Lista 4.5 Derivada da Função Composta

Tamanho: px
Começar a partir da página:

Download "Lista 4.5 Derivada da Função Composta"

Transcrição

1 Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II. Função composta de duas unções e g, com o contradomínio de g contido ou igual ao domínio de (og): Função que resulta da utilização de imagens da unção g como objectos da unção e que, por isso, depende dos objectos da unção g, tendo como imagens vectores do espaço de chegada de. g: D g n p ; CD g A gx,,x n g x,,x n : D p m ; A D,,a p,,a p,, m,,a p og: D g n m ogx,,x n gx,,x n g x,,x n,, m g x,,x n. Função composta de uma unção, de em e uma unção g, de em, com o contradomínio de g contido ou igual ao domínio de : Função que resulta da utilização de imagens da unção g, vectores de, como objectos da unção, também vectores de e que, por isso, depende dos objectos da unção g, vectores de e tem como imagens vectores do espaço de chegada de, vectores de. g: D g ; CD g A gx,y g : D ; A D,b og: D g ogx,y g g 3. Função composta de uma unção, de em e uma unção g, de em, com o contradomínio de g contido ou igual ao domínio de : Função que resulta da utilização de imagens da unção g, vectores de, como objectos da unção, também vectores de e que, por isso, depende dos objectos da unção g, vectores de e tem como imagens vectores do espaço de chegada de, vectores de. g: D g ; CD g A g g, g

2 : D ; A D x,y x,y, og: D g og g g, g, g, g 4. Se: Teorema da Derivada da Função Composta: g: D g n p ; CD g A : D p m ; A D g é dierenciável em a Então: é dierenciável em g og é dierenciável em a g a J og J g. J 5. Derivada parcial de ª ordem da unção composta og, com uma unção escalar, em ordem a x, num ponto a, interior do seu domínio (og ): Taxa de variação og quando há um desvio ininitesimal na coordenada x a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p ; A D b,,b p og: D g n ogx,,x n gx,,x n g x,,x n og x b g,,a n,,g p,,a n.g x,,a n bp g,,a n,,g p,,a n.g px,,a n x 6. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, em ordem a x (y), num ponto,a, interior do seu domínio: g: D g ; CD g A gx,y g

3 : D ; A D b,c og: D g ogx,y g g og x,a b g,a, g,a.g x,a c g,a, g,a.g x,a og y,a b g,a, g,a.g y,a c g,a, g,a.g y,a 7. Derivada parcial de ª ordem da unção composta og, com uma unção vectorial, em ordem a x, num ponto a, interior do seu domínio: Vector cujas coordenadas são as taxas de variação das unções coordenadas de og quando há um desvio ininitesimal na coordenada x a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p m ; A D b,,b p b,,b p,, m b,,b p og: D g n m, m ogx,,x n gx,,x n g x,,x n,, m g x,,x n og x og,,ogm x x g. g b x g. g b p px,, m g. g b x m g. g b p px 8. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, num ponto a, interior do seu domínio: Vector cujas coordenadas são as taxas de variação de og e og quando há um desvio ininitesimal a partir do ponto a. g: D g ; CD g A gb g b, g b : D ; A D x,y x,y, og: D g ogb gb gb, gb 3

4 og og,og g. g x g. g y, g. g x g. g y 9. Derivada parcial de ª ordem da unção composta og, com uma unção escalar, em ordem a x i e x j, num ponto a, interior do seu domínio (og ): Taxa de variação de og x quando há um desvio ininitesimal na coordenada x i j a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p ; A D b,,b p og: D g n ogx,,x n gx,,x n g x,,x n og xi x,,x n b g x,,x n.g x x,,x n i bp g x,,x n.g pxi x,,x n og xi x j b b g. g x b b j p g. g pxj.g x i b g. g x i x bp b j g. g x bp b j p g. g pxj.g pxi bp g. g pxi x j xi x j 0. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, em ordem a x e x, num ponto,a, interior do seu domínio: Taxa de variação de og x quando há um desvio ininitesimal na coordenada x a partir do ponto a,a. g: D g ; CD g A gx,y g : D ; A D b,c og: D g ogx,y g g 4

