Lista 4.5 Derivada da Função Composta

Tamanho: px
Começar a partir da página:

Download "Lista 4.5 Derivada da Função Composta"

Transcrição

1 Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II. Função composta de duas unções e g, com o contradomínio de g contido ou igual ao domínio de (og): Função que resulta da utilização de imagens da unção g como objectos da unção e que, por isso, depende dos objectos da unção g, tendo como imagens vectores do espaço de chegada de. g: D g n p ; CD g A gx,,x n g x,,x n : D p m ; A D,,a p,,a p,, m,,a p og: D g n m ogx,,x n gx,,x n g x,,x n,, m g x,,x n. Função composta de uma unção, de em e uma unção g, de em, com o contradomínio de g contido ou igual ao domínio de : Função que resulta da utilização de imagens da unção g, vectores de, como objectos da unção, também vectores de e que, por isso, depende dos objectos da unção g, vectores de e tem como imagens vectores do espaço de chegada de, vectores de. g: D g ; CD g A gx,y g : D ; A D,b og: D g ogx,y g g 3. Função composta de uma unção, de em e uma unção g, de em, com o contradomínio de g contido ou igual ao domínio de : Função que resulta da utilização de imagens da unção g, vectores de, como objectos da unção, também vectores de e que, por isso, depende dos objectos da unção g, vectores de e tem como imagens vectores do espaço de chegada de, vectores de. g: D g ; CD g A g g, g

2 : D ; A D x,y x,y, og: D g og g g, g, g, g 4. Se: Teorema da Derivada da Função Composta: g: D g n p ; CD g A : D p m ; A D g é dierenciável em a Então: é dierenciável em g og é dierenciável em a g a J og J g. J 5. Derivada parcial de ª ordem da unção composta og, com uma unção escalar, em ordem a x, num ponto a, interior do seu domínio (og ): Taxa de variação og quando há um desvio ininitesimal na coordenada x a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p ; A D b,,b p og: D g n ogx,,x n gx,,x n g x,,x n og x b g,,a n,,g p,,a n.g x,,a n bp g,,a n,,g p,,a n.g px,,a n x 6. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, em ordem a x (y), num ponto,a, interior do seu domínio: g: D g ; CD g A gx,y g

3 : D ; A D b,c og: D g ogx,y g g og x,a b g,a, g,a.g x,a c g,a, g,a.g x,a og y,a b g,a, g,a.g y,a c g,a, g,a.g y,a 7. Derivada parcial de ª ordem da unção composta og, com uma unção vectorial, em ordem a x, num ponto a, interior do seu domínio: Vector cujas coordenadas são as taxas de variação das unções coordenadas de og quando há um desvio ininitesimal na coordenada x a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p m ; A D b,,b p b,,b p,, m b,,b p og: D g n m, m ogx,,x n gx,,x n g x,,x n,, m g x,,x n og x og,,ogm x x g. g b x g. g b p px,, m g. g b x m g. g b p px 8. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, num ponto a, interior do seu domínio: Vector cujas coordenadas são as taxas de variação de og e og quando há um desvio ininitesimal a partir do ponto a. g: D g ; CD g A gb g b, g b : D ; A D x,y x,y, og: D g ogb gb gb, gb 3

4 og og,og g. g x g. g y, g. g x g. g y 9. Derivada parcial de ª ordem da unção composta og, com uma unção escalar, em ordem a x i e x j, num ponto a, interior do seu domínio (og ): Taxa de variação de og x quando há um desvio ininitesimal na coordenada x i j a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p ; A D b,,b p og: D g n ogx,,x n gx,,x n g x,,x n og xi x,,x n b g x,,x n.g x x,,x n i bp g x,,x n.g pxi x,,x n og xi x j b b g. g x b b j p g. g pxj.g x i b g. g x i x bp b j g. g x bp b j p g. g pxj.g pxi bp g. g pxi x j xi x j 0. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, em ordem a x e x, num ponto,a, interior do seu domínio: Taxa de variação de og x quando há um desvio ininitesimal na coordenada x a partir do ponto a,a. g: D g ; CD g A gx,y g : D ; A D b,c og: D g ogx,y g g 4

