Matemática Básica. Atividade Extra

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática Básica. Atividade Extra"

Transcrição

1 Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente.

2 6) 7) Um funcionário de uma empresa de instalação de TV a cabo recebe um salário fixo de R$ 480,00 e mais R$ 7,50 por ponto instalado. A função que permite calcular o salário mensal (S) desse funcionário em função do número de pontos (n) instalados é: a) S = 7,50 n b) S = ( ,50) n c) S = ,50 d) S = ,50 n

3 8) Construa o gráfico de cada uma das funções abaixo e classifique-as em crescente, decrescente ou constante. 9) Assinale a alternativa falsa: a) O gráfico de uma função constante é uma reta paralela ao eixo X. b) O gráfico de uma função do 1º grau é sempre uma reta. c) Toda função do 1º grau é constante. d) x = é o gráfico de uma reta paralela ao eixo Y. 10)A condição para que no gráfico da função quadrática f(x) = (m+1)x 5x + 5 tenha a concavidade voltada para baixo é : a) m > 0 b) m < -1 c) m< 0 d) m > -1 11) O gráfico abaixo representa a função a função de R em R dada por f(x) = ax + b. De acordo com o gráfico conclui-se que: a) a < 0 e b> 0 b) a< 0 e b< 0 c) a> 0 e b > 0 d) a> 0 e b < 0

4 1) Assinale a alternativa correta: a) O vértice de uma função do º grau pode representar o ponto de mínimo da função. b) O vértice de uma função do º grau representa o ponto de máximo da função. c) Quando o discriminante delta é negativo, a concavidade da parábola é voltada para baixo. d) Quando o discriminante é positivo, a função do º grau admite duas raízes reais e iguais. e) Uma função do º grau é sempre constante 13) O gráfico que segue representa as funções f ( x) x 3x 4 e g ( x) x 7. As coordenadas dos pontos A e B, RESPECTIVAMENTE, são: a) (1, 6) e (3, 4) b) (1, 6) e (4, 3) c) (6, 1) e (3, 4) d) (6,1) e (4, 3) 14) Para descobrir a velocidade de um veículo antes de uma colisão de trânsito, os especialistas v v² costumam utilizar a fórmula d, onde v é a velocidade, em quilômetros por hora, desenvolvida pelo veículo antes do choque e d, a distância em metros que o mesmo percorre desde que o motorista pressente o acidente até o momento da parada. Quantos metros percorre um carro a 110 km/h, desde o momento que vê o obstáculo até o carro parar? a) 59,4 m b) 58,4 m c) 48,4 m d) 594 m e) 584 m 15)A função f (x) = x² -x -6 está representada no gráfico a seguir.

5 A partir dele: a) Encontre as RAÍZES dessa função. b) CALCULE f(-1). 16)O gráfico abaixo representa a parábola f(x) = ax + bx + c, a partir de sua análise podemos afirma que: a) > 0 b) = 0 c) < 0 17) Calcule os zeros ou raízes das funções do º grau abaixo e construa o gráfico de cada uma delas. a) f(x) = 4x - 10x + 3 b) f(x) = -x + 4x - c)f(x) = x - 5x + 6 d)f(x) = - x + 4x e) f(x) = - x + x 8 f) f(x) = x 4x )O gráfico abaixo representa a função de R em R dada por f(x) = ax + bx + c. De acordo com o gráfico conclui-se que: a) a > 0, b= 0 e c < 0 b) a > 0, b= 0 e c > 0 c) a > 0, b > 0 e c = 0 d) a < 0, b < 0 e c = 0 19) O custo total para um fabricante consiste de um custo de manufatura de R$ 0 por unidade e de uma despesa diária fixa. (a) Se o custo total para produzir 00 unidades em 1 dia é de R$ 4500, determine a despesa fixa diária. (b) Se x unidades são produzidas diariamente e y é o