5 og x x,y b g.g x,y x c g.g x,y x og xx,a bb g,a, g,a.g x,a bc g,a, g,a.g x,a.g x,a b g,a, g,a.g xx,a cb g,a, g,a.g x,a cc g,a, g,a.g x,a.g x,a c g,a, g,a.g xx,a 5

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 6 VITON 5 RETENTORES CB 4,5 0X 16 X 7 6 RETENTORES CB 4,8 X 22 X 7 7 RETENTORES CC 5 X 15

Leia mais

5 Transformações Lineares e Matrizes

5 Transformações Lineares e Matrizes Nova School of Business and Economics Prática Álgebra Linear 5 Transformações Lineares e Matrizes 1 Definição Função de em Aplicação que faz corresponder a cada elemento de um conjunto (domínio), denominado

Leia mais

Diretor Executivo Márcio Augusto Magalhães. Diretor Departamento de Administração Márcio Wamilton Magalhães. Diretor de Operações Adriano de Magalhães

Diretor Executivo Márcio Augusto Magalhães. Diretor Departamento de Administração Márcio Wamilton Magalhães. Diretor de Operações Adriano de Magalhães Diretor Executivo Márcio Augusto Magalhães Diretor Departamento de Administração Márcio Wamilton Magalhães Diretor de Operações Adriano de Magalhães Manual de Abastecimento de Água pág. 2 !"!#$$ %"&'()*%+,%-%+,%./&01

Leia mais

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder

Leia mais

Siemens AG 2009 SIRIUS SENTRON SIVACON. Catálogo LV 90 2009. Baixa Tensão Corte, protecção e comando. Answers for industry.

Siemens AG 2009 SIRIUS SENTRON SIVACON. Catálogo LV 90 2009. Baixa Tensão Corte, protecção e comando. Answers for industry. SIRIUS SENTRON SIVACON Catálogo LV 90 2009 Baixa Tensão Corte, protecção e comando Answers for industry. Interruptores de corte em carga, sistemas de barramentos SENTRON 8US Introdução Tipo 3NP 1 3K 3NJ4

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional

Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional Contabilidade Nacional Questão 6 O nosso objectivo é conhecer o valor da produção da economia ou PIB. Se as empresas

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

Universidade Federal de Goiás Regional Catalão - IMTec

Universidade Federal de Goiás Regional Catalão - IMTec Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03.

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03. SÉRIE 8º ANO OLÍMPICO ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) SEDE ALUNO(A) Nº RESOLUÇÃO TURMA TURNO DATA / / ÁLGEBRA CAPÍTULO POTENCIAÇÃO Exercícios orientados para a sua aprendizagem (Pág. 6 e 7) 0. A)

Leia mais

Capítulo V: Derivação 137

Capítulo V: Derivação 137 Capítulo V: Derivação 37 Esboço de gráicos: Para esboçar o gráico de uma unção deve-se sempre que possível seguir as seguintes etapas: Indicar o domínio; Determinar os zeros (caso eistam); Estudar a paridade;

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo.

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo. TEOREMA DE CEVA E MENELAUS Definição 1. A ceviana de um triângulo é qualquer segmento de reta que une um dos vértices do triângulo a um ponto pertencente à reta suporte do lado oposto a este vértice. Teorema

Leia mais

INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um

INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0, de produzir um recipiente defeituoso. Antes que esses recipientes sejam estocados, eles são inspecionados e os defeituosos

Leia mais

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos

Leia mais

Circuitos Digitais. Engenharia de Automação e Controle Engenharia Elétrica. São Paulo 2014. Prof. José dos Santos Garcia Neto

Circuitos Digitais. Engenharia de Automação e Controle Engenharia Elétrica. São Paulo 2014. Prof. José dos Santos Garcia Neto Engenharia de Automação e Controle Engenharia Elétrica Circuitos Digitais Prof. José dos Santos Garcia Neto São Paulo 2014 Prof. José dos Santos Garcia Neto 1 Introdução Esta apostila tem como objetivo