5 og x x,y b g.g x,y x c g.g x,y x og xx,a bb g,a, g,a.g x,a bc g,a, g,a.g x,a.g x,a b g,a, g,a.g xx,a cb g,a, g,a.g x,a cc g,a, g,a.g x,a.g x,a c g,a, g,a.g xx,a 5

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 6 VITON 5 RETENTORES CB 4,5 0X 16 X 7 6 RETENTORES CB 4,8 X 22 X 7 7 RETENTORES CC 5 X 15

Leia mais

* +,,- 5%67. 5%5%8 # ! " #$ %& ' %( ) .

* +,,- 5%67.  5%5%8 # !  #$ %& ' %( ) . http://indicadores.ethos.org.br/relatorioexternodiagnostico.aspx?id=1,2,,4,&ano=2007&questionari... Página 1 de 2 " # & ' "# * +,,-. * ' * //0 /1 2 &* '4/*5 / * / 1& &'56 ' &* 4/ &'*5 * 4 /*1 4' '4' &

Leia mais

5 Transformações Lineares e Matrizes

5 Transformações Lineares e Matrizes Nova School of Business and Economics Prática Álgebra Linear 5 Transformações Lineares e Matrizes 1 Definição Função de em Aplicação que faz corresponder a cada elemento de um conjunto (domínio), denominado

Leia mais

Lista 7.4 Optimização com Restrições de Desigualdade

Lista 7.4 Optimização com Restrições de Desigualdade Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II Lista 7.4 Optimização com Restrições de Desigualdade 1. Problema de optimização de uma função escalar f, de n variáveis reais,

Leia mais

Respostas de Exercícios Propostos

Respostas de Exercícios Propostos Respostas de Exercícios Propostos Capítulo 1: 1 a) Não é associativa É comutativa ( ) x+y x + y 2 + z (x y) z z x + y + 2z 2 2 4 ( ) y + z x (y z) x x + x+y 2 2x + y + z 2 2 4 x y x + y y + x y x 2 2 b)

Leia mais

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder

Leia mais

Diretor Executivo Márcio Augusto Magalhães. Diretor Departamento de Administração Márcio Wamilton Magalhães. Diretor de Operações Adriano de Magalhães

Diretor Executivo Márcio Augusto Magalhães. Diretor Departamento de Administração Márcio Wamilton Magalhães. Diretor de Operações Adriano de Magalhães Diretor Executivo Márcio Augusto Magalhães Diretor Departamento de Administração Márcio Wamilton Magalhães Diretor de Operações Adriano de Magalhães Manual de Abastecimento de Água pág. 2 !"!#$$ %"&'()*%+,%-%+,%./&01

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

Siemens AG 2009 SIRIUS SENTRON SIVACON. Catálogo LV 90 2009. Baixa Tensão Corte, protecção e comando. Answers for industry.

Siemens AG 2009 SIRIUS SENTRON SIVACON. Catálogo LV 90 2009. Baixa Tensão Corte, protecção e comando. Answers for industry. SIRIUS SENTRON SIVACON Catálogo LV 90 2009 Baixa Tensão Corte, protecção e comando Answers for industry. Interruptores de corte em carga, sistemas de barramentos SENTRON 8US Introdução Tipo 3NP 1 3K 3NJ4

Leia mais

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos

Leia mais

Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional

Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional Contabilidade Nacional Questão 6 O nosso objectivo é conhecer o valor da produção da economia ou PIB. Se as empresas

Leia mais

Universidade Federal de Goiás Regional Catalão - IMTec

Universidade Federal de Goiás Regional Catalão - IMTec Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação

Leia mais

Capítulo V: Derivação 137

Capítulo V: Derivação 137 Capítulo V: Derivação 37 Esboço de gráicos: Para esboçar o gráico de uma unção deve-se sempre que possível seguir as seguintes etapas: Indicar o domínio; Determinar os zeros (caso eistam); Estudar a paridade;

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

Matemática 2 Módulo 9

Matemática 2 Módulo 9 Matemática Módulo 9 GEOMETRIA ANALÍTICA VI COMENTÁRIOS ATIVIDADES PARA SALA. Se duas circunferências são concêntricas, então os seus centros são coincidentes. Temos a circunferência λ : x + y 4x y + =

Leia mais

Circuitos Digitais. Engenharia de Automação e Controle Engenharia Elétrica. São Paulo 2014. Prof. José dos Santos Garcia Neto

Circuitos Digitais. Engenharia de Automação e Controle Engenharia Elétrica. São Paulo 2014. Prof. José dos Santos Garcia Neto Engenharia de Automação e Controle Engenharia Elétrica Circuitos Digitais Prof. José dos Santos Garcia Neto São Paulo 2014 Prof. José dos Santos Garcia Neto 1 Introdução Esta apostila tem como objetivo

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03.

ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03. SÉRIE 8º ANO OLÍMPICO ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) SEDE ALUNO(A) Nº RESOLUÇÃO TURMA TURNO DATA / / ÁLGEBRA CAPÍTULO POTENCIAÇÃO Exercícios orientados para a sua aprendizagem (Pág. 6 e 7) 0. A)

Leia mais

INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um

INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0, de produzir um recipiente defeituoso. Antes que esses recipientes sejam estocados, eles são inspecionados e os defeituosos

Leia mais

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo.

TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo. TEOREMA DE CEVA E MENELAUS Definição 1. A ceviana de um triângulo é qualquer segmento de reta que une um dos vértices do triângulo a um ponto pertencente à reta suporte do lado oposto a este vértice. Teorema

Leia mais

Aula 5 - Matemática (Gestão e Marketing)

Aula 5 - Matemática (Gestão e Marketing) ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado

Leia mais

Contatores de Potência 3RT10, 3TF6

Contatores de Potência 3RT10, 3TF6 3RT10 26 3RT10 36 3RT10 65 3TF69 Contatores de otência 3RT10, 3TF6 Motores trifásicos Contator 1) otências s AC-2 / AC-3, 60 z em 220 V 380 V 440 V AC-1 (Dimensões em mm) (cv / kw) (cv / kw) (cv / kw)

Leia mais

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,

Leia mais

Artigo Inicial: 4 Artigo I ("A Semente é a Palavra de Deus"): 9 Artigo II ("Alvo de Contradição"): 20 Artigo III ("Novo Adão e Nova Eva"): 26 Artigo

Artigo Inicial: 4 Artigo I (A Semente é a Palavra de Deus): 9 Artigo II (Alvo de Contradição): 20 Artigo III (Novo Adão e Nova Eva): 26 Artigo 1 !" #!#!$" %&''() 2 Artigo Inicial: 4 Artigo I ("A Semente é a Palavra de Deus"): 9 Artigo II ("Alvo de Contradição"): 20 Artigo III ("Novo Adão e Nova Eva"): 26 Artigo IV ("São José"): 37 Artigo V ("Corpo

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

QUESTÕES DE ESCOLHA MÚLTIPLA

QUESTÕES DE ESCOLHA MÚLTIPLA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ TÓPICOSDERESOLUÇÃODO o TESTE(DIURNO) QUESTÕES DE ESCOLHA MÚLTIPLA. [,]SejamAeB duas matrizes

Leia mais

Desigualdades Geométricas

Desigualdades Geométricas CAPÍTULO Desigualdades Geométricas Os problemas de Geometria envolvendo desigualdades é um dos temas mais abordados nas olimpíadas, principalmente na prova da IM O. Antes de estudar este capítulo devemos

Leia mais

SEGURO FATURAMENTO AGRÍCOLA. Condições Gerais

SEGURO FATURAMENTO AGRÍCOLA. Condições Gerais SEGURO FATURAMENTO AGRÍCOLA Condições Gerais VERSÃO 1.3 CNPJ 28.196.889/0001-43 Processo SUSEP nº 15414.001668/2011-41 Condições Gerais Seguro Faturamento Agrícola versão 1.3 / Processo SUSEP nº 15414.001668/2011-41

Leia mais

G T G 2015-06. Plano Complexo. Construção do Plano Complexo no Sketchpad. ferramentas e exemplos. plano_complexo.gsp

G T G 2015-06. Plano Complexo. Construção do Plano Complexo no Sketchpad. ferramentas e exemplos. plano_complexo.gsp Construção do no Sketchpad 1 Construção do no Sketchpad Capítulo 3 Conjunto de problemas, demonstrações de resultados elementares e importantes da geometria do plano e construção de curvas especiais 2

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

63789:!" #$$!%&'" %%($!)* '+($!%,'$'!)' '';! +! <' = + -.%" '$/0!)" #$!/0!)%&! + 2 4> + ; (! ; ( 8 ; ( ; *(" #+ + ; ('+ +? '

63789:! #$$!%&' %%($!)* '+($!%,'$'!)' '';! +! <' = + -.% '$/0!) #$!/0!)%&! + 2 4> + ; (! ; ( 8 ; ( ; *( #+ + ; ('+ +? ' Página 1 de 31!"#$%&'"!!"( )* +,-./(,0 " #1$,*2 34#5'+ 63789:!" #$$!%&'" %%($!)* '+($!%,'$'!)' '';! +! .12 # '1 + #%

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

!"!#""" MESTRADO EM TEOLOGIA. Área de Concentração: Religião e Educação ()*+,-#""./

!!# MESTRADO EM TEOLOGIA. Área de Concentração: Religião e Educação ()*+,-#./ !"!#""" $%&&' MESTRADO EM TEOLOGIA Área de Concentração: Religião e Educação ()*+,-#""./ 0!"!#""" 1223445, 26,),7)2 8 9:;28 87767 26,;2

Leia mais

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB; Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por

Leia mais

Métodos de Análise de Investimentos

Métodos de Análise de Investimentos Aula Capítulo 11 Métodos de Análise de Investimentos 11.1- Introdução Neste capítulo mostraremos aplicações de valor presente líquido (VPL) e taxa interna de retorno (TIR) em comparações de fluxos de caixa

Leia mais

Aulas Teóricas e de Problemas de Álgebra Linear

Aulas Teóricas e de Problemas de Álgebra Linear Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

Lista 6: transformações lineares.

Lista 6: transformações lineares. Lista 6: transformações lineares. 1) Diga, justificando, quais das seguintes funções constituem transformações lineares. a) T : R 2 R 2 tal que T (x 1, x 2 ) = (x 1 + x 2, 3x 1 x 2 ) b) T : R 2 R 2 tal

Leia mais

Tema: Circunferência e Polígonos. Rotações

Tema: Circunferência e Polígonos. Rotações Nome: N.º: Turma: 9.º no Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência e Polígonos. Rotações 1. Na figura está representado um decágono regular [ BCDEFGHIJ

Leia mais

(segmentos direcionados, ou seja, a razão será negativa se tiverem sentidos opostos).

(segmentos direcionados, ou seja, a razão será negativa se tiverem sentidos opostos). Semana Olímpica 014 Nivel 3: Coordenadas Baricêntricas. Régis Prado Barbosa Coordenadas Baricêntricas são um jeito diferente de fazer contas em problemas de geometria, mais exatamente de usa vetores. Essa

Leia mais

! " # $ % % & ' ( ) ' * * +

!  # $ % % & ' ( ) ' * * + ! " # $ % % & ' ( ) ' * * + , - $ '. ! " $ & & - 0 $ $ 0 $ 3 4 5 4 3 ) 7 8 7 # % ' " ( ) * +,./ " ( $,,, ) 1 2 1 ' % 2 " % % ' %( 6 ' ( ( $ $ " !!. / '! % - :,! 3!3 ; % - ( *# 3)! ) < ; = 9 # 3!!3 33

Leia mais

ANEXO II - MODELOS DE DIVULGAÇÕES RESPEITANTES A PLANOS DE BENEFÍCIO DEFINIDO

ANEXO II - MODELOS DE DIVULGAÇÕES RESPEITANTES A PLANOS DE BENEFÍCIO DEFINIDO >> Voltar ao índice ANEXO II - MODELOS DE DIVULGAÇÕES RESPEITANTES A PLANOS DE BENEFÍCIO DEFINIDO O presente Anexo apresenta um conjunto de modelos que as instituições devem considerar no âmbito das divulgações

Leia mais

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v. Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP

Leia mais

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

Gramáticas Livres de Contexto

Gramáticas Livres de Contexto Gramáticas Livres de Contexto 25 de novembro de 2011 Definição 1 Uma Regra (ou produção) é um elemento do conjunto V (V Σ). Sendo que V é um conjunto finito de elementos chamados de variáveis e Σ um conjunto

Leia mais

Manobra e Proteção de Motores. sirius. Métodos de Partida

Manobra e Proteção de Motores. sirius. Métodos de Partida anobra e Proteção de otores sirius étodos de Partida étodos de partida Índice Páginas Partida direta coordenada com fusível... e Partida direta com reversão coordenada com fúsivel... 5 e 6 Partida estrela-triângulo

Leia mais

MAE0219 Introdução à Probabilidade e Estatística I

MAE0219 Introdução à Probabilidade e Estatística I Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

! $&% '% "' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 / " ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',!

! $&% '% ' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 /  ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',! "#$%% $&% '% "' ' '# '"''%(&%') '*'+&%'# ),'#+# ' %, # - ' # ' "%'''' ' * '. % % ', '%'# ''''') /%, 0.1 2 / " ') 33*&,% *"'",% '4'5&%64'' # ' + 7*' # + "*''''' 12''&% '''&")#'35 ''+,'#.8.&&%, 1 92 '. #

Leia mais

Alternativas para o manejo adequado de percevejos

Alternativas para o manejo adequado de percevejos Alternativas para o manejo adequado de percevejos MSc. José Fernando Jurca Grigolli Pesquisador Fitossanidade Fundação MS 1 O MONITORAMENTO E A IDENTIFICAÇÃO DAS PRAGAS INFLUENCIA DIRETAMENTE A EFICIÊNCIA

Leia mais

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem)

SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem) (Enem) (Unimontes-MG) A resolução das câmeras digitais modernas é dada em megapixels, unidade de medida que representa um milhão de pontos. As informações sobre cada um desses pontos são armazenadas, em

Leia mais

GABARITO COMENTADO MATEMÁTICA SIMULADO EDUCON ENEM 2012

GABARITO COMENTADO MATEMÁTICA SIMULADO EDUCON ENEM 2012 GABARITO COMENTADO MATEMÁTICA SIMULADO EDUCON ENEM 2012 Questão 46. D Divide o círculo em 6 partes iguais Custo = C/6. Questão 47. D R + 2R = 1m 5R = 100 cm R = 20 cm = 3.(200).100 = 60000cm 3 M = 60000.(0,9)

Leia mais

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 10,9 10,7 12,8 11,6 12,0 12,1 4 11,1 10,6 10,9 10,9 13,1

Leia mais

Isometrias do Plano Euclidiano

Isometrias do Plano Euclidiano Isometrias do Plano Euclidiano Semana do ICE 2013 Semana do ICE 2013 () Isometrias do Plano Euclidiano 1 / 7 O Plano Euclidiano E O Plano Euclidiano E é o plano euclidiano da geometria clássica (ensino

Leia mais

CUSTO ADICIONAL DA DEFICIÊNCIA

CUSTO ADICIONAL DA DEFICIÊNCIA CUSTO ADICIONAL DA DEFICIÊNCIA Seminário Internacional Cidades e Inclusão Social -Moradias Independentes para PcD Rio de Janeiro 13 de novembro de 2014 Equipe: Coordenador Prof. Antonio Carlos Coelho Campino

Leia mais

Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters)

Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters) Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters) 2. Outros modelos Mapas de Kohonen SOM, SOFM (Self-Organizing Feature Maps)

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

Manual de Políticas e Procedimentos Processo: Saúde e Segurança do Trabalho

Manual de Políticas e Procedimentos Processo: Saúde e Segurança do Trabalho 1 de 17! " # $ # % # # & ' ( )* # & +, & - & #. " %/. 0$ 12 # 3 " # & 4" $1#.$5,- 6% - 0)# 7 # 8# 9 +# 1: 92 6% 85 5 0)# 7 # 8# ; # 1: 92"%&;!"!#$%"&'( < - $ #3 )""!*%+"!,!-.*%!"/01" / - 6 -. &- - 2 de

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na

Leia mais

Raízes quadrada e cúbica de um polinômio

Raízes quadrada e cúbica de um polinômio Raízes quadrada e cúbica de um polinômio Lenimar Nunes de Andrade UFPB - João Pessoa, PB 1 de abril de 2011 1 Raiz quadrada de um polinômio Consideremos p(x) e r(x) polinômios tais que (r(x)) 2 = p(x).

Leia mais

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.

Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9. Escola Secundária/,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 3/01/01 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente,

Leia mais

CONCORRÊNCIA Nº 001/2015-SMT-GAB GRUPO ESTRUTURAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.567-8)

CONCORRÊNCIA Nº 001/2015-SMT-GAB GRUPO ESTRUTURAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.567-8) CONCORRÊNCIA Nº 001/2015-SMT-GAB GRUPO ESTRUTURAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.567-8) CONCORRÊNCIA Nº 002/2015-SMT-GAB GRUPO LOCAL DE ARTICULAÇÃO REGIONAL (PROCESSO ADMINISTRATIVO Nº 2015-0.051.569-4)

Leia mais

Seqüências, Limite e Continuidade

Seqüências, Limite e Continuidade Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto

Leia mais

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva.

Teorema de Ceva AULA. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. META: O Teorema de Ceva e algumas aplicações. OBJETIVOS: Enunciar e demonstrar o Teorema de Ceva; Aplicar o Teorema de Ceva. PRÉ-REQUISITOS O aluno deverá ter compreendido as aulas anteriores. .1 Introdução

Leia mais

COMO JOGAR SUA RÉGUA E SEU COMPASSO NO LIXO. Michel Spira

COMO JOGAR SUA RÉGUA E SEU COMPASSO NO LIXO. Michel Spira COMO JOGAR SUA RÉGUA E SEU COMPASSO NO LIXO Michel Spira 1 INTRODUÇÃO O objetivo desta apostila é mostrar que as construções básicas de geometria clássica, a saber, achar a interseção (caso exista) de

Leia mais

INSTITUTO BRASILEIRO DE PESQUISA SOCIAL

INSTITUTO BRASILEIRO DE PESQUISA SOCIAL ! #$ % &' () ) *%"++, -. /. 0 1 2 3 ' %1 5 - % (0 6 7 0 8 9 % 8 ) 0 1 ' 8-9:;1 % 09: . '?/ %

Leia mais

Controle do Professor

Controle do Professor Controle do Professor Compensou as faltas CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA VETORIAL E INTRODUÇÃO À ÁLGEBRA LINEAR SÉRIE: 2º ANO TRABALHO DE COMPENSAÇÃO DE FALTAS DOS ALUNOS

Leia mais

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém

Leia mais

Reconhecimento de Objectos

Reconhecimento de Objectos Dado um conjunto de características, relativas a uma região (objecto), pretende-se atribuir uma classe essa região, seleccionada de um conjunto de classes cujas características são conhecidas O conjunto

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 Experiências com a Matemática

Projecto Delfos: Escola de Matemática Para Jovens 1 Experiências com a Matemática Projecto Delfos: Escola de Matemática Para Jovens 1 Experiência IV: Objectivo: Nesta subsecção demonstraremos alguns teoremas indispensáveis para a resolução de problemas ligeiramente complexos em que

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo

MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo MOQ-3 ESTATÍSTICA Proessor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística: The Science o collecting and analyzing data or the purpose o drawing conclusions and making

Leia mais

Capítulo 1: Alfabetos, cadeias, linguagens

Capítulo 1: Alfabetos, cadeias, linguagens Capítulo 1: Alfabetos, cadeias, linguagens Símbolos e alfabetos. Um alfabeto é, para os nossos fins, um conjunto finito não vazio cujos elementos são chamados de símbolos. Dessa maneira, os conceitos de

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Capítulo 1 Prof. Rodrigo Varejão Andreão 2010/2 Cap. 1 Introdução PDS: área de rápido desenvolvimento nos últimos 40 anos, resultado do avanço das tecnologias de computação

Leia mais

Objetivos. e b, designado por a + b, é o. a e. a + b = AB + BC = AC. Na Figura 2.1, mostramos a soma a + b dos vetores

Objetivos. e b, designado por a + b, é o. a e. a + b = AB + BC = AC. Na Figura 2.1, mostramos a soma a + b dos vetores MÓDULO 1 - AULA Objetivos Aula Vetores no Plano - Operações Definir as operações de adição de vetores e multiplicação de vetores por escalares reais. Compreender as propriedades das operações com vetores.

Leia mais

Respostas da Série de Exercícios Funções Multivariadas e outras. Lista 3A

Respostas da Série de Exercícios Funções Multivariadas e outras. Lista 3A Respostas da Série de Exercícios Funções Multivariadas e outras Problema 1 Lista 3A Observar que N1 e N2 são números inteiros de tal forma que N1+N2 5 isto é: N1=1,...4 e N2=1,..5-N1. Cada par de valores

Leia mais

PROJETOHORTAEMCASA. Manualdo. Apoio. Realização CDHU PREFEITUR A DE SÃO PAULO VERDE E MEIO AMBIENTE. Instituto GEA

PROJETOHORTAEMCASA. Manualdo. Apoio. Realização CDHU PREFEITUR A DE SÃO PAULO VERDE E MEIO AMBIENTE. Instituto GEA M RJETHRTAEMCAA CM LANTAR E CLHER ALIMENT EM CAA 201 A Rzçã Ch Dvv Hb Ub CDHU I GEA é b REFEITUR A DE Ã AUL VERDE E MEI AMBIENTE FhTé Ebçã Tx Agô Jé Lz Ch T Nh Rh Rvã A M Dg Lz Egá j Nh Rh Rq L R Rf Tv

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

Daciane de Oliveira Silva www.daciane.wordpress.com

Daciane de Oliveira Silva www.daciane.wordpress.com Daciane de Oliveira Silva www.daciane.wordpress.com Marketing direto e mediação eletrônica Como a internet criou novos meios de intermediação entre as pessoas e as organizações? O que é marketing direto?

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Geometria Plana Noções Primitivas

Geometria Plana Noções Primitivas Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular ÁLGEBRA LINEAR Ano Lectivo 2010/2011

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular ÁLGEBRA LINEAR Ano Lectivo 2010/2011 Programa da Unidade Curricular ÁLGEBRA LINEAR Ano Lectivo 2010/2011 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Engenharia Electrotécnica e de Computadores 3. Ciclo de Estudos

Leia mais

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre

Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido

Leia mais

4 Sistemas de Equações Lineares

4 Sistemas de Equações Lineares Nova School of Business and Economics Apontamentos Álgebra Linear 4 Sistemas de Equações Lineares 1 Definição Rank ou característica de uma matriz ( ) Número máximo de linhas de que formam um conjunto

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

ALGA I. Representação matricial das aplicações lineares

ALGA I. Representação matricial das aplicações lineares Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e

Leia mais