais um número inteiro de quadrados para contar. Entretanto, se observarmos que esse triângulo resulta da divisão ao meio de um retângulo 3 por 4 (como mostra a figura abaixo), concluiremos que sua área vale metade da área do retângulo, o seja, metade de 12. Para a medida do perímetro, surge a segunda dificuldade. Dois dos lados (o vertical - 3 unidades - e o horizontal - 4 unidades) são facilmente mensuráveis basta contar os segmentos. Entretanto, o lado diagonal não é. Neste caso particular, porém, se o aluno pegar o barbante que formou o triângulo e esticá-lo ao longo de linhas horizontais ou verticais do geoplano, verificará que o lado diagonal mede exatamente 5 unidades e que o barbante inteiro mede exatamente 12 unidades de comprimento ( ). Posteriormente, veremos que esse resultado poderia ter sido calculado pelo teorema de Pitágoras, sem necessidade de medir o barbante. É muito importante deixar que os alunos tentem resolver sozinhos (ou nos grupos) o problema de determinar a área e o perímetro, isto é, não dar a resposta logo de cara! c) Resposta: Área = 4 unidades Perímetro 8,5 unidades Comentário: Neste exemplo, para calcular a área, deve-se novamente usar o recurso de identificar algumas partes da figura (neste caso um paralelogramo) como metades de um retângulo. Na figura abaixo, fica claro que a área do paralelogramo vale 4 unidades ( ).

5 A área deste triângulo vale metade da área de um retângulo de área 2, ou seja, vale 1 unidade. A área deste triângulo vale metade da área de um retângulo de área 2, ou seja, vale 1 unidade. A área deste retângulo vale 2 unidades. Já a medida do perímetro deve ser feita novamente esticando o barbante ao longo de uma linha ou coluna de pontos do geoplano. Fazendo isso, verifica-se que o barbante fica praticamente na metade entre 8 e 9 unidades de comprimento, ou seja, o perímetro vale aproximadamente 8,5 unidades. d) Resposta: Área = 10 unidades Perímetro 20,1 unidades Comentário: Os procedimentos de determinação da área e do perímetro são exatamente os mesmos do exemplo anterior.

6 Atividade 2: Pedir aos alunos que formem dois retângulos, com as seguintes condições: - ambos devem ter perímetro de 10 unidades de comprimento Oficina CNI/EF - ambos devem ter formatos diferentes, isto é, devem ser retângulos com diferentes proporções entre base e altura. O fato de duas figuras terem o mesmo perímetro significa que elas têm a mesma área? Resposta: os dois únicos retângulos possíveis são os apresentados a seguir (evidentemente eles podem ser girados para ficar na vertical, mas neste caso seriam retângulos semelhantes). Em relação à pergunta, o fato dos perímetros serem iguais NÃO significa que as áreas são iguais. No exemplo, o retângulo de cima tem área = 4 e o de baixo tem área = 6, ambos com perímetro = Teorema de Pitágoras Para finalizar a oficina, os alunos farão uma breve atividade de investigação do Teorema de Pitágoras. Discutir com os alunos que o teorema de Pitágoras é apresentado normalmente com o enunciado Em um triângulo retângulo, a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa, acompanhado de uma figura e da sentença algébrica que o traduz.

7 b c a a 2 = b 2 + c 2 Mostrar aos alunos que uma interpretação geométrica desse teorema identifica os termos a 2, b 2 e c 2 como as áreas de quadrados cujos lados são os lados do triângulo retângulo. Veja no desenho: Área = b 2 b Área = c 2 c a Área = a 2 Nessa interpretação, o teorema de Pitágoras diz que a área do quadrado maior é igual à soma das áreas dos quadrados menores (a 2 = b 2 + c 2 ). A atividade com o geoplano tem o objetivo de fazer os alunos explorarem essa igualdade de áreas. - Pedir para os alunos montarem com o barbante um triângulo retângulo com lados 2 e 3; - Em seguida, pedir para eles montarem os 3 quadrados adjacentes aos lados; - Por último, pedir que eles determinem as áreas de cada um dos quadrados, pelo mesmo procedimento descrito na atividade 1, e verifiquem que a soma das áreas dos dois menores é igual à do maior.

8 Resposta: Área = 13 Área = 4 Área = 9 Assim, podemos verificar, nesse caso, o teorema de Pitágoras: a soma das áreas dos quadrados adjacentes aos catetos (4 + 9) é igual à área do quadrado adjacente à hipotenusa (13). Veja na figura abaixo como podemos concluir que a área do quadrado maior vale 13 unidades: Área = 3 Área = 3 Área=1 Área = 3 Área = 3 Área do quadrado maior = = 13

9 Os alunos podem fazer essa verificação com outros triângulos. Veja o exemplo abaixo com um triângulo de base 2 e altura 5. Área=5 Área=5 Área = 25 Área=9 Área=5 Área=5 Área= = A última atividade consiste em uma verificação do teorema de Pitágoras na forma algébrica. Pedir para os alunos que calculem o valor de x no triângulo retângulo abaixo: 8 6 x Solução: x 2 = x 2 = x 2 = 100 x = 100 x = 10

10 Após o cálculo, pedir que os alunos montem no geoplano o triângulo retângulo com catetos 6 e 8, marquem a medida da hipotenusa e verifiquem que esse comprimento vale exatamente 10 unidades. Observe na figura abaixo. Os alunos devem formar esse triângulo com o barbante. Em seguida, devem marcar no barbante a medida da hipotenusa. Por último, devem pegar o pedaço de barbante correspondente à hipotenusa e alinhá-lo na horizontal ou vertical, verificando que ele mede 10 unidades de comprimento (10 espaçamentos entre pregos).

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos

Leia mais

FIGURAS PLANAS E O CÁLCULO DE ÁREAS

FIGURAS PLANAS E O CÁLCULO DE ÁREAS unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

Aulas de Geometria Figuras Geométricas

Aulas de Geometria Figuras Geométricas Aulas de Geometria Figuras Geométricas No plano, triângulo (também aceito como trilátero) é a figura geométrica que ocupa o espaço interno limitado por três linhas retas que concorrem, duas a duas, em

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa PLANO DE ENSINO 2016 Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos 1 Aula prática 1).- Exercícios didáticos É um tanto surpreendente que, em cada triângulo, as três cevianas de um dado tipo se interceptam num mesmo ponto. Essa característica é ilustrada nas figuras abaixo,

Leia mais

O CASO INVERSO DA QUEDA LIVRE

O CASO INVERSO DA QUEDA LIVRE O CASO INVERSO DA QUEDA LIVRE Vamos analisar o caso em que se lança um corpo para o alto, na vertical. Tomemos o seguinte exemplo: uma pedra é lançada para o alto, na vertical, com uma velocidade inicial

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

DESCOBRINDO O TEOREMA DE PITÁGORAS

DESCOBRINDO O TEOREMA DE PITÁGORAS DESCOBRINDO O TEOREMA DE PITÁGORAS Instituição de Ensino Bolsistas ID Supervisor Coordenador Escola Municipal Coronel Durival Britto e Silva Jaqueline Hoschele e Adriano Cesar Bueno. Juliana da Cruz de

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

Aula 30 Área de superfícies: parte I

Aula 30 Área de superfícies: parte I Aula 30 Área de superfícies: parte I Objetivos Determinar áreas de algumas superfícies curvas. Introdução Supona que um pintor utilize x litros de tinta para pintar uma parede quadrada de 1 m de lado e

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

PLANIFICAÇÃO-2016/2017

PLANIFICAÇÃO-2016/2017 PLANIFICAÇÃO-2016/2017 ENSINO BÁSICO - PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA - 1ºPERÍODO 8º ANO DE ESCOLARIDADE CONTEÚDOS PROGRAMÁTICOS UNIDADE 1 Conjunto dos números reais -Dízimas finitas e infinitas

Leia mais

3ª Eduardo e Ana. Competência Objeto de aprendizagem Habilidade

3ª Eduardo e Ana. Competência Objeto de aprendizagem Habilidade Matemática 3ª Eduardo e Ana 8 Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 3 Foco: Espaço e Forma Utilizar o conhecimento geométrico para realizar a leitura e a representação da realidade

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa. Competências Habilidades Conteúdos. I Etapa

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa. Competências Habilidades Conteúdos. I Etapa PLANO DE ENSINO 2015 Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa I Etapa Competências Habilidades Conteúdos Revisão (breve) de conteúdos trabalhados anteriormente Construir significados

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

PROFMAT Exame de Qualificação Gabarito

PROFMAT Exame de Qualificação Gabarito PROFMAT Exame de Qualificação 2012-1 Gabarito 1. (10pts) Um corpo está contido num ambiente de temperatura constante. Decorrido o tempo (em minutos), seja a diferença entre a temperatura do corpo e do

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo

Leia mais

Simulado 1 Matemática IME Soluções Propostas

Simulado 1 Matemática IME Soluções Propostas Simulado 1 Matemática IME 2012 Soluções Propostas 1 Para 0, temos: para cada um dos elementos de, valores possíveis em (não precisam ser distintos entre si, apenas precisam ser pertencentes a, pois não

Leia mais

A origem das fórmulas das áreas de Figuras Planas

A origem das fórmulas das áreas de Figuras Planas A origem das fórmulas das áreas de Figuras Planas Dentro da geometria quando nos é requerido o cálculo que envolve a área de uma figura plana, primeiro é preciso reconhecer qual a figura estamos trabalhando

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

X 2 = Área do círculo, setor e coroa circular. Expectativas de aprendizagem. Recursos e materiais necessários

X 2 = Área do círculo, setor e coroa circular. Expectativas de aprendizagem. Recursos e materiais necessários As atividades propostas nas aulas a seguir têm como objetivo proporcionar ao aluno condições de compreender, de forma prática, e identificar em situações cotidianas, a área do círculo, setor e coroa circular.

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO

Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO 1) Na figura abaixo, C é ponto médio do segmento AB, e B é ponto médio do segmento CD. Se AB mede 12 cm, quanto mede

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS

PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS 8. PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS 1). Ideia de figuras semelhantes 2). Semelhança de polígonos e triângulos 3). Razão de semelhança 4). Escalas 5). s e problemas 1). Ideia de figuras semelhantes

Leia mais

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ).

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ). Geometria Analítica Módulo 1 Revisão de funções trigonométricas, Vetores: Definições e aplicações Módulo, direção e sentido. Igualdades entre vetores 1. Revisão de funções trigonométricas a) Triângulo

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno 01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir.

PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Tanara da Silva Dicetti 1.2 Público alvo: 6 e 7 anos 1.3 Duração: 2 Horas 1.4 Conteúdo desenvolvido: Áreas de figuras planas 2. Objetivo(s)

Leia mais

Teorema de Pitágoras: Encaixando e aprendendo

Teorema de Pitágoras: Encaixando e aprendendo Reforço escolar M ate mática Teorema de Pitágoras: Encaixando e aprendendo Dinâmica 7 9º ano 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Teorema de Pitágoras

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

ATIVIDADES COM GEOPLANO QUADRANGULAR

ATIVIDADES COM GEOPLANO QUADRANGULAR ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

OBMEP NA ESCOLA Soluções

OBMEP NA ESCOLA Soluções OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1 1 Questão 1 a) O número-parada de 93 é 4, pois 93 9 3 = 27 2 7 = 14 1 4 = 4. b) Escrevendo 3 2 = 6 vemos que 32 3 2 = 6. Como 32 = 4 2 2 2, temos 4222 4 2 2 2 = 32 3 2 = 6 e assim o número-parada de 4222

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano: Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência

Leia mais

Igualdade entre áreas e perímetros

Igualdade entre áreas e perímetros Igualdade entre áreas e perímetros António Pereira Rosa Escola Secundária Maria Amália Vaz de Carvalho Rua Rodrigo da Fonseca, 115 1099-069 Lisboa 1. Introdução O objectivo deste trabalho é mostrar como

Leia mais

PROGRAMAÇÃO DA 3ª ETAPA 5º ANO MONIQUE MATEMÁTICA CONTEÚDOS:

PROGRAMAÇÃO DA 3ª ETAPA 5º ANO MONIQUE MATEMÁTICA CONTEÚDOS: A soberba não é grandeza, é inchaço. O que incha parece grande, mas não está são. Santo Agostinho CONTEÚDOS: Livro didático Matemática- Projeto Ápis Luiz Roberto Dante Editora Ática Capítulos: 9,10 e 11

Leia mais

Geometria e Medida: Figuras Geométricas

Geometria e Medida: Figuras Geométricas ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 2º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Geometria

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

APOSTILA DE APOIO PEDAGÓGICO 9º ANO

APOSTILA DE APOIO PEDAGÓGICO 9º ANO GOVERNO MUNICIPAL DE CAUCAIA SECRETARIA MUNICIPAL DE EDUCAÇÃO - SME COORDENADORIA DE DESENVOLVIMENTO PEDAGÓGICO ANOS FINAIS APOSTILA DE APOIO PEDAGÓGICO 9º ANO 2º ENCONTRO DE MATEMÁTICA PROFESSORES FORMADORES:

Leia mais

Cubo, prismas, cilindro

Cubo, prismas, cilindro A UUL AL A Cubo, prismas, cilindro Qual é a quantidade de espaço que um sólido ocupa? Esta é uma das principais questões quando estudamos as figuras espaciais. Para respondê-la, a geometria compara esse

Leia mais

1º Período. Figuras geométricas

1º Período. Figuras geométricas ii 1º Período Figuras geométricas Quadrado polígono com quatro lados iguais e com quatro ângulos rectos. Rectângulo polígono com quatro lados iguais dois a dois e com quatro ângulos rectos. Trapézio rectângulo

Leia mais

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico.

Vetores. É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. Grandezas Vetores É tudo aquilo que pode ser medido em um fenômeno físico. Serve para entendermos como funciona e porque ocorre qualquer fenômeno físico. GRANDEZA ESCALAR São aquelas medidas que precisam

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 3º Teste de avaliação versão2. Escola Secundária com 3º ciclo D. Dinis 10º no de Matemática TEM 1 GEMETRI N PLN E N ESPÇ I 3º Teste de avaliação versão Grupo I s cinco questões deste grupo são de escolha mqaúltipla. Para cada uma delas

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 2º Ano do Ensino Médio

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

Aula 2 Regressão e Correlação Linear

Aula 2 Regressão e Correlação Linear 1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as

Leia mais

Atividade: Escalas utilizadas em mapas

Atividade: Escalas utilizadas em mapas Atividade: Escalas utilizadas em mapas I. Introdução: Os mapas são representações gráficas reduzidas de uma determinada região e de grande importância para vários profissionais como engenheiros, geógrafos,

Leia mais

PRODUTO DA DISSERTAÇÃO MATEMÁTICA DINÂMICA: UMA ABORDAGEM PARA O ENSINO DE FUNÇÕES A PARTIR DE SITUAÇÕES GEOMÉTRICAS ELIANA BEVILACQUA SALIN

PRODUTO DA DISSERTAÇÃO MATEMÁTICA DINÂMICA: UMA ABORDAGEM PARA O ENSINO DE FUNÇÕES A PARTIR DE SITUAÇÕES GEOMÉTRICAS ELIANA BEVILACQUA SALIN UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA MESTRADO PROFISSIONAL EM ENSINO DE MATEMÁTICA PRODUTO DA DISSERTAÇÃO MATEMÁTICA DINÂMICA:

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Número e Operações - Números naturais 1. Contar 1.1. Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de

Leia mais

Descritores da Prova do 3º ano - Português. Descritores da Prova do 3º ano - Matemática

Descritores da Prova do 3º ano - Português. Descritores da Prova do 3º ano - Matemática Descritores da Prova do 3º ano - Português Tópico I Procedimentos de leitura D1 Localizar informações explícitas em um texto D3 Inferir o sentido de uma palavra ou expressão D4 Inferir uma informação implícita

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES

MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES DOCENTE: Júlio Cesar e Márcia Silva CÁLCULO PARA PISOS E AZULEJOS CÁLCULO DE PISO Deve-se levar em conta o tamanho das placas e da área. Quanto maior

Leia mais

Geometria Básica. Bruno Holanda. 12 de novembro de 2011

Geometria Básica. Bruno Holanda. 12 de novembro de 2011 eometria ásica runo Holanda 12 de novembro de 2011 Resumo ste trabalho representa um conjunto de notas de aulas de um curso inicial em eometria uclidiana Plana para alunos do ensino fundamental. principal

Leia mais

7º ANO. Lista extra de exercícios

7º ANO. Lista extra de exercícios 7º ANO Lista extra de exercícios 1. Um famoso problema de lógica consiste na seguinte situação. Um viajante precisava pagar sua estadia de uma semana (7 dias) em um hotel, sendo que só possuía uma barra

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

LISTA DE EXERCÍCIO GEOMETRIA PLANA

LISTA DE EXERCÍCIO GEOMETRIA PLANA QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10min) Acomodação dos alunos e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10min) Acomodação dos alunos e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 8º e 9º ano 1.3 Turno: manhã 1.4 Data: 09/10 Lauro Dornelles e 14/10 Oswaldo Aranha 1.5 Tempo

Leia mais

Sugestão: Use papel transparente para copiar as figuras e comparar os lados e os ângulos.

Sugestão: Use papel transparente para copiar as figuras e comparar os lados e os ângulos. Você se lembra dos triângulos e quadriláteros do final da Aula 28? Eles estão reproduzidos na figura abaixo. Observe que a forma de cada triângulo, por exemplo, varia conforme aumentamos ou diminuímos

Leia mais

OBMEP ª fase Soluções - Nível 3

OBMEP ª fase Soluções - Nível 3 OBMEP 009 ª fase Soluções - Nível Nível questão 1 a) O número de cartões na caixa é a soma dos números inteiros de 1 a 10, isto é, 1 + + + + 9 + 10 = 55 b) Basta escolher o cartão de número 1 e depois

Leia mais

OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES.

OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES. Luing Argôlo Santos (UESC) discipuluing@yahoo.com.br OFICINA UMA NOVA ABORDAGEM DO TEOREMA DE PITÁGORAS: APLICAÇÕES, DESAFIOS E DEMONSTRAÇÕES. Público alvo: Professores da educação básica, graduados e

Leia mais

A escala de Língua Portuguesa para o 3º ano do Ensino Médio

A escala de Língua Portuguesa para o 3º ano do Ensino Médio A escala de Língua Portuguesa para o 3º ano do Ensino Médio LÍNGUA PORTUGUESA 3º ANO DO ENSINO MÉDIO (continua) 1 225-250 2 250-275 3 275-300 4 300-325 Nesse nível, o estudante pode ser capaz de identificar

Leia mais

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO EB 2.3 DE SÃO JOÃO DO ESTORIL 2016/17 MATEMÁTICA PERFIL DO ALUNO PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO /DOMÍNIOS NUMEROS E OPERAÇÕES NO5 GEOMETRIA E MEDIDA GM5 ALG5 ORGANIZAÇÃO E TRATAMENTO

Leia mais

Como um matemático embrulha presentes gastando pouco material?

Como um matemático embrulha presentes gastando pouco material? Como um matemático embrulha presentes gastando pouco material? Juliana Cordeiro da Cunha Universidade de Brasília Brasil julianapndeath@gmail.com Raquel Carneiro Dörr Universidade de Brasília Brasil raqueldoerr@gmail.com

Leia mais

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a Sequencias e Series Autor: Dr. Cristian Novoa MAF- PUC- Go cristiancalculoii@gmail.com Este texto tem como objetivo principal, introduzir alguns conceitos de Sequencias e Series,para os cursos de Engenharia,

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18 Escola Secundária de Lousada Planificação anual disciplina de Matemática Ano: 8º Ano lectivo: 01-013 CALENDARIZAÇÃO Nº de aulas de 5 minutos previstas 1 1º Período º Período 3º Período 9 7 DISTRIBUIÇÃO

Leia mais

ESCOLA ESTADUAL MARECHAL RONDON ANA PATRÍCIA PICOLO FÁBIO JOSÉ DE ARAUJO GIOVANA FERREIRA APRENDENDO GEOMETRIA PLANA E ESPACIAL COM AS TECNOLOGIAS

ESCOLA ESTADUAL MARECHAL RONDON ANA PATRÍCIA PICOLO FÁBIO JOSÉ DE ARAUJO GIOVANA FERREIRA APRENDENDO GEOMETRIA PLANA E ESPACIAL COM AS TECNOLOGIAS ESCOLA ESTADUAL MARECHAL RONDON ANA PATRÍCIA PICOLO FÁBIO JOSÉ DE ARAUJO GIOVANA FERREIRA APRENDENDO GEOMETRIA PLANA E ESPACIAL COM AS TECNOLOGIAS NOVA ANDRADINA - MS MAIO DE 2009 ESCOLA ESTADUAL MARECHAL

Leia mais

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores

Números e Operações (NO) Álgebra (ALG) DOMÍNIO SUBDOMÍNIO OBJETIVO GERAL/DESCRITORES RECURSOS. Conhecer e aplicar propriedades dos divisores ESCOLA BÁSICA CRISTÓVÃO FALCÃO ANO LETIVO: 2016/2017 SERVIÇO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS DATA: Set 2016 ASSUNTO PLANIFICAÇÃO ANUAL 5º Ano RESPONSÁVEL: Grupo 230 DOMÍNIO SUBDOMÍNIO

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³

Leia mais

Equipe de Física: (PCNA Fevereiro de 2015) Alexandre Guimarães Rodrigues (Coordenação) José Benício da Cruz Costa (Orientação) Monitores: Diego

Equipe de Física: (PCNA Fevereiro de 2015) Alexandre Guimarães Rodrigues (Coordenação) José Benício da Cruz Costa (Orientação) Monitores: Diego Física Elementar Equipe de Física: (PCNA Fevereiro de 2015) Alexandre Guimarães Rodrigues (Coordenação) José Benício da Cruz Costa (Orientação) Monitores: Diego Ribeiro Pinto de Castro Marcel Almeida do

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

PROVAS DA SEGUNDA ETAPA PS2007/UFG

PROVAS DA SEGUNDA ETAPA PS2007/UFG UFG-PS/7 PROVS D SEGUND ETP PS7/UFG Esta parte do relatório mostra o desempenho dos candidatos do grupo na prova de Matemática da ª etapa do PS7. Inicialmente, são apresentados os dados gerais dos candidatos

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

7º ano. Conteúdo para o Teste de Sondagem Língua Portuguesa. Matemática

7º ano. Conteúdo para o Teste de Sondagem Língua Portuguesa. Matemática 7º ano Conteúdo para o Teste de Sondagem 2015 Interpretação e produção de textos de gêneros variados: Carta, notícia, artigo de Opinião, relatos de viagem, tirinha, charge. Sistema de numeração decimal

Leia mais

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Ao longo do ano Números e Operações 3. Resolver problemas 3.1. Resolver problemas de vários passos envolvendo as quatro operações. setembro/

Leia mais

Unidade 4 Geometria: áreas

Unidade 4 Geometria: áreas Sugestões de atividades Unidade 4 Geometria: áreas 7 MATEMÁTICA 1 Matemática 1. Na figura abaixo, a base do retângulo mede 6,4 cm, e a altura, 4,5 cm. Calcule a área do retângulo e do losango. Determine,

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

1 Curso Eduardo Chaves-www.eduardochaves.com

1 Curso Eduardo Chaves-www.eduardochaves.com 1 Curso Eduardo Chaves-www.eduardochaves.com Lista de exercícios de equação do 2º grau, biquadrada e equações irracionais, para estudar para prova do 2º bimestre. 1) Resolva as seguintes equações do 2º

Leia mais