Leia mais

Contatores de Potência 3RT10, 3TF6

Contatores de Potência 3RT10, 3TF6 3RT10 26 3RT10 36 3RT10 65 3TF69 Contatores de otência 3RT10, 3TF6 Motores trifásicos Contator 1) otências s AC-2 / AC-3, 60 z em 220 V 380 V 440 V AC-1 (Dimensões em mm) (cv / kw) (cv / kw) (cv / kw)

Leia mais

Artigo Inicial: 4 Artigo I ("A Semente é a Palavra de Deus"): 9 Artigo II ("Alvo de Contradição"): 20 Artigo III ("Novo Adão e Nova Eva"): 26 Artigo

Artigo Inicial: 4 Artigo I (A Semente é a Palavra de Deus): 9 Artigo II (Alvo de Contradição): 20 Artigo III (Novo Adão e Nova Eva): 26 Artigo 1 !" #!#!$" %&''() 2 Artigo Inicial: 4 Artigo I ("A Semente é a Palavra de Deus"): 9 Artigo II ("Alvo de Contradição"): 20 Artigo III ("Novo Adão e Nova Eva"): 26 Artigo IV ("São José"): 37 Artigo V ("Corpo

Leia mais

QUESTÕES DE ESCOLHA MÚLTIPLA

QUESTÕES DE ESCOLHA MÚLTIPLA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ TÓPICOSDERESOLUÇÃODO o TESTE(DIURNO) QUESTÕES DE ESCOLHA MÚLTIPLA. [,]SejamAeB duas matrizes

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

S IM O N S E N ASSOCIADOS ABEMD INDICADORES 2009

S IM O N S E N ASSOCIADOS ABEMD INDICADORES 2009 ABEMD ASSOCIAÇÃO BRASILEIRA DE MARKETING DIRETO INDICADORES 2009 INDICADORES ABEMD MERCADO BRASILEIRO DE MARKETING DIRETO Maio de 2009 EMPRESAS CONSULTADAS: ATUALIZAÇÃO: ESTUDO SOBRE 2008 S IM O N S E

Leia mais

Métodos de Análise de Investimentos

Métodos de Análise de Investimentos Aula Capítulo 11 Métodos de Análise de Investimentos 11.1- Introdução Neste capítulo mostraremos aplicações de valor presente líquido (VPL) e taxa interna de retorno (TIR) em comparações de fluxos de caixa

Leia mais

SEGURO FATURAMENTO AGRÍCOLA. Condições Gerais

SEGURO FATURAMENTO AGRÍCOLA. Condições Gerais SEGURO FATURAMENTO AGRÍCOLA Condições Gerais VERSÃO 1.3 CNPJ 28.196.889/0001-43 Processo SUSEP nº 15414.001668/2011-41 Condições Gerais Seguro Faturamento Agrícola versão 1.3 / Processo SUSEP nº 15414.001668/2011-41

Leia mais

Aula 5 - Matemática (Gestão e Marketing)

Aula 5 - Matemática (Gestão e Marketing) ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado

Leia mais

Aulas Teóricas e de Problemas de Álgebra Linear

Aulas Teóricas e de Problemas de Álgebra Linear Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações

Leia mais

63789:!" #$$!%&'" %%($!)* '+($!%,'$'!)' '';! +! <' = + -.%" '$/0!)" #$!/0!)%&! + 2 4> + ; (! ; ( 8 ; ( ; *(" #+ + ; ('+ +? '

63789:! #$$!%&' %%($!)* '+($!%,'$'!)' '';! +! <' = + -.% '$/0!) #$!/0!)%&! + 2 4> + ; (! ; ( 8 ; ( ; *( #+ + ; ('+ +? ' Página 1 de 31!"#$%&'"!!"( )* +,-./(,0 " #1$,*2 34#5'+ 63789:!" #$$!%&'" %%($!)* '+($!%,'$'!)' '';! +! .12 # '1 + #%

Leia mais

!"!#""" MESTRADO EM TEOLOGIA. Área de Concentração: Religião e Educação ()*+,-#""./