6 custo total diário, escreva uma equação relacionando x e y. (c) Faça um esboço do gráfico da equação obtida em (b). 0) Uma fábrica de equipamentos eletrônicos está colocando um novo produto no mercado. Durante o primeiro ano o custo fixo para iniciar a nova produção é de R$ e o custo variável para produzir cada unidade é R$ 5. Durante o primeiro ano o preço de venda é de R$ 65 por unidade. (a) Se x unidades são vendidas durante o primeiro ano, expresse o lucro do primeiro ano como uma função de x. (b) Se unidades forem vendidas, qual será o lucro. (c) Quantas unidades precisam ser vendidas para não haver prejuízo? 1) O custo mensal de uma fábrica que produz esquis é de R$ 4.00, e o custo variável de R$ 55 por par de esquis. O preço de venda é de R$ 105. (a) Se x unidades são vendidas durante um mês, expresse o lucro mensal como uma função de x. (b) Se 600 pares forem vendidos em um mês, qual será o lucro. (c) Quantas unidades precisam ser vendidas para não haver prejuízo durante um mês? ) (UFRN) Na hora do banho, Mafalda abriu a torneira da banheira de sua casa e ficou observando o nível de água subir. Deixoua encher parcialmente para não desperdiçar água. Fechou a torneira, entrou, lavou-se e saiu sem esvaziar a banheira. Qual dos gráficos mais se aproxima da representação do nível(n) da água na banheira em função do tempo(t)? A) B) D) C)

7 3)Suponha que um grilo, ao saltar do solo, tenha sua posição no espaço descrita em função do tempo(em segundos) pela expressão h( t) 3t 3t, onde h é a altura atingida em metros. a)em que instante o grilo retorna ao solo?(pense: se ele está no chão quanto vale sua altura?). b)qual é a altura máxima em metros atingida pelo grilo? 4)(UEPE) O custo C, em reais, para se produzir n unidades de determinado produto é dado C n n pela lei. Quantas unidades deverão ser produzidas para se obter o custo mínimo? 5)O lucro mensal de uma empresa é dado por L x 30x 5, onde x é a quantidade mensal vendida. Qual o lucro máximo possível? 6)(PUC-Campinas-Adaptada) Uma bola é arremessada e sua altura h em relação ao solo, t segundos após o lançamento, é dada pela expressão h 5t 8. Determine a altura máxima atingida pela bola. 7) (UFJF ) Se f: IR IR, é uma função do 1º grau cujo gráfico passa pelos pontos (0, 5) e (6, 3), podemos afirmar que a) f é decrescente e f(3) = 0 b) f é crescente e f(3) = 4 c) f é crescente e f(3) = 5 d) f é decrescente e f(3) = 5 e) f é decrescente e f(3) = 4 8) Considere a função f: IR IR, f(x) = x + x + 3. DETERMINE: a) Os zeros da função. b) O ponto de máximo da função. c) O ponto de interseção com o eixo y. d) O gráfico dessa função.

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA: C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE: Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5

Leia mais

Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t,

Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t, Atividade extra Exercício 1 Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t + 00t, onde h(t) é a altura da bola em função do tempo (t) em segundos. Quanto

Leia mais

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma:

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma: FUNÇÃO DE º GRAU O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de º grua tem sempre a forma: y = ax + bx + c O gráfico da função é sempre uma parábola.

Leia mais

ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM1, INF1, MET1. Pollyanna Sette Etapa(s) Disciplina 1ª e 2ª

ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM1, INF1, MET1. Pollyanna Sette Etapa(s) Disciplina 1ª e 2ª ROTEIRO DE ESTUDOS Recuperação Semestral Turma(s) Professor ADM, INF, MET Pollyanna Sette Etapa(s) Disciplina ª e 2ª Matemática CONTEÚDOS. CONJUNTOS (LISTAS e 2/ LIVRO: CAP. 2. CONJUNTOS NUMÉRICOS (LISTAS

Leia mais

Lista de exercícios sobre função quadrática Prof. Márcio Prieto

Lista de exercícios sobre função quadrática Prof. Márcio Prieto 1. (Fgv) O preço de ingresso numa peça de teatro (p) relaciona-se com a quantidade de frequentadores (x) por sessão através da relação; p = - 0,2x + 100 a) Qual a receita arrecadada por sessão, se o preço

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola

FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola FUNÇÃO DO 2º GRAU A função do 2º grau está presente em inúmeras situações cotidianas, na Física ela possui um papel importante na análise dos movimentos uniformemente variados (MUV), pois em razão da aceleração,

Leia mais

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:

1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: . Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA

Leia mais

ALUNO(A): Prof.: Andre Luiz 04/06/2012

ALUNO(A): Prof.: Andre Luiz  04/06/2012 1. FUNÇÃO 1.1 Definição A função dada por ( ), com a, b, c reais e a 0. Vejamos alguns exemplos: a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) ( ) ( ) Vamos a outro exemplo: Ex2.: Um objeto que se desloca

Leia mais

Prof: Danilo Dacar

Prof: Danilo Dacar Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO

EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO =========================================================================================== 1) Seja a função f(x)

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO

MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO y c x y y x x x x x x y y x =x x x =x x y y x x eixo de simetria eixo de simetria y x x v x f(x) x y v y v y v v x x v x x Como pode cair

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

ROTEIRO DE RECUPERAÇÃO. Professor(a):Denise Capuchinho Nonato 2017

ROTEIRO DE RECUPERAÇÃO. Professor(a):Denise Capuchinho Nonato 2017 INSTITUTO EDUCACIONAL MANOEL PINHEIRO www.manoelpinheiro.com.br MATEMÁTICA ROTEIRO DE RECUPERAÇÃO Ensino Médio Etapa:2ª Série:1ª Tipo: U Professor(a):Denise Capuchinho Nonato 2017 Aluno(a): Nota: Caro

Leia mais

As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.

As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na

Leia mais

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Semana 7 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3) FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Questão 1. Questão 2. Questão 3. Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data:

Questão 1. Questão 2. Questão 3. Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data: Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data: Questão 1 Quantas soluções inteiras a inequação x 2 + x 20 0 admite? (A) 2 (B) 3 (C) 7 (D) 10 (E) 13 Questão 2 A função quadrática

Leia mais

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo.

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo. QUESTÕES 01 E 0 Para responder a essas questões, analise a tabela abaio. Em um clube, cada um dos jogadores de um time de futebol tinha a seguinte idade (em anos): 17 0 0 16 18 19 17 16 18 17 16 17 0 16

Leia mais

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}?

Lista de Exercícios de Matemática. 01-) Quantos números naturais há na sequência {103, 104, 105,..., 827, 828}? Lista de Exercícios de Matemática 01-) Quantos números naturais há na sequência {10, 104, 105,..., 87, 88}? 0-) V ou F: a) Todo número natural é inteiro. Todo número racional é inteiro. c) Existe número

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

Exercícios de Aprofundamento Matemática Funções Quadráticas

Exercícios de Aprofundamento Matemática Funções Quadráticas 1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale

Leia mais

Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1

Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1 Lista de Exercícios Calcular os zeros das seguintes funções: a) f(x) x - 3x 0 b) f(x) x x + c) f(x) x + 4x 4 d) f(x) 36x + x + Calcular m para que: a) a função f(x) (m 3)x + 4x 7 seja côncava para cima

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

a < 0 / > 0 a < 0 / = 0 a < 0 / < 0

a < 0 / > 0 a < 0 / = 0 a < 0 / < 0 FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA., a 0 é chamada função do função

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA., a 0 é chamada função do função INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA 1. DEFINIÇÃO A função quadrática. f : R R definida por f ( x) = ax + x + c, a 0 é chamada função

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes:

Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes: 1) Estude as raízes, determine o vértice, interseção com o eixo y, eixo de simetria, esboce o gráfico e estude o sinal das funções a seguir. a. f(x) = x 2 7x + 10 b. g(x) = x 2 + 4x + 4 c. y = -3x 2 +

Leia mais

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.

Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol. FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória

Leia mais

Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA

Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,

Leia mais

Lista 4 MUV. Física Aplicada a Agronomia

Lista 4 MUV. Física Aplicada a Agronomia Sigla: Disciplina: Curso: FISAP Física Aplicada a Agronomia Agronomia Lista 4 MUV 01) A posição de um objeto movendo-se ao longo do eixo x é dada por x = 3t - 4t² + t³, onde x está em metros e t em segundos.

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 Exercícios

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves luis.goncalves@ucp.br

Leia mais

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

Equação de Segundo Grau. Rafael Alves

Equação de Segundo Grau. Rafael Alves Equação de Segundo Grau Rafael Alves Equação do 2º Grau As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. 2x + 1 = 0 (Equação de 1º grau) 2x² + 2x + 6 = 0 (Equação de

Leia mais

Lista de exercícios Derivadas

Lista de exercícios Derivadas Lista de exercícios Derivadas 1 - (ENADE 2011) - Os analistas financeiros de uma empresa chegaram a um modelo matemático que permite calcular a arrecadação mensal da empresa ao longo de 24 meses, por meio

Leia mais

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Semana 7 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

Mat.Semana 5. Alex Amaral (Rodrigo Molinari)

Mat.Semana 5. Alex Amaral (Rodrigo Molinari) Alex Amaral (Rodrigo Molinari) Semana 5 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/03

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;

Leia mais

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta:

1. Construir o gráfico da função Resposta: 2. Construir o gráfico da função y = 2x Resposta: 3. Construir o gráfico da função Y = -2x Resposta: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 05 09/04/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 22/04/2015 (4ª feira) Aluno:

Leia mais

Banco de questões. 4 Função quadrática. ) é igual a 60. ( ( )) por g( x) é igual ( ) = 5 ( ) = ( ) e g( f ( 7) funções UNIDADE I I

Banco de questões. 4 Função quadrática. ) é igual a 60. ( ( )) por g( x) é igual ( ) = 5 ( ) = ( ) e g( f ( 7) funções UNIDADE I I UNIDADE I I funções CAPÍTULO Função quadrática Banco de questões 1 (FURG RS) Determine os números reais a e b b para que a função quadrática f x a x x a tenha valor máximo no ponto x = 3 e que esse valor

Leia mais

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos. 01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÃO POLINOMIAL DO 2º GRAU Observe os quadrados a seguir, cuja a medida do lado varia conforme está indicado Um arremesso de uma bola em um jogo de basquete Calculando a área de cada quadrado obtemos.

Leia mais

Matemática. Função Quadrática. Eduardo. Matemática Funções

Matemática. Função Quadrática. Eduardo. Matemática Funções Matemática Função Quadrática Eduardo (Ufsc 2015) Se o gráfico abaixo representa a função polinomial f, definida em R por 3 2 f(x) = ax + bx + cx + d, com a, b e c coeficientes reais, então f(2) = 24. (Ufsc

Leia mais

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1.

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1. COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Professor: Henrique Plínio Função Quadrática Lista 2 Data: / /2015 III Unidade Aluno: 1 Turma: 1º 1.Considere

Leia mais

Lista de exercícios: Funções do 1º Grau

Lista de exercícios: Funções do 1º Grau Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:

Leia mais

LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA

LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA Conteúdo da P: Função do 1º grau e do º grau, Probabilidade e Situações Problemas de funções. Função de 1º Grau 1. Observe o quadro abaio e responda:

Leia mais

Nivelamento Matemática Básica

Nivelamento Matemática Básica Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto

Leia mais

Lista de exercícios Função Quadrática

Lista de exercícios Função Quadrática Lista de exercícios Função Quadrática 1. Determine as raízes, os interceptos em relação ao eixo y e o vértice das parábolas: ) = 4 ) = +3 ) = 2 5+2 2. Determine os valores de para que a funções do 2 grau

Leia mais

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }

Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) } TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero

Leia mais

3º EM. Prof. Fabio Henrique LISTA 06. Fabio Henrique

3º EM. Prof. Fabio Henrique LISTA 06. Fabio Henrique 3º EM LISTA 06 Fabio Henrique 1. A temperatura, 2 em graus Celsius, de um objeto armazenado em um determinado local é modelada pela função x f(x) 2x 10, 12 com x dado em horas. A temperatura máxima, em

Leia mais

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f: FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ) g(x) = x 2 5x c) h(x)

Leia mais

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 = QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2

Leia mais

DISCIPLINA: Matemática. Lista de Revisão 3º Bimestre. A arte da vida consiste em fazer da vida uma obra de arte...

DISCIPLINA: Matemática. Lista de Revisão 3º Bimestre. A arte da vida consiste em fazer da vida uma obra de arte... ALUNO (A): PROFESSSOR (A): Carlos Alison DISCIPLINA: Matemática DATA: / / Lista de Revisão 3º Bimestre A arte da vida consiste em fazer da vida uma obra de arte... - Mahatma Gandhi 1. (Ufla) Uma loja vende

Leia mais

Função Quadrática ou Função do 2º grau

Função Quadrática ou Função do 2º grau Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Um pouco de História... Babilônia (1.800 a.c) alguns métodos de resolução de equações

Leia mais

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f: FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ( a = 3, = -5 e c = 6 )

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.2 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo

Leia mais

de R$100,00 a unidade. O custo total, em reais, da produção diária é igual a x2 + 20x

de R$100,00 a unidade. O custo total, em reais, da produção diária é igual a x2 + 20x Atividade extra Exercício 1 (FAAP-SP) Uma indústria produz, por dia, x unidades de determinado produto, e pode vender sua produção a um preço de R$100,00 a unidade. O custo total, em reais, da produção

Leia mais

Exercícios de Matemática Funções Função Modular

Exercícios de Matemática Funções Função Modular Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por

Leia mais

FICHA DE TRABALHO FUNÇÕES POLINOMIAIS. Matemática (10/11º ano) EXERCÍCIOS

FICHA DE TRABALHO FUNÇÕES POLINOMIAIS. Matemática (10/11º ano) EXERCÍCIOS FICHA DE TRABALHO FUNÇÕES POLINOMIAIS Matemática (10/11º ano) EXERCÍCIOS I. Questões de escolha múltipla 1. Das seguintes representações gráficas, quais são representativas de funções? (A) I e IV (B) II

Leia mais

FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÃO POLINOMIAL DO 2º GRAU MÓDULO 9 FUNÇÃO QUADRÁTICA FUNÇÃO POLINOMIAL DO 2º GRAU Chamamos de função polinomial do segundo grau ou função quadrática, toda a função f : R R dada por uma lei de forma

Leia mais

Aluno(a): N o : Ano: 9º Turma: Data: 29/08/15 Unidade: III AVALIAÇÃO AV2

Aluno(a): N o : Ano: 9º Turma: Data: 29/08/15 Unidade: III AVALIAÇÃO AV2 Tema do Ano: "É nos sonhos que tudo começa." Projeto Interdisciplinar do 9 o ano (Ensino Fundamental): Quantos mundos cabem em sua mochila? Aluno(a): N o : Ano: 9º Turma: Data: 9/08/15 Unidade: III Disciplina

Leia mais

6. Sendo A, B e C os respectivos domínios das

6. Sendo A, B e C os respectivos domínios das 1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 20 PROFESSOR (a) DISCIPLINA BRUNO REZENDE PEREIRA MATEMÁTICA ALUNO (a) SÉRIE

Leia mais

Atividade extra. Fascículo 5 Matemática Unidade 14 Função Afim UNIDADE FUNÇÃO AFIM

Atividade extra. Fascículo 5 Matemática Unidade 14 Função Afim UNIDADE FUNÇÃO AFIM 14 Atividade extra UNIDADE FUNÇÃO AFIM Fascículo 5 Matemática Unidade 14 Função Afim Exercı cio 14.1 Um vendedor possui um gasto mensal de R$550, 00 e cada produto é vendido por R$5, 00. Sua renda é variável

Leia mais

Ou seja, D(f) = IR e Im(f) IR.

Ou seja, D(f) = IR e Im(f) IR. MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Profª Roberta Nara Sodré de Souza Função Quadrática

Leia mais

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas.

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Números e Funções Reais - PROFMAT Prof. Zeca Eidam Lista Equações e inequações. Prove que: a) x 0 b) x = 0

Leia mais

FUNÇÃO DO 2 GRAU TERÇA FEIRA

FUNÇÃO DO 2 GRAU TERÇA FEIRA FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),

Leia mais

Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht

Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht Aula 5 Exercícios e Aplicações de Funções Quadráticas Fabio Licht Construção do gráfico da função do 2.º grau Passo a passo 1º passo: determinar as raízes da função 2º passo: estudo da concavidade 3º passo:

Leia mais

Equações do 2º grau 21/08/2012

Equações do 2º grau 21/08/2012 MATEMÁTICA Revisão Geral Aula 5 Parte 1 Professor Me. Álvaro Emílio Leite Equações do º grau Toda epressão que possui a forma + + =0, onde, e são números reais e 0, é uma equação do grau na incógnita.

Leia mais

Pré-requisitos: O usuário deverá ter conhecimento prévio de Função Afim e Função Quadrática.

Pré-requisitos: O usuário deverá ter conhecimento prévio de Função Afim e Função Quadrática. Neste material você terá disponível: Uma situação que descreve várias sentenças matemáticas que compõem a Função Definida por Várias Sentenças. Atividades contextualizadas. Atividades extras. Objetivo:

Leia mais

MATEMÁTICA E SUAS TECNOLÓGIAS

MATEMÁTICA E SUAS TECNOLÓGIAS MTEMÁTIC E SUS TECNOLÓGIS Lista de Eercícios / º ano Professor(a): Data: //6. De sonhos e luno(a):. Dê as coordenadas cartesianas dos pontos assinalados na figura abaio: H C D E F I G J. Observe o diagrama

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m. a) Esboçar, no plano cartesiano representado a seguir, os gráficos de f e de g

Leia mais

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO

ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO Nome Nº Turma 1 cn02 e cn07 Data / / Nota Disciplina Matemática Prof. Elaine Valor 30 Instruções: TRABALHO DE RECUPERAÇÃO ANUAL; Este

Leia mais

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA

EXERCÍCIOS 2006 APOSTILA MATEMÁTICA EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2012

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2012 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela ª Etapa 0 Disciplina: _Matemática_ Ano: º Professor (a): _Valeria Turma: _º FG _ Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula.

1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula. Exercícios para a Prova 3 de Matemática 2 Trimestre 1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula. Módulo 19 Equações de 2 Grau, Fórmula de Báskara 1. Calcule

Leia mais

MATEMÁTICA ROTEIRO DE RECUPERAÇÃO NOTA ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS

MATEMÁTICA ROTEIRO DE RECUPERAÇÃO NOTA ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS MATEMÁTICA ROTEIRO DE RECUPERAÇÃO ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS NOTA ALUNO(A): Nº: DATA: / /2017 I INTRODUÇÃO Este roteiro tem como

Leia mais

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011 CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática

Leia mais

1 Completando Quadrados

1 Completando Quadrados UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Completamento de quadrados, Função e Equação quadrática, Função Inversa.

Leia mais

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões

Leia mais