Se retirarmos a última aresta a um ciclo hamiltoniano. logo todo o grafo hamiltoniano possui caminhos hamiltonianos. No entanto, o

Tamanho: px
Começar a partir da página:

Download "Se retirarmos a última aresta a um ciclo hamiltoniano. logo todo o grafo hamiltoniano possui caminhos hamiltonianos. No entanto, o"

Transcrição

1 Um caminho hamiltoniano num grafo é um caminho onde ocorrem todos os vértices do grafo exactamente uma vez. Análogamente, um ciclo hamiltoniano é um ciclo que contém todos os vértices do grafo exactamente uma vez, com excepcção dos vértices inicial e final que têm de coincidir. Um grafo diz-se hamiltoniano se possuir algum ciclo hamiltoniano. Se retirarmos a última aresta a um ciclo hamiltoniano obtemos um caminho hamiltoniano, logo todo o grafo hamiltoniano possui caminhos hamiltonianos. No entanto, o recíproco desta afirmação não é verdadeiro, como o seguinte exemplo mostra. Exemplo. 1

2 A designação de hamiltoniano referese ao matemático irlandês Sir William Rowan Hamilton ( ), famoso pela sua desoberta dos quaterniões, uma generalização não-comutativa dos números complexos. Por volta de 1857 Hamilton criou um jogo ao qual deu o nome de jogo icosiano, aludindo aos 20 vértices do dodecaedro. A cada um desses vértices era atribuído o nome de uma capital e o objectivo do jogo era, usando as arestas do dodecaedro, planear um percurso que visitasse cada uma das cidades exactamente uma vez e terminasse na cidade de onde se tinha partido. Assim, procurava-se um ciclo hamiltoniano no grafo do dodecaedro. Um exemplo de um tal ciclo é o seguinte: 2

3

4 3

5 4

6 Exemplo. Este exemplo mostra a independência entre a existência de circuitos (atalhos) eulerianos e a existência de ciclos (caminhos) hamiltonianos num grafo. circ euler atalh euler cic ham cam ham (a) sim não sim sim (b) não sim não sim (c) não não sim sim (d) sim não não sim (e) não sim não não (f) não não não sim 5

7 Exemplo. O grafo G abaixo não é Hamiltoniano porque a aresta a indicada é uma ponte. O grafo H também não é Hamiltoniano porque se v for o vértice indicado na figura então!(h v) = 2 > 1. No entanto, basta acrescentar uma qualquer aresta entre vértices não adjacentes a G ou H para que o respectivo grafo se torne Hamiltoniano. Por esta razão, dizemos que G e H são ambos grafos não-hamiltonianos maximais. a G v H 6

8 Exemplo. Se retirarmos os três vértices representados a preto no grafo G abaixo, obtemos um grafo com 4 componentes conexas. Logo G não é Hamiltoniano. 7

9 Algoritmo Seja G um grafo simples com n 3 vértices que satisfaz as hipóteses do Teorema de Ore. Passo 1. Escolher um vértice qualquer de G e, acrescentando vértices adjacentes à direita e à esquerda, construir um caminho aberto em G de comprimento cada vez maior, até não ser possível prosseguir, digamos C = y 1 y 2 y m, 3 apple m apple n, de comprimento m 1. Passo 2. (i) Se y 1 e y m não forem adjacentes em G, prosseguimos para o Passo 3. Caso contrário, y 1 e y m são adjacentes e prosseguimos para (ii). 8

10 (ii) Se m = n então y 1 y 2 y m y 1 é um ciclo Hamiltoniano em G; parar. Caso contrário, y 1 e y m são adjacentes e m< n; ir para (iii). (iii) Existe um vértice z, diferente de y 1,...,y m, que é adjacente a y k, para algum 1 apple k apple m. Substituir C pelo caminho aberto de comprimento m z y k y k+1 y m y 1 y k 1. De seguida, estender C acrescentando vértices adjacentes à direita e à esquerda até não ser possível prosseguir, de forma a termos ainda um caminho aberto de comprimento maior ou igual a m. Voltar ao início do Passo 2. Passo 3. Encontrar um vértice y k, com 1 < k<m, tal que y 1 é adjacente a y k e y m é adjacente a y k 1. Substituir C pelo caminho y 1 y k 1 y m y m 1 y k. de comprimento m 1, tal como C. As duas extremidades deste caminho são adjacentes. Voltar ao Passo 2(ii).

11 Teorema 1 (Dirac, 1952). Se o grafo G tem n vértices (n 3) e d(v) n/2 para todo o vértice v de G, então G é hamiltoniano. Exemplo. O grafo seguinte é hamiltoniano: Note-se que a condição do Teorema de Dirac é suficiente mas não é necessária. Por exemplo, o ciclo de cinco vértices C 5 é hamiltoniano mas nenhum dos seus vértices satisfaz a condição d(v) 5/2. A prova do Teorema de Dirac pode ser adaptada para uma prova do seguinte resultado mais geral: Teorema 2. Seja G um grafo com n vértices e sejam u e v vértices não adjacentes de G tais que d(u)+d(v) n. Seja G + uv o grafo obtido adicionando a aresta uv a G. Então G é hamiltoniano se e só se G + uv é hamiltoniano. 9

12 Exemplo. Aplicações sucessivas do teorema anterior permitem chegar ao grafo hamiltoniano completo K 6, logo G é também hamiltoniano. 10

13 Exemplo. Aplicar o algoritmo baseado no Teorema de Ore ao seguinte grafo: 11

14 O Problema do Caixeiro Viajante Exemplo. (Zé Pedro, o caixeiro viajante) O Zé Pedro é um caixeiro viajante que tem clientes em cinco cidades, que abreviamos por A, B, C, D e E. Ele precisa de planear uma viajem de negócios com cidade de partida e de destino final A (a cidade onde mora), em que passará por cada uma das restantes quatro cidades precisamente uma vez. O grafo abaixo representa o custo de cada viagem (ida ou volta) entre cada par de cidades. Qual o percurso mais barato para esta viagem do Zé Pedro? Por outras palavras, qual é o ciclo hamiltoniano optimal (isto é, cuja soma do peso das arestas é menor) no grafo dado? 12

15 Exemplo. (As Luas de Júpiter e Saturno) No ano 2020 será lançada da Terra uma expedição para explorar as luas de Júpiter e Saturno. Serão visitadas Callisto, Ganymede, Io (luas de Júpiter), Mimas e Titan (luas de Saturno), onde serão recolhidas amostras com as quais a expedição voltará à Terra. A seguinte figura indica a duração da missão (em anos) entre cada par de luas. Qual é o ciclo hamiltoniano optimal (mais breve) no grafo representado? (Terra) 13

16 Exemplo. (Vida em Marte) A tabela abaixo indica as distancias aproximadas (em milhas) entre sete locais de Marte, onde cientistas da NASA pensam poder encontrar vestígios de vida com maior probabilidade. A G H I N P W A G H I N P W Quer-se planear uma viagem que colocará um robot em Marte, aterrando em A. O robot deverá percorrer cada um dos locais, recolher amostras de solo e regressar a A, de onde um fogetão trará as amostras para Terra de forma a serem analisadas. Qual será o ciclo hamiltoniano optimal no grafo correspondente? 14

17 Método Exaustivo Este método consiste em fazer uma lista de todos os ciclos hamiltonianos do grafo, calcular o peso de cada um e escolher um de peso mínimo. Quantos ciclos hamiltonianos é que existem no grafo completo de n vértices K n? 15

18 Exemplo. (Zé Pedro, o caixeiro viajante) Uma forma de resolver o problema do Zé Pedro é usar o método de exaustão em que se calculam os pesos dos 4! = 24 ciclos hamiltonianos possíveis em K 5 : ciclo hamilt custo total ciclo inverso ABCDEA =812 AEDCBA ABCEDA =777 ADECBA ABDCEA =762 AECDBA ABDECA =773 ACEDBA ABECDA =831 ADCEBA ABEDCA =877 ACDEBA ACBDEA =722 AEDBCA ACBEDA =791 ADEBCA ACDBEA =776 AEBDCA ACEBDA =741 ADBECA ADBCEA =676 AECBDA ADCBEA =780 AEBCDA Verificamos assim que há exactamente dois ciclos optimais, o ciclo ADBCEA e o seu inverso, o ciclo AECBDA. Em qualquer dos casos, o Zé Pedro gasta 676 Euros na sua viagem de trabalho e esta é a melhor solução. 16

19 Método do Vizinho Mais Próximo Escolhe-se um vértice e a aresta de menor peso incidente nesse vértice. Esta aresta determina um outro vértice. De cada novo vértice escolhe-se a aresta de menor peso, de entre as arestas que são incidentes nesse vértice e num vértice que ainda não foi escolhido. No final, regressa-se ao vértice inicial. Exemplo. (Zé Pedro, o caixeiro viajante) No caso do Zé Pedro, por este algoritmo ele começa pelo vértice A. De A vai para C, de C para E, depois para D e finalmente para B, de onde regressa a A. O custo desta viagem é de 773 Euros. O método do vizinho mais próximo é muito mais rápido do que que o método de exaustão, embora não produza, em geral, uma solução optimal. Neste caso, o custo adicional é de 97 Euros, e o erro relativo é de 97/676 ' 14, 3%. 17

20 Exemplo. (Zé Pedro, o caixeiro viajante) Suponhamos que o Zé Pedro consegue alargar o seu negócio e ter um leque de clientes espalhados por dez cidades. O custo das viagens entre as cidades está representado abaixo, em forma de um grafo e de uma tabela: Neste caso, para usar o método exaustivo temos de calcular o peso de 9! = ciclos hamiltonianos. Demorando 30 segundos por cada um dos ciclos demoraríamos 3024 horas, o que é mais de 4 meses a trabalhar 24 horas por dia, 7 dias por semana! Tentemos então o método do vizinho mais próximo. O ciclo que obtemos é ACEDBJGKF HA, cujo custo é de 2153 Euros. 18

21 Método do Vizinho Mais Próximo com Repetição Exemplo. (Zé Pedro, o caixeiro viajante) Voltando mais uma vez ao exemplo do Zé Pedro e aplicando o algoritmo do vizinho mais próximo com repetição, obtemos sucessivamente os ciclos: ciclo custo em Euros ACEDBA 773 BCAEDB 722 CAEDBC 722 DBCAED 722 ECADBE 741 Assim, este algoritmo escolhe o ciclo BCAEDB = CAEDBC = DBCAED, cujo custo é de 722 Euros. Como sabemos, este não é um ciclo optimal, mas o resultado é mais satisfatório do que o obtido usando o algoritmo do vizinho mais próximo (sem repetição) começando em A. 19

22 Método do Elo Mais Barato Começamos por escolher a aresta de menor peso do grafo. Depois, escolhemos a aresta de menor peso de entre as arestas que não foram ainda escolhidas (que não tem de ser adjacente à primeira), sujeitos às seguintes regras: 1. não permitir que se forme um ciclo a não ser que já todos os vértices sejam incidentes com alguma das arestas já escolhidas; 2. não permitir que de entre as arestas escolhidas haja três incidentes no mesmo vértice. Repetimos este processo até obtermos um ciclo, que será necessariamente um ciclo hamiltoniano. Se alguma destas duas regras fosse violada não obeteríamos um ciclo hamiltoniano. Reciprocamente, se seguirmos estas regras terminamos com um ciclo hamiltoniano. 20

23 Exemplo. (Zé Pedro, o caixeiro viajante) Usemos este algoritmo no problema do Zé Pedro com cinco cidades. Obtemos o ciclo ACEBDA, de peso 741 Euros. 21

24 Exemplo. (Vida em Marte) Retomemos o problema do robot a recolher amostras de solo em Marte apresentado no início. Vamos aplicar-lhe os algoritmos que acabámos de discutir: Método exaustivo. Temos de calcular o peso de 6! = 720 ciclos hamiltonianos. Usando um computador obtemos um ciclo optimal de milhas. Método do elo mais barato. Obtemos o ciclo AP W HGNIA, de peso milhas. Método do vizinho mais próximo. Começando em A, obtemos o ciclo AP W HGINA, de peso milhas. Método do vizinho mais próximo com repetição. Uma vez que começando em A obtivémos um ciclo optimal, este método produzirá uma solução com o mesmo peso. 22

3.8 O Problema do Caixeiro Viajante

3.8 O Problema do Caixeiro Viajante CAPÍTULO 3. INTRODUÇÃO À TEORIA DE GRAFOS 72 3.8 O Problema do Caixeiro Viajante O Problema do Caixeiro Viajante (PCV) é o nome que usualmente se dá a uma série de problemas reais importantes que podem

Leia mais

Capítulo 2- Modelos de grafos.

Capítulo 2- Modelos de grafos. Capítulo 2- Modelos de grafos. 2.1- Introdução (pág. 8) [Vídeo 24] Grafo- é um esquema constituído por pontos (ou vértices) e por segmentos (ou arestas). (8) Exemplo 1(pág.8) Um grafo diz-se conexo se

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro

Leia mais

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17)

Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Matemática Aplicada às Ciências Sociais- 11º ano (Versão: para o manual a partir de 2016/17) Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel

Leia mais

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Ciência da Computação GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Um grafo é dito conexo se for possível visitar qualquer vértice, partindo de um outro qualquer, passando pelas suas arestas.

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A de Oliveira, Socorro Rangel, Silvio A de Araujo Departamento de Matemática Aplicada Capítulo 12: Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro Teoria do

Leia mais

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS EXATAS PROFMAT - MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL DISSERTAÇÃO DE MESTRADO GRAFOS: UMA MODELAGEM POSSÍVEL PARA AS PROVAS

Leia mais

x y Grafo Euleriano Figura 1

x y Grafo Euleriano Figura 1 Grafo Euleriano Um caminho simples ou um circuito simples é dito euleriano se ele contém todas as arestas de um grafo. Um grafo que contém um circuito euleriano é um grafo euleriano. Um grafo que não contém

Leia mais

Aula nº / Outubro/ 07. Problema do carteiro chinês

Aula nº / Outubro/ 07. Problema do carteiro chinês ula nº 10 2011/ Outubro/ 07 Problema do carteiro chinês efinição: Um ciclo de Hamilton (ou circuito de Hamilton) num grafo, é um ciclo que passa por todos os vértices desse grafo. efinição: Um grafo de

Leia mais

As Pontes de Königsberg

As Pontes de Königsberg As Pontes de Königsberg Anderson Freitas Ferreira e Lívia Minami Borges 13 de junho de 2015 Resumo A teoria de grafos teve seu início em 1736, quando Euler utilizou uma estrutura para resolver o Problema

Leia mais

Tabela 3 Tabela 4. Evolução do depósito do senhor Manuel (instituição A)

Tabela 3 Tabela 4. Evolução do depósito do senhor Manuel (instituição A) 3. O senhor Jerónimo e o senhor Manuel depositaram, cada um, a quantia de 25000,00 em contas em duas instituições financeiras diferentes, A e B, respectivamente. Os depósitos evoluíram como se apresenta

Leia mais

Escola Básica e Secundária Mouzinho da Silveira. MACS 11.º Ano Problema do Caixeiro Viajante

Escola Básica e Secundária Mouzinho da Silveira. MACS 11.º Ano Problema do Caixeiro Viajante Escola Básica e Secundária Mouzinho da Silveira MACS 11.º Ano Problema do Caixeiro Viajante Problema do Caixeiro Viajante Trata-se de um problema matemático que consiste, sendo dado um conjunto de cidades

Leia mais

Circuitos Hamiltorianos

Circuitos Hamiltorianos Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada.

Leia mais

76) 1.1 Sim 1.2 Não 1.3 Não

76) 1.1 Sim 1.2 Não 1.3 Não 6) 1.1 Sim 1.2 Não 1. Não 2.1 2.2 2.. Os grafos dos exercícios 2.1 e 2.2 são conexos, pois existe sempre uma sequência de arestas a unir quaisquer dois vértices. 4.1 Grafo I vértices: ; arestas: 2 Grafo

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré

PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição

Leia mais

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá

Grafos Hamiltonianos e o Problema do Caixeiro Viajante. Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafos Hamiltonianos e o Problema do Caixeiro Viajante Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Grafo Hamiltoniano Definição: Um circuito hamiltoniano em um

Leia mais

Circuitos Eulerianos Ciclos Hamiltonianos O Problema do Caixeiro Viajante CAMINHAMENTOS BASEADO EM TOWNSEND (1987), CAP. 7.

Circuitos Eulerianos Ciclos Hamiltonianos O Problema do Caixeiro Viajante CAMINHAMENTOS BASEADO EM TOWNSEND (1987), CAP. 7. Matemática Discreta Capítulo 7 SUMÁRIO CAMINHAMENTOS BASEADO EM TOWNSEND (1987), CAP. 7 Circuitos Eulerianos Ciclos Hamiltonianos O Problema do Caixeiro Viajante Newton José Vieira 30 de julho de 2007

Leia mais

Matemática Discreta Capítulo 3 Versão preliminar

Matemática Discreta Capítulo 3 Versão preliminar Matemática Discreta Capítulo 3 Versão preliminar Henri Anciaux e Derek Hacon October 25, 2007 1 Generalidades sobre grafos Um grafo G é simplesmente um par de dois conjuntos V e A, o segundo sendo constituído

Leia mais

DOIS PROBLEMAS SOBRE GRAFOS Paulo Cezar Pinto Carvalho IMPA

DOIS PROBLEMAS SOBRE GRAFOS Paulo Cezar Pinto Carvalho IMPA Nível Intermediario. DOIS PROBLEMAS SOBRE GRAFOS Paulo Cezar Pinto Carvalho IMPA INTRODUÇÃO A figura abaixo mostra um mapa rodoviário de um país fictício. Neste artigo vamos examinar dois problemas relativos

Leia mais

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste

O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os

Leia mais

Tópicos de Matemática Finita 2 a Chamada 5 de Julho de 2001

Tópicos de Matemática Finita 2 a Chamada 5 de Julho de 2001 Código do Exame: 204 Tópicos de Matemática Finita 2 a Chamada 5 de Julho de 2001 Nome: Número: Curso: O exame que vai realizar tem a duração de 3 horas. consiste em: 12 questões de ecolha múltipla, valendo

Leia mais

Tópicos de Matemática Finita 2 a Chamada 5 de Julho de 2001

Tópicos de Matemática Finita 2 a Chamada 5 de Julho de 2001 Código do Exame: 201 Tópicos de Matemática Finita 2 a Chamada 5 de Julho de 2001 Nome: Número: Curso: O exame que vai realizar tem a duração de 3 horas. consiste em: 12 questões de ecolha múltipla, valendo

Leia mais

GRAFOS: UMA INTRODUÇÃO

GRAFOS: UMA INTRODUÇÃO GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos

Leia mais

Daniel da Rosa Mesquita. Resolução de Problemas Relacionados à Teoria de Grafos no. Ensino Fundamental

Daniel da Rosa Mesquita. Resolução de Problemas Relacionados à Teoria de Grafos no. Ensino Fundamental 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA MESTRADO EM ENSINO DE MATEMÁTICA Daniel da Rosa Mesquita Resolução de Problemas

Leia mais

Tópicos de Matemática Finita 1 a Chamada 30 de Junho de 2001

Tópicos de Matemática Finita 1 a Chamada 30 de Junho de 2001 Código do Exame: 02 Tópicos de Matemática Finita a Chamada 30 de Junho de 200 Nome: Número: Curso: O exame que vai realizar tem a duração de 3 horas. consiste em: 2 questões de ecolha múltipla, valendo

Leia mais

Tópicos de Matemática Finita 1 a Chamada 30 de Junho de 2001

Tópicos de Matemática Finita 1 a Chamada 30 de Junho de 2001 Código do Exame: 0 Tópicos de Matemática Finita a Chamada 30 de Junho de 200 Nome: Número: Curso: O exame que vai realizar tem a duração de 3 horas. consiste em: 2 questões de ecolha múltipla, valendo

Leia mais

Ciclos hamiltonianos e o problema do caixeiro viajante

Ciclos hamiltonianos e o problema do caixeiro viajante Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.

Leia mais

Árvore de Suporte de Comprimento Mínimo Minimal Spanning Tree

Árvore de Suporte de Comprimento Mínimo Minimal Spanning Tree Investigação Operacional Árvore de Suporte de Comprimento Mínimo Minimal Spanning Tree Slide Transparências de apoio à leccionação de aulas teóricas Maria Antónia Carravilla José Fernando Oliveira Árvore

Leia mais

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos.

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. 1 Árvores Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. Um grafo simples sem ciclos mas não conexo (em que cada componente conexa é portanto uma árvore) chama-se uma floresta. Numa

Leia mais

Alguns probleminhas...

Alguns probleminhas... Introdução Vários problemas da computação, com aplicações em diversos problemas importantes, nasceram de jogos ou brincadeiras. Hoje veremos uma pequana amostra deste fato. Alguns probleminhas... Problema

Leia mais

Teoria e Algoritmos em Grafos

Teoria e Algoritmos em Grafos Teoria e Algoritmos em Grafos 2018.2 Percursos Caminhos que percorrem todos os vértices ou todas as arestas de um grafo são chamados percursos. Ciclo Hamiltoniano Ciclos Hamiltonianos são ciclos que percorrem

Leia mais

Algoritmos de aproximação - Problema do caixeiro viajante

Algoritmos de aproximação - Problema do caixeiro viajante Algoritmos de aproximação - Problema do caixeiro viajante Marina Andretta ICMC-USP 30 de setembro de 2015 Baseado no livro Uma introdução sucinta a Algoritmos de Aproximação, de M. H. Carvalho, M. R. Cerioli,

Leia mais

Redes. ADSA António Câmara

Redes. ADSA António Câmara Redes ADSA António Câmara Redes Método do caminho mais curto Localização de equipamentos Minimum spanning tree Carteiro chinês Caixeiro viajante Links Redes Redes são sistemas de linhas (arcos) ligando

Leia mais

Grafos: caminhos mínimos

Grafos: caminhos mínimos quando o grafo é sem pesos, a determinação de um caminho mais curto pode ser feita através de uma busca em largura caminho mais curto é aquele que apresenta o menor número de arestas quando o grafo tem

Leia mais

Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses

Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses 1 7 Teoria dos grafos Caminho euleriano e Hamiltoniano Grafo Euleriano Grafo onde é possível achar um caminho fechado (ciclo), passando em cada aresta uma única vez Quais são os grafos de Euler? Teorema:

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Helena Alves Rafael Sousa Rui Pedro Soares. MACS - Helena, Rafael, Rui Pedro 1

Helena Alves Rafael Sousa Rui Pedro Soares. MACS - Helena, Rafael, Rui Pedro 1 Helena Alves Rafael Sousa Rui Pedro Soares MACS - Helena, Rafael, Rui Pedro 1 Disciplina bienal de componente de formação específica com carga horária distribuída por 3 aulas de 90 minutos cada. MACS -

Leia mais

ª Fase. 16 pontos

ª Fase. 16 pontos 007.ª Fase 16 pontos 007.ª Fase 4 pontos 15 pontos 007.ª Fase 007.ª Fase 0 pontos 5 pontos 007.ª Fase 5 pontos 10 pontos 0 pontos 007.ª Fase 0 pontos 0 pontos 5 pontos TOTAL 00 pontos Prova Escrita de

Leia mais

Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.

Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota. Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota g.mota@ufabc.edu.br Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos

Leia mais

Teorema de Gerschgorin...

Teorema de Gerschgorin... Texto da palestra Teorema de Gerschgorin... ou será Ger sgorin? ou ainda Gerŝhgorin? Gersgorin? Geršgorin? Gershgorin? Gerŝgorin? Jaime Gaspar 2004/09/19 1 Introdução 1 Vamos falar um pouco sobre o Teorema

Leia mais

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 Nota Final

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 Nota Final Tópicos de Matemática Finita Data: 15-07-2002 2 a Época Correcção Código: 3C Nome: Número: Curso: O exame que vai realizar tem a duração de três horas. As respostas às perguntas do grupo I não necessitam

Leia mais

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 IV-4 Nota Final

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 IV-4 Nota Final Tópicos de Matemática Finita Data: 5-07-2003 2 a Época Correcção Código: 2D Nome: Número: Curso: O exame que vai realizar tem a duração de três horas. As respostas às perguntas do grupo I não necessitam

Leia mais

CIC 111 Análise e Projeto de Algoritmos II

CIC 111 Análise e Projeto de Algoritmos II CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 19 Paths and circuits Eulerian paths Hamiltonian paths De Bruijn sequences Knight s

Leia mais

Teoria dos Grafos. Grafos Planares

Teoria dos Grafos. Grafos Planares Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Grafos Planares

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Noções da Teoria dos Grafos

Noções da Teoria dos Grafos Noções da Teoria dos Grafos André Arbex Hallack Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 7 3 Árvores 11 4 Emparelhamento em grafos 15 5 Grafos planares: Colorindo

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

Grafos Eulerianos e o Problema do Carteiro Chinês

Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir A. Constantino DIN - UEM 1 Grafos Eulerianos e o Problema do Carteiro Chinês Prof. Ademir Constantino Departamento de Informática Universidade Estadual de Maringá Prof. Ademir A. Constantino

Leia mais

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado. PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure

Leia mais

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 IV-4 Nota Final

Tópicos de Matemática Finita Data: I II-1 II-2 II-3 II-4 III-1 III-2 III-3 III-4 IV-1 IV-2 IV-3 IV-4 Nota Final Tópicos de Matemática Finita Data: 20-06-2003 1 a Época Correcção Código: 1B Nome: Número: Curso: O exame que vai realizar tem a duração de três horas. As respostas às perguntas do grupo I não necessitam

Leia mais

Noções da Teoria dos Grafos. André Arbex Hallack

Noções da Teoria dos Grafos. André Arbex Hallack Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 2 Ciclos hamiltonianos 5 3 Árvores 7 4 Emparelhamento em grafos 11 5 Grafos planares:

Leia mais

MATEMÁTICA DISCRETA GRAFOS (1/4) Carlos Luz. EST Setúbal / IPS. 28 Maio - 3 Junho 2012

MATEMÁTICA DISCRETA GRAFOS (1/4) Carlos Luz. EST Setúbal / IPS. 28 Maio - 3 Junho 2012 MATEMÁTICA DISCRETA GRAFOS (1/4) Carlos Luz EST Setúbal / IPS 28 Maio - 3 Junho 2012 Carlos Luz (EST Setúbal / IPS) Grafos (1/4) 28 Maio - 3 Junho 2012 1 / 34 Noção de Grafo De nição Um grafo não orientado

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Grafos I. Figura 1: Mapa de Königsberg

Grafos I. Figura 1: Mapa de Königsberg Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 0 Grafos I O que é um grafo? Se você nunca ouviu falar nisso antes, esta é certamente uma pergunta que você deve

Leia mais

Algoritmo Aproximação. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3

Algoritmo Aproximação. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Algoritmo Aproximação Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Heurísticas para Problemas NP- Completo Heurística: algoritmo que pode produzir um bom resultado (ou até a solução ótima),

Leia mais

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47 1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado

Leia mais

Problema do Caixeiro Viajante (The Travelling Salesman Problem-TSP) (Problema Del viajante)

Problema do Caixeiro Viajante (The Travelling Salesman Problem-TSP) (Problema Del viajante) Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 78 Problema do Caixeiro Viajante (The Travelling Salesman Problem-TSP) (Problema Del viajante) Suponhamos que a qualquer momento em que

Leia mais

Teoria dos Grafos. Árvores

Teoria dos Grafos.  Árvores Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Preparado a partir

Leia mais

Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I

Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I Algoritmos em Grafos COM11087-Tópicos Especiais em Programação I edmar.kampke@ufes.br Introdução Teoria dos Grafos é o estudo das propriedades e estruturas dos grafos. O objetivo é, após modelar um problema

Leia mais

Resoluções Atividades do Manual

Resoluções Atividades do Manual Resoluções Atividades do Manual Tema 3 Atividade 1 10) Sugerimos que esta atividade seja desenvolvida em grupo, podendo cada um apresentar mais do que uma solução. Algumas das soluções possíveis são: 1.1

Leia mais

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos.

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. 1 Árvores Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. Um grafo simples sem ciclos mas não conexo (em que cada componente conexa é portanto uma árvore) chama-se uma floresta. Numa

Leia mais

MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO

MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO MATEMÁTICA DISCRETA PARA ENGENHARIA DE COMPUTAÇÃO Profa. Kathya Collazos Linares *As aulas baseiam-se no material do Professor Antonio Alfredo Ferreira Loureiro O problema das sete pontes de Königsberg

Leia mais

Resolução do Exame de Matemática Aplicada às Ciências Sociais 10 ọ /11 ọ Ano 2012 (2 ạ Fase)

Resolução do Exame de Matemática Aplicada às Ciências Sociais 10 ọ /11 ọ Ano 2012 (2 ạ Fase) Resolução do Exame de Matemática Aplicada às Ciências Sociais 10 ọ /11 ọ Ano 01 ( ạ Fase) 1. 1.1. No método de Hondt divide-se o número de votos de cada lista por 1,,, 4, 5, 6, 7, 8, 9, etc: Divisores

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE. Grupo I

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE. Grupo I PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROA 835) 2013 1ªFASE Grupo I 1. 1.1. De acordo com o método apresentado, a contagem de pontos de cada tema, incluindo o tema

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Prof. Marco Antonio M. Carvalho

Prof. Marco Antonio M. Carvalho Prof. Marco Antonio M. Carvalho Lembretes! Lista de discussão! Endereço:! programaacao@googlegroups.com! Solicitem acesso:! http://groups.google.com/group/programaacao! Página com material dos treinamentos!

Leia mais

1. Da análise da tabela com os resultados da votação, é possível observar que a primeira preferência

1. Da análise da tabela com os resultados da votação, é possível observar que a primeira preferência Proposta de Resolução do Exame de Matemática Aplicada às Ciências Sociais Cód. 835-2ª Fase 2011 1. Da análise da tabela com os resultados da votação, é possível observar que a primeira preferência mais

Leia mais

Algoritmos de Aproximação para o Problema do Caixeiro Viajante

Algoritmos de Aproximação para o Problema do Caixeiro Viajante TSP p.1/19 Algoritmos de Aproximação para o Problema do Caixeiro Viajante 24 de agosto de 2004 TSP p.2/19 Problema do Caixeiro Viajante Dados grafo comprimento da aresta ( ) TSP p.2/19 Problema do Caixeiro

Leia mais

NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016

NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 1ª FASE 23 DE JUNHO 2016

PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 1ª FASE 23 DE JUNHO 2016 PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 1ª FASE 23 DE JUNHO 2016 1. Considerando as preferências dos 900 internautas considerados

Leia mais

MÓDULO 3 - PROBLEMAS DE COBERTURAS DE ARCOS E NÓS

MÓDULO 3 - PROBLEMAS DE COBERTURAS DE ARCOS E NÓS MÓULO 3 - PROBLEMAS E COBERTURAS E ARCOS E NÓS 1. CONCEITOS INICIAIS Área contida na Pesquisa Operacional. Pode ser considerada como uma teoria baseada na interligação de pontos e linhas, utilizada principalmente

Leia mais

Algoritmo Aproximado. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3

Algoritmo Aproximado. Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Algoritmo Aproximado Prof. Anderson Almeida Ferreira [DPV]9.2 [ZIV]9.2.2 e 9.2.3 Heurísticas para Problemas N P- Completo Heurística: algoritmo que pode produzir um bom resultado (ou até a solução ótima),

Leia mais

PROPOSTA DE MELHORIA DA ROTA DE TRANSPORTE DE HORTALIÇAS: UMA APLICAÇÃO TÉCNICA DO PROBLEMA DE CAIXEIRO VIAJANTE

PROPOSTA DE MELHORIA DA ROTA DE TRANSPORTE DE HORTALIÇAS: UMA APLICAÇÃO TÉCNICA DO PROBLEMA DE CAIXEIRO VIAJANTE João Pessoa/PB, Brasil, de 03 a 06 de outubro de 2016 PROPOSTA DE MELHORIA DA ROTA DE TRANSPORTE DE HORTALIÇAS: UMA APLICAÇÃO TÉCNICA DO PROBLEMA DE CAIXEIRO VIAJANTE Fernanda dos Santos Silva (UEPA )

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 13: Árvores. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 13: Árvores. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 13: Árvores Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Existem três companhias que devem abastecer com gás, eletricidade e água três prédios diferentes através de tubulações subterrâneas. Estas tubulações podem estar à mesma profundidade? Isto

Leia mais

Selecciona-se dos vértices ainda não seleccionados o vértice v k que está à menor distância de v i,

Selecciona-se dos vértices ainda não seleccionados o vértice v k que está à menor distância de v i, V. Problema do caixeiro-viajante Grafos - Problema do caixeiro-viajante onsidere-se um grafo em que os vértices representam cidades e as arestas (ou arcos) representam as estradas de uma dada região (a

Leia mais

Estratégias vencedoras para o jogo Slither

Estratégias vencedoras para o jogo Slither Estratégias vencedoras para o jogo Slither Marcelo da Silva Reis 1 1 Instituto de Matemática e Estatística, Universidade de São Paulo. marcelo.reis@gmail.com 11 de agosto de 009 Este artigo apresenta estratégias

Leia mais

2. Desenhe o grafo orientado G = (X, Γ) para: 3. Em cada alínea dois grafos são iguais. Identifique-os. (a) (b) (c)

2. Desenhe o grafo orientado G = (X, Γ) para: 3. Em cada alínea dois grafos são iguais. Identifique-os. (a) (b) (c) 1. Desenhe o grafo não orientado G = (X, Γ) para: (a) X = {a, b, c, d} e Γ = {{a, b}, {b, c}, {c, d}}. (b) X = {a, b, c, d} e Γ = φ. (c) X = {1, 2, 3, 4, 5, 6, 7, 8} e Γ = {{1, 2}, {2, 2}, {2, 3}, {3,

Leia mais

Problemas de Fluxo em Redes

Problemas de Fluxo em Redes CAPÍTULO 7 1. Conceitos fundamentais de grafos Em muitos problemas que nos surgem, a forma mais simples de o descrever, é representá-lo em forma de grafo, uma vez que um grafo oferece uma representação

Leia mais

GRAFOS. Introdução Conceitos Fundamentais

GRAFOS. Introdução Conceitos Fundamentais GRAFOS Introdução Conceitos Fundamentais Uma aplicação do produto de matrizes Agora é a sua vez... Considere o diagrama seguinte Determine, o número de formas diferentes de ir de a 1 até e 2 e de a 2

Leia mais

Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Grafos META Introduzir noções elementares da teoria dos grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Representar grafos por meio de matrizes e diagramas; Caracterizar uma árvore; Identificar

Leia mais

Grafos IFRN. Prof. Robinson Alves

Grafos IFRN. Prof. Robinson Alves Grafos IFRN Prof. Robinson Alves Problema do Caixeiro Viajante Consiste em determinar o menor caminho, passando por todos os vértices uma única vez e retornando ao vértice de origem Métodos: Tentativa

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 1ª FASE 23 DE JUNHO 2016

PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 1ª FASE 23 DE JUNHO 2016 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 1500-236 Lisboa Tel.: +351 21 716 36 90 / 21 711 03 77 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA PROVA

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo

Leia mais

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos.

Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. 1 Árvores Definição 1.1 : Uma árvore é um grafo simples conexo e sem ciclos. Um grafo simples sem ciclos mas não conexo (em que cada componente conexa é portanto uma árvore) chama-se uma floresta. Numa

Leia mais

Grafos: aplicações. Grafos: árvore geradora mínima

Grafos: aplicações. Grafos: árvore geradora mínima árvore geradora mínima caminhos mínimos problemas tipo 1 desejase conectar todos os computadores em um prédio usando a menor quantidade possível de cabos uma companhia aérea deseja voar para algumas cidades

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

Matemática Aplicada às Ciências Sociais- 11º ano

Matemática Aplicada às Ciências Sociais- 11º ano Matemática Aplicada às Ciências Sociais- 11º ano Professor: Pedro Nóia Livro adotado: Matemática Aplicada às Ciências Sociais- 11º ano Elisabete Longo e Isabel Branco Texto Editores Sugestão: Adquira também

Leia mais

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres.

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres. Ciência da Computação Engenharia de Computação Mestrado em Informática Maria Claudia Silva Boeres boeres@inf.ufes.br Programa 1.Conceitos Básicos 2.Grafos Eulerianos e Hamiltonianos 3.Caminhos, Ciclos

Leia mais

Tópicos de Matemática Finita 2 a Época 20 de Julho de 2001

Tópicos de Matemática Finita 2 a Época 20 de Julho de 2001 Código do Exame: 301 Tópicos de Matemática Finita 2 a Época 20 de Julho de 2001 Nome: Número: Curso: O exame que vai realizar tem a duração de 3 horas. consiste em: 12 questões de ecolha múltipla, valendo

Leia mais

Problemas de Optimização em redes

Problemas de Optimização em redes Problemas de ptimização em Redes V., V.Lobo, N / ISGI, 8 Problemas de ptimização em redes Problemas de optimização em redes onceito de grafo Muitos problemas Muitas aplicações aminho mais curto Qual o

Leia mais

Universidade de Aveiro Departamento de Matemática ILDA MARIA DUARTE DE MATOS TEORIA DOS GRAFOS NO ENSINO BÁSICO E SECUNDÁRIO

Universidade de Aveiro Departamento de Matemática ILDA MARIA DUARTE DE MATOS TEORIA DOS GRAFOS NO ENSINO BÁSICO E SECUNDÁRIO Universidade de Aveiro Departamento de Matemática 2013 ILDA MARIA DUARTE DE MATOS TEORIA DOS GRAFOS NO ENSINO BÁSICO E SECUNDÁRIO Universidade de Aveiro Departamento de Matemática 2013 ILDA MARIA DUARTE

Leia mais

podem ser ambas representadas por meio de pontos e segmentos de recta do seguinte modo:

podem ser ambas representadas por meio de pontos e segmentos de recta do seguinte modo: 3. Teoria dos Grafos Noções básicas A Teoria dos Grafos é actualmente uma das áreas mais importantes da matemática discreta. Tendo as suas raízes em jogos e recreações matemáticas, atribui-se a sua criação

Leia mais

Capítulo 1. Aula Caminhos de Euler e Hamilton Caminhos de Euler e Circuitos

Capítulo 1. Aula Caminhos de Euler e Hamilton Caminhos de Euler e Circuitos Capítulo 1 Aula 8 1.1 Caminhos de Euler e Hamilton Podemos percorrer as margens de um grafo iniciando em um vértice e retornando a ele percorrendo cada borda do grafo exatamente uma vez? Da mesma forma,

Leia mais

64.2. Designando a sequência por (Pn) podemos escrever: , 1, 2, 4, 7, 13, Designando a sequência por (Tn) podemos escrever:

64.2. Designando a sequência por (Pn) podemos escrever: , 1, 2, 4, 7, 13, Designando a sequência por (Tn) podemos escrever: 11 Pág 70 Dia Tempo de treino (em minutos) 1 30 2 40 3 50 4 60 5 70 6 80 7 90 12 Dia 8: 100 min dia 9: 110 min dia 10: 120 min (2 horas) Ao fim de 10 dias 13 20 + 10n 14 n = 14, logo 20 + 10 14 = 20 +

Leia mais

Teoria dos Grafos. Maria Claudia Silva Boeres. UFES. Teoria dos Grafos

Teoria dos Grafos. Maria Claudia Silva Boeres. UFES. Teoria dos Grafos Maria Claudia Silva Boeres boeres@inf.ufes.br Motivação Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados na definição e/ou resolução de

Leia mais