!!# MESTRADO EM TEOLOGIA. Área de Concentração: Religião e Educação ()*+,-#./ !"!#""" $%&&' MESTRADO EM TEOLOGIA Área de Concentração: Religião e Educação ()*+,-#""./ 0!"!#""" 1223445, 26,),7)2 8 9:;28 87767 26,;2

Leia mais

ANEXO II - MODELOS DE DIVULGAÇÕES RESPEITANTES A PLANOS DE BENEFÍCIO DEFINIDO

ANEXO II - MODELOS DE DIVULGAÇÕES RESPEITANTES A PLANOS DE BENEFÍCIO DEFINIDO >> Voltar ao índice ANEXO II - MODELOS DE DIVULGAÇÕES RESPEITANTES A PLANOS DE BENEFÍCIO DEFINIDO O presente Anexo apresenta um conjunto de modelos que as instituições devem considerar no âmbito das divulgações

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Tema: Circunferência e Polígonos. Rotações

Tema: Circunferência e Polígonos. Rotações Nome: N.º: Turma: 9.º no Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência e Polígonos. Rotações 1. Na figura está representado um decágono regular [ BCDEFGHIJ

Leia mais

Gramáticas Livres de Contexto

Gramáticas Livres de Contexto Gramáticas Livres de Contexto 25 de novembro de 2011 Definição 1 Uma Regra (ou produção) é um elemento do conjunto V (V Σ). Sendo que V é um conjunto finito de elementos chamados de variáveis e Σ um conjunto

Leia mais

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

! " # $ % % & ' ( ) ' * * +

!  # $ % % & ' ( ) ' * * + ! " # $ % % & ' ( ) ' * * + , - $ '. ! " $ & & - 0 $ $ 0 $ 3 4 5 4 3 ) 7 8 7 # % ' " ( ) * +,./ " ( $,,, ) 1 2 1 ' % 2 " % % ' %( 6 ' ( ( $ $ " !!. / '! % - :,! 3!3 ; % - ( *# 3)! ) < ; = 9 # 3!!3 33

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

! $&% '% "' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 / " ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',!

! $&% '% ' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 /  ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',! "#$%% $&% '% "' ' '# '"''%(&%') '*'+&%'# ),'#+# ' %, # - ' # ' "%'''' ' * '. % % ', '%'# ''''') /%, 0.1 2 / " ') 33*&,% *"'",% '4'5&%64'' # ' + 7*' # + "*''''' 12''&% '''&")#'35 ''+,'#.8.&&%, 1 92 '. #

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

Novas Tecnologias de Sequenciamento

Novas Tecnologias de Sequenciamento Novas Tecnologias de Sequenciamento Tecnologias de sequenciamento Sanger (Capilaridade) Uma das inovações tecnológicas de maior influência na pesquisa biológica, desde que foi lançada em 1977 Abordagem

Leia mais

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 10,9 10,7 12,8 11,6 12,0 12,1 4 11,1 10,6 10,9 10,9 13,1

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na

Leia mais

Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters)

Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters) Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters) 2. Outros modelos Mapas de Kohonen SOM, SOFM (Self-Organizing Feature Maps)

Leia mais

Alternativas para o manejo adequado de percevejos

Alternativas para o manejo adequado de percevejos Alternativas para o manejo adequado de percevejos MSc. José Fernando Jurca Grigolli Pesquisador Fitossanidade Fundação MS 1 O MONITORAMENTO E A IDENTIFICAÇÃO DAS PRAGAS INFLUENCIA DIRETAMENTE A EFICIÊNCIA

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

Manual de Políticas e Procedimentos Processo: Saúde e Segurança do Trabalho

Manual de Políticas e Procedimentos Processo: Saúde e Segurança do Trabalho 1 de 17! " # $ # % # # & ' ( )* # & +, & - & #. " %/. 0$ 12 # 3 " # & 4" $1#.$5,- 6% - 0)# 7 # 8# 9 +# 1: 92 6% 85 5 0)# 7 # 8# ; # 1: 92"%&;!"!#$%"&'( < - $ #3 )""!*%+"!,!-.*%!"/01" / - 6 -. &- - 2 de

Leia mais

CONCORRÊNCIA Nº 001/2015-SMT-GAB GRUPO ESTRUTURAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.567-8)

CONCORRÊNCIA Nº 001/2015-SMT-GAB GRUPO ESTRUTURAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.567-8) CONCORRÊNCIA Nº 001/2015-SMT-GAB GRUPO ESTRUTURAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.567-8) CONCORRÊNCIA Nº 002/2015-SMT-GAB GRUPO LOCAL DE ARTICULAÇÃO REGIONAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.569-4)

Leia mais

Raízes quadrada e cúbica de um polinômio

Raízes quadrada e cúbica de um polinômio Raízes quadrada e cúbica de um polinômio Lenimar Nunes de Andrade UFPB - João Pessoa, PB 1 de abril de 2011 1 Raiz quadrada de um polinômio Consideremos p(x) e r(x) polinômios tais que (r(x)) 2 = p(x).

Leia mais

Reconhecimento de Objectos

Reconhecimento de Objectos Dado um conjunto de características, relativas a uma região (objecto), pretende-se atribuir uma classe essa região, seleccionada de um conjunto de classes cujas características são conhecidas O conjunto

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Daciane de Oliveira Silva www.daciane.wordpress.com

Daciane de Oliveira Silva www.daciane.wordpress.com Daciane de Oliveira Silva www.daciane.wordpress.com Marketing direto e mediação eletrônica Como a internet criou novos meios de intermediação entre as pessoas e as organizações? O que é marketing direto?

Leia mais

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9. Escola Secundária/,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 3/01/01 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente,

Leia mais

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

COMO JOGAR SUA RÉGUA E SEU COMPASSO NO LIXO. Michel Spira

COMO JOGAR SUA RÉGUA E SEU COMPASSO NO LIXO. Michel Spira COMO JOGAR SUA RÉGUA E SEU COMPASSO NO LIXO Michel Spira 1 INTRODUÇÃO O objetivo desta apostila é mostrar que as construções básicas de geometria clássica, a saber, achar a interseção (caso exista) de

Leia mais

Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva.

Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. PRÉ-REQUISITOS O aluno deverá ter compreendido as aulas anteriores. .1 Introdução

Leia mais

2. A célula G25 pode-se preencher com "Matricula" ou com a fórmula =A1. Qual é melhor?

2. A célula G25 pode-se preencher com Matricula ou com a fórmula =A1. Qual é melhor? Exercícios de Trabalho - Parte III - Tabelas de Dados (Carros) Preencha manualmente as colunas "Matrícula", "Ano", "Marca", "Data de Compra", "Preço Compra", "Data de Venda" e "Preço Venda". O "Preço Indicativo"

Leia mais

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo MOQ-3 ESTATÍSTICA Proessor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística: The Science o collecting and analyzing data or the purpose o drawing conclusions and making

Leia mais

Controle do Professor

Controle do Professor Controle do Professor Compensou as faltas CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA VETORIAL E INTRODUÇÃO À ÁLGEBRA LINEAR SÉRIE: 2º ANO TRABALHO DE COMPENSAÇÃO DE FALTAS DOS ALUNOS

Leia mais

Geometria Plana Noções Primitivas

Geometria Plana Noções Primitivas Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número

Leia mais

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível:

Exercícios Operações com frações 1. Determine o valor das seguintes expressões, simplificando sempre que possível: Exercícios Operações com frações. Determine o valor das seguintes expressões, simplificando sempre que possível: 7 c 6 8 6 d b a 8 : 8 7 0 f 8 7 h g e : 6 8 : 6 7 l k j i n m Equações de º Grau Resolva

Leia mais

Manobra e Proteção de Motores. sirius. Métodos de Partida

Manobra e Proteção de Motores. sirius. Métodos de Partida anobra e Proteção de otores sirius étodos de Partida étodos de partida Índice Páginas Partida direta coordenada com fusível... e Partida direta com reversão coordenada com fúsivel... 5 e 6 Partida estrela-triângulo

Leia mais

Estática de fluidos. Paulo R. de Souza Mendes. Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ

Estática de fluidos. Paulo R. de Souza Mendes. Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ Estática de fluidos Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de 2010 Sumário A equação básica da estática de fluidos conceitos

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Capítulo 1 Prof. Rodrigo Varejão Andreão 2010/2 Cap. 1 Introdução PDS: área de rápido desenvolvimento nos últimos 40 anos, resultado do avanço das tecnologias de computação

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

2. Probabilidade. Aula 3

2. Probabilidade. Aula 3 Aula 3 2. Probabilidade 2-1 Espaços de amostragem e eventos 2-1.1 Experimentos randômicos 2-1.2 Espaços de amostragem 2-1.3 Eventos 2-2 Interpretações de probabilidade 2-2.1 Introdução 2-2.2 Axiomas de

Leia mais

PROJETOHORTAEMCASA. Manualdo. Apoio. Realização CDHU PREFEITUR A DE SÃO PAULO VERDE E MEIO AMBIENTE. Instituto GEA

PROJETOHORTAEMCASA. Manualdo. Apoio. Realização CDHU PREFEITUR A DE SÃO PAULO VERDE E MEIO AMBIENTE. Instituto GEA M RJETHRTAEMCAA CM LANTAR E CLHER ALIMENT EM CAA 201 A Rzçã Ch Dvv Hb Ub CDHU I GEA é b REFEITUR A DE Ã AUL VERDE E MEI AMBIENTE FhTé Ebçã Tx Agô Jé Lz Ch T Nh Rh Rvã A M Dg Lz Egá j Nh Rh Rq L R Rf Tv

Leia mais

G T G 2015-06. Plano Complexo. Construção do Plano Complexo no Sketchpad. ferramentas e exemplos. plano_complexo.gsp

G T G 2015-06. Plano Complexo. Construção do Plano Complexo no Sketchpad. ferramentas e exemplos. plano_complexo.gsp Construção do no Sketchpad 1 Construção do no Sketchpad Capítulo 3 Conjunto de problemas, demonstrações de resultados elementares e importantes da geometria do plano e construção de curvas especiais 2

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

Capítulo 1: Alfabetos, cadeias, linguagens

Capítulo 1: Alfabetos, cadeias, linguagens Capítulo 1: Alfabetos, cadeias, linguagens Símbolos e alfabetos. Um alfabeto é, para os nossos fins, um conjunto finito não vazio cujos elementos são chamados de símbolos. Dessa maneira, os conceitos de

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Equilíbrio Geral. Roberto Guena de Oliveira. 30 de julho de 2014 USP. Roberto Guena (USP) Equilíbrio Geral 30 de julho de 2014 1 / 112

Equilíbrio Geral. Roberto Guena de Oliveira. 30 de julho de 2014 USP. Roberto Guena (USP) Equilíbrio Geral 30 de julho de 2014 1 / 112 Equilíbrio Geral Roberto Guena de Oliveira USP 30 de julho de 2014 Roberto Guena (USP) Equilíbrio Geral 30 de julho de 2014 1 / 112 Parte I Modelo de Troca Roberto Guena (USP) Equilíbrio Geral 30 de julho

Leia mais

CUSTO ADICIONAL DA DEFICIÊNCIA

CUSTO ADICIONAL DA DEFICIÊNCIA CUSTO ADICIONAL DA DEFICIÊNCIA Seminário Internacional Cidades e Inclusão Social -Moradias Independentes para PcD Rio de Janeiro 13 de novembro de 2014 Equipe: Coordenador Prof. Antonio Carlos Coelho Campino

Leia mais

! &" #$& "% '()) '()' 4 )* * +, ' -./ )* 0' ( ' 1% +, 2 ' 3 -./ $ * + *,-. / #. 0! " 1 $ 2 3 # $ $ % & ' 4 " *.! " * 5 5+ * 6 7 # - 7 # ( $ % & '

! & #$& % '()) '()' 4 )* * +, ' -./ )* 0' ( ' 1% +, 2 ' 3 -./ $ * + *,-. / #. 0!  1 $ 2 3 # $ $ % & ' 4  *.!  * 5 5+ * 6 7 # - 7 # ( $ % & ' ! " # $ % ! &" #$& "% '()) * + *,-. / #. 0! " 1 $ 2 3 # $ $ % & ' '()' 4 " *.! " * 5 5+ * 6 7 # - 7 # ( $ % & ' 4 )* * +, ' -./ )* 0' ( ' 1% +, 2 ' 3 -./ $ 3 4 SUMÁRIO MATERIAL DE ATUAÇÃO PRÁTICA PARA

Leia mais

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem)

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem) (Enem) (Unimontes-MG) A resolução das câmeras digitais modernas é dada em megapixels, unidade de medida que representa um milhão de pontos. As informações sobre cada um desses pontos são armazenadas, em

Leia mais

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

! " #! $! %! " & ' ( )!! " * + " *, %

!  #! $! %!  & ' ( )!!  * +  *, % ! " #! $! % "! &' ( )!! " * + " *, % ! " # $ %!"#$%#&'()%#*&+ *', #%!-").%",')/&%001 #2% '.32"!'.)%#%2'%%4"'&)'#.)* *.'*#' 2)%#&"'&)' *'!&%5'/65*#'& &*#78% 2*5#%#2)'29:* #;!')*

Leia mais

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Tecnologia da Informação!" !" $%& '( ) %) * +, - +./0/1/+10,++$.(2

Leia mais

Aula 13 de Bases Matemáticas

Aula 13 de Bases Matemáticas Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

CÓPIA CONTROLADA 2@!45 )$ Q!> # % 7 !73/*000 G! "4 A57 5 GC! 3! 6! !45!@ )$ Q!> # % 7 !7> /-0,, Q! )$ Q!> # % 7 33/(#-0 5>"A5>A

CÓPIA CONTROLADA 2@!45 )$ Q!> # % 7 !73/*000 G! 4 A57 5 GC! 3! 6! !45!@ )$ Q!> # % 7 !7> /-0,, Q! )$ Q!> # % 7 33/(#-0 5>A5>A 29 2@!45 $ Q!> N4! # 7 $"$ '!453!3 33/(#-0!73/*000 :A!C G! "4 A57 5 GC! 3!4?443 > 3! 6!!45!@ $ Q!> N4! # 7 $"$ '!453!3 33/(#-0!7> /-0,, :A!C G! "4 A57 5 GC! 3SA!G" A A & Q! $ Q!> # 7 $"$ ' # GA : K!3 P!

Leia mais

NORMALIZAÇÃO Comércio Electrónico e a sua Importância na Cadeia de Distribuição 14 de Dezembro 2010 Nuno Miranda

NORMALIZAÇÃO Comércio Electrónico e a sua Importância na Cadeia de Distribuição 14 de Dezembro 2010 Nuno Miranda NORMALIZAÇÃO Comércio Electrónico e a sua Importância na Cadeia de Distribuição 14 de Dezembro 2010 Nuno Miranda The global language of business O que é ecommerce? Da perspectiva de processo de negócio,

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v. Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP

Leia mais

Módulo de Áreas de Figuras Planas. Áreas de Figuras Planas: Mais alguns Resultados. Nono Ano

Módulo de Áreas de Figuras Planas. Áreas de Figuras Planas: Mais alguns Resultados. Nono Ano Módulo de Áreas de Figuras Planas Áreas de Figuras Planas: Mais alguns Resultados Nono Ano Áreas de Figuras Planas: Mais alguns Resultados 1 Exercícios Introdutórios Exercício 1. No desenho abaixo, as

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Green no Plano O teorema de Green permite relacionar o integral de linha ao longo de uma

Leia mais

r a t (I), ht rs (II) e (III) r s t r a

r a t (I), ht rs (II) e (III) r s t r a 01 De T 1 e T 3, temos: a h r s h r a t (I), ht rs (II) e (III) r s t r a De T e T 3, temos: h b s s b s b t (IV) e (V) r s t r h De (III) e (V): b h h a b (VI) h a Somando (I) e (IV) temos: r s at bt

Leia mais

2 - Generalidades sobre funções reais de variável real

2 - Generalidades sobre funções reais de variável real Análise Matemática - 009/010 - Generalidades sobre unções reais de variável real.1-deinição e Propriedades De..1 Sejam A e B conjuntos, e uma correspondência de A para B, isto é um processo de associar

